POPULARITY
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
Das epitheliale Zelladhäsionsmolekül EpCAM ist in der Tumorentstehung von Plattenepithelkarzinomen über- oder de novo exprimiert. Zudem korreliert die EpCAM-Expression in Tumorzellen positiv mit Proliferation und Entdifferenzierung. Es wurde in Vorarbeiten ein 1100 bp epcam-Promotorfragment kloniert, das spezifisch in EpCAM-positiven Zellen transkriptionell aktiv ist und durch TNFα in der Promotoraktivität reprimiert wird. In meiner Arbeit untersuchte ich, ob das 1100 bp epcam-Promotorfragment zur gezielten heterologen Genexpression geeignet ist. Zu diesem Zweck wurden drei Proteine ausgewählt: Grünes Fluoreszenz Protein (GFP), TNF receptor associated death domain Protein (TRADD) und Herpes Simplex Virus 1 Thymidinkinase (HSV1-TK). GFP diente der Visualisierung der Promotoraktivität im Fluoreszenzmikroskop. TRADD sollte die Apoptose in EpCAM-positiven Tumorzellen induzieren. Mit Hilfe der spezifischen Expression der HSV1-TK in EpCAM-positiven Zellen sollten Tumorzellen für Ganciclovir sensitiviert werden. Eine Therapie mit Ganciclovir sollte das Absterben der Tumorzellen bewirken. Die heterologe Genexpression wurde an einem zellulären Modellsystem von EpCAM-positiven und EpCAM-negativen HEK293 Zellen getestet. Dabei zeigten EpCAM-positive Zellen eine deutliche GFP-Expression, während EpCAM-negative Zellen sporadisch eine minimale Fluoreszenzintensität aufwiesen. Die EpCAM-spezifische Expression von GFP konnte im Immunoblot bestätigt werden. Um den Zusammenhang zwischen EpCAM- und GFP-Expression zu veranschaulichen, wurden die Ergebnisse der durchflusszytometrischen Messungen der EpCAM-Oberflächenexpression mit der GFP-Fluoreszenz verglichen. Damit konnte im zellulären Modellsystem von EpCAM-positiven und EpCAM-negativen HEK293 Zellen gezeigt werden, dass die epacm-Promotoraktivität zu einer heterologen Genexpression von GFP führt. Das zelluläre Modellsystem von EpCAM-positiven und EpCAM-negativen HEK293 Zellen wurde auf die Expression weiterer funktioneller Gene untersucht. Für das Funktionsgen TRADD konnte dabei weder eine EpCAM-spezifische heterologe Genexpression in der RT-PCR noch im Immunoblot nachgewiesen werden. In beiden Untersuchungen führten die Positivkontrollen zu einem Nachweis von TRADD. Da TRADD über komplexe Signalwege zur Bildung von TNFα führen kann, findet möglicherweise eine Inaktivierung des epcam-Promotors durch TNFα statt. Die heterologe Genexpression von HSV1-TK unter der Kontrolle des epcam-Promotors konnte im zellulären Modellsystem in der RT-PCR nachgewiesen und auf die EpCAM-positive Tumorzelllinie SKBR3 übertragen werden. Durch die Genexpression von HSV1-TK wurden EpCAM-positive HEK293 Transfektanten sensitiv gegenüber einer Behandlung mit Ganciclovir und zeigten eine deutlich reduzierte metabolische Aktivität im MTT-Ansatz bei Ganciclovirgabe. Dabei gewonnene Erkenntnisse wurden an der EpCAM-positiven Tumorzellinie SKBR3 bestätigt. Zusammengefasst konnte gezeigt werde, dass die heterologe Genexpression von HSV1-TK unter der Kontrolle des epcam-Promotors zu Ganciclovirsensitivität in EpCAM-positiven Zellen führte, jedoch nicht in EpCAM-negativen Zellen. Somit ist es denkbar, das 1100 bp epcam-Promotorfragment für die therapeutische Genexpression letaler Gene zur Elimination EpCAM-positiver Tumorzellen zu verwenden.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Das Blutgefäßsystem eines Organismus stellt eines der größten Organe des menschlichen Körpers dar. Den Grundbaustein der Gefäße bilden Endothelzellen, die durch eine einfache Zellschicht das gesamte System von innen auskleiden. Bei einer Vielzahl an physiologischen und pathophysiologischen Prozessen, wie beispielsweise dem weiblichen Menstruationszyk¬lus, der Wundheilung, den Entzündungsreaktionen oder aber der Ischämie und der Tumorpro¬gression, spielt das Endothel eine wesentliche Rolle. Die Aktivierung der Endothelzellen wird durch zahlreiche verschiedene Faktoren reguliert, die entweder im Blut zirkulieren, von be¬nachbarten Zellen oder aber auch von Tumorzellen sezerniert werden können. Im Rahmen der vorliegenden Arbeit wurde ein Hochdurchsatz-Screen etabliert, bei dem sich Gene mit einem pro-angiogenen Effekt identifizieren lassen. Hierzu erfolgte die individuelle Transfektion und Expression von 34.596 verschiedenen cDNAs in HEK 293-Zellen. Zur Testung wurden deren konditionierte Medienüberstände auf primäre Endothelzellen (HUVECs) transferiert. Zwei bereits aus der Literatur bekannte pro-angiogene Faktoren, bFGF und VEGF, wurden zur Protokoll-Etablierung als Positivkontrollen eingesetzt. Im Screen konnten insgesamt 13 cDNAs identifiziert werden, die einen pro-angiogenen Ef¬fekt zeigten. Unter ihnen fanden sich auch die zwei