Podcasts about tnf rezeptor

  • 3PODCASTS
  • 3EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Apr 7, 2016LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about tnf rezeptor

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 19/19
Die Rolle des Wachstumsfaktors Progranulin in der Progression der Atherosklerose

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 19/19

Play Episode Listen Later Apr 7, 2016


Die exakten molekularen und zellulären Mechanismen, welche zu Initiation und Progression der Atherosklerose und letztlich zu den gefürchteten atherosklerotischen Folgeerkrankungen, hierunter Myokardinfarkt und Apoplex, führen, sind bis heute Gegenstand vielfältiger medizinischer und biochemischer Forschungsbemühungen und noch nicht vollständig geklärt. In der vorliegenden Promotionsarbeit wurde die funktionelle Rolle des Wachstumsfaktors Progranulin in der Progression der Atherosklerose in vivo in zwei Mausmodellen näher untersucht. Im Detail wurde analysiert, inwiefern Progranulin die Adhäsion und Einwanderung von Leukozyten steuert und die Ausbildung atherosklerotischer Gefäßwandveränderungen beeinflusst. Auf dem Boden eines bereits etablierten und häufig angewandten Mausmodells der frühen Atherosklerose, nämlich der ApoE-defizienten Maus, wurde ein Doppel-Knockout-Mausmodell generiert, welches überdies auch eine Defizienz des Progranulin-Gens aufweist. Auf diese Weise konnte der Einfluss von Progranulin (PGRN) auf die Atherogenese herausgearbeitet werden. Es konnte gezeigt werden, dass die Defizienz von Progranulin einen erheblichen Einfluss auf die Atheroprogression nimmt. Im Doppel-Knockout-Stamm PGRN-/-ApoE-/- war, im Gegensatz zur Kontrollgruppe PGRN+/+ApoE-/-, eine erhebliche Akzeleration und Aggravation der Atherogenese zu objektivieren gewesen. Die PGRN-/-ApoE-/- - Mäuse zeichneten sich durch eine signifikant gesteigerte feste Adhäsion von Leukozyten am Gefäßendothel atherosklerotischer Prädilektionsstellen in der Makrozirkulation der Arteria carotis aus. Darüber hinaus führte die Depletion von Progranulin zu einer übersteigerten Ausbildung atherosklerotischer Gefäßwandveränderungen. Anhand eines weiteren Mausmodells, dem Cremaster-Modell, konnte der Einfluss von Progranulin auf die dynamische Leukozyten-Endothel-Interaktion in Mikrogefäßen des Musculus cremaster im Rahmen einer sterilen Inflammation untersucht werden. Hier führte die Defizienz von Progranulin zu einer ebenfalls signifikant gesteigerten festen Adhäsion von Leukozyten an das Gefäßendothel als Reaktion auf den inflammatorischen Stimulus. Ebenso konnte eine steigende Tendenz zum Rolling und zur Transmigration in das umgebende Interstitium im Vergleich zur Kontrollgruppe PGRN+/+ aufgezeigt werden. Für Progranulin konnte somit eine zentrale Bedeutung für die Initiation und Progression der Atherosklerose belegt werden: es wirkt nicht nur regulierend auf Rekrutierung und Adhäsion von Immunzellen ein, sondern entfaltet auch, nicht zuletzt durch seinen natürlichen kompetitiven Antagonismus am TNF-Rezeptor, antiinflammatorische und atheroprotektive Wirkungen. Aus der Erkenntnis der pathophysiologischen Bedeutung von Progranulin in der Atheroprogression könnte sich eine zukunftsträchtige und vielversprechende Grundlage für die Entwicklung neuer pharmakologischer Therapieoptionen zur Prävention und Behandlung kardiovaskulärer Erkrankungen ergeben.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06
Etablierung der Interaktion des viralen Onkoproteins LMP1 mit den zellulären Signalproteinen der TRAF-Proteinfamilie als Zielstruktur für Inhibitoren