Positivkontrollen wieder, was einen direkten Beleg für die Funktionalität des Screens darstellt. Des Weiteren wurden vier bekannte und fünf unbekannte cDNAs identifiziert, bei denen bisher noch kein Zusammenhang mit Angiogenese gezeigt werden konnte. Die vier bekannten Gene kodieren für zytosolisch lokali¬sierte Proteine, deren Expression in verschiedene Säuger-Zellen zur Produktion und Sekretion pro-angiogener Faktoren führt. Im Anschluss an den Screen wurde eines der unbekannten Gene (NM_020746) detaillierter charakterisiert. Dieses Gen kodiert für ein 56,6 kDa großes Protein, das aufgrund erster Funk¬tionshinweise den Namen hSEP (human Stimulator of Endothelial Proliferation) erhielt. Die Expression von hSEP in HEK 293-, sowie in anderen Säuger-Zellen, generierte konditionierte Überstände, welche in Mangelmedium gehaltene Endothelzellen, nicht aber Fibroblasten zum Wachstum stimulieren. Mit Hilfe biochemischer Analysen wurde die Sekretion von hSEP nach der Expression in HEK 293-Zellen nachgewiesen. Besondere Bedeutung bei der Lokali¬sierung des Proteins kam hierbei einer bioinformatisch vorhergesagten C-terminalen Trans¬membrandomäne zu. Die Deletion dieser Domäne erzeugte ein deutlich effektiver sezerniertes Protein-Fragment (SEP1-510), führte allerdings gleichzeitig zu einem signifikanten Rückgang der Wachstums-Stimulation bei HUVECs. Des Weiteren ging die für hSEP nachgewiesene Lokalisierung im Golgi und ER zu Gunsten einer diffusen intrazellulären Verteilung verloren. Um den Wirkungsmechanismus von hSEP aufzuklären, wurden verschiedene Experimente durchgeführt. Expressionsanalysen von HEK 293-Zellen, die hSEP exprimierten, zeigten die Induktion verschiedener pro-angiogener Gene wie beispielsweise IL-8, RANTES und VEGF. Des Weiteren korrelierte die Anwesenheit von hSEP im Überstand nicht reproduzierbar mit der Stimulation von HUVECs. Außerdem gelang es nicht, aktives hSEP-Protein rekombinant zu erzeugen, welches für einen direkten Beweis seiner Funktionalität erforderlich gewesen wäre. Darüber hinaus wurden Hinweise auf eine Ko-Expression von hSEP mit VEGF unter hypoxischen Bedingungen sowie in verschiedenen soliden Tumoren gefunden. In welchen Zusammenhang die Expression dieser beiden Proteine steht, müssen weitere detaillierte Un¬tersuchungen zeigen. Insgesamt ist es denkbar, dass hierdurch neue mögliche therapeutische Ansätze für eine Inhi¬bition bei der Tumorangiogenese eröffnet werden könnten.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 02/19
In einer kontrollierten prospektiven klinisch-experimentellen Untersuchung wurden 24 MNC-Apheresen an 24 freiwilligen gesunden Spendern durchgeführt, das gewonnene Zellkonzentrat portioniert und gezielt mit jeweils einem von fünf häufigen Kontaminationskeimen von Blutprodukten kontaminiert: Escherichia coli, Candida albicans, Staphylokokkus aureus, Koagulase-negative Staphylokokken und Pseudomonas aeruginosa. Dabei wurden zur Inokulation erregerabhängig sepsisähnliche Konzentrationen zwischen zehn hoch minus zwei und zehn hoch drei KBE/ml verwendet. Ein Teil der Proben wurde unter Zusatz von 10 % DMSO kryokonserviert und in der flüssigen Phase von flüssigem Stickstoff bei – 196 ° C gelagert. Von nicht kontaminierten unbehandelten Kontrollen, inokulierten Apheresatproben und gezielt kontaminierten und anschließend kryokonservierten und wiederaufgetauten Proben wurden Blutkulturen in BACTECTMPLUS Aerobic/F* und PLUS Anaerobic/F* Kulturfläschchen angefertigt und zur Untersuchung im BACTEC 9240 Gerät von BECTON DICKINSON in die Mikrobiologie eingesandt. Von positiven Blutkulturen wurden zur Bestätigung des Ergebnisses und zur Isolierung und Identifizierung des Keimes Subkulturen auf Blutagar angefertigt. Die Kryokonservierung zeigte keinen signifikanten Einfluss auf die Viabilität von Mikroorganismen im Apheresat: alle verwertbaren, gezielt kontaminierten Versuchsansätze wiesen nach Kryokonservierung weiterhin Keimwachstum auf. Lediglich bei Escherichia coli konnte, bei Verwendung einer sehr kleinen Inokulationsmenge (zehn hoch minus zwei KBE/ml) zur Kontamination, in drei kryokonservierten und wieder aufgetauten Apheresaten kein Erreger mehr isoliert werden. Da aber bei Verwendung dieser niedrigen Verdünnungsstufe bereits in fünf von zwölf Positivkontrollen kein Wachstum von E. coli nachzuweisen war, dürfen diese Proben nicht in die Auswertung eingehen. Es gibt zu viele Einflussfaktoren auf den Keimnachweis in Blutkulturen, als dass hier von einer Abtötung von E. coli durch den Prozess der Kryokonservierung und des Wiederauftauens ausgegangen werden darf. Als klinisch zuverlässige Maßnahme zur nachträglichen Erzielung von Keimfreiheit bei vorliegender Kontamination eines Aphereseproduktes eignet sich die Kryokonservierung deshalb nicht.