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06

Play Episode Listen Later Apr 22, 2013


Das Epstein-Barr Virus (EBV) ist mit einer Reihe von lebensbedrohlichen Krankheiten assoziiert. Dazu zählen unter anderem Nasopharynxkarzinome, Hodgkin-Lymphome und lymphoproliferative Erkrankungen nach Organtransplantationen. Dennoch gibt es bisher keinen wirksamen Therapieansatz, der sich spezifisch mit der Rolle von EBV in diesen malignen Erkrankungen auseinandersetzt. Das latente Membranprotein 1 (LMP1) ist das primäre Onkogen von EBV und essenziell für die Transformation von B-Zellen durch das Virus. Für eine effiziente Transformation von Zellen ist die Aktivierung verschiedener zellulärer Signalwege durch LMP1 notwendig. LMP1 besitzt jedoch keine enzymatische Aktivität und die Induktion der Signalwege ist somit abhängig von der Rekrutierung verschiedener zellulärer Adapterproteine. Die Ausbildung der notwendigen Signalkomplexe wird über zwei C-terminale Aktivierungs-Regionen (CTAR1 und CTAR2) vermittelt. Verschiedene Mitglieder der Tumornekrosefaktor (TNF)-Rezeptor-assoziierten Faktoren (TRAF)-Protein-Familie spielen bei der Induktion der Signalwege durch diese beiden CTAR-Domänen eine zentrale Rolle. Nach grundlegenden Protein-Protein-Interaktionsstudien zwischen LMP1 und rekombinanten TRAF-Proteinen wurde hier die Interaktion zwischen TRAF2 und LMP1 als Zielstruktur für Inhibitoren vorgestellt. TRAF2 ist essenziell für die Aktivierung des NF-κB-Signalweges durch die CTAR1-Domäne und somit für das Überleben EBV-transformierter Zellen. Die Bindung von TRAF2 an LMP1 wurde biochemisch näher charakterisiert und die gewonnen Erkenntnisse verwendet, um ein System zu etablieren, mit dem Inhibitoren gegen den Komplex aus LMP1 und TRAF2 identifiziert werden können. Dieses ELISA-basierte System erfüllt die Anforderungen, die allgemein an hochdurchsatzfähige Systeme gestellt werden. In einem Pilotscreen einer Bibliothek mit Naturstoffen wurden Substanzen identifiziert, die die Bindung von TRAF2 an LMP1 in vitro inhibierten. Die potenteste Substanz inhibierte die Interaktion von TRAF2 und LMP1 mit einem IC50 von 8 µM in diesen in vitro Studien. Weiterhin zeigte diese Substanz eine spezifische biologische Wirkung auf die Vitalität von EBV-transformierten B-Zellen. Zusätzlich konnte in den Protein-Protein-Interaktionsstudien zwischen den verschiedenen TRAF-Proteinen und LMP1 erstmals eine direkte Bindung von TRAF6 an LMP1 gezeigt werden. Entgegen der bisherigen Modellvorstellung, nach der TRAF6 indirekt über Adapterproteine an LMP1 gebunden wird, konnte hier gezeigt werden, dass TRAF6 direkt an die LMP1-Sequenz P379VQLSY innerhalb der CTAR2-Domäne bindet. Diese Sequenz ist essenziell für die Aktivierung verschiedener TRAF6-abhängiger Signalwege durch die CTAR2-Domäne. Auf der Oberfläche von TRAF6 wird die Bindung an LMP1 durch dieselbe Bindetasche vermittelt, über die auch die Interaktion mit zellulären Rezeptoren stattfindet. Diese direkte Interaktion zwischen LMP1 und TRAF6 ist wichtig für die Aktivierung des NF κB-Signalweges durch die CTAR2-Domäne. TRAF6-Mutanten, die nicht mehr in der Lage waren, mit LMP1 zu interagieren, waren ebenfalls nicht mehr dazu fähig, die Induktion von NF κB-Signalen durch die CTAR2-Domäne von LMP1 in embryonalen TRAF6-/- Mausfibroblasten wiederherzustellen. Ebenfalls konnte neben der direkten Bindung von TRAF6 an LMP1 hier eine weitere neue Protein-Protein-Interaktion für TRAF6 beschrieben werden. TRAF6 bindet direkt an das TNF-Rezeptor-assoziierte Todesdomänenprotein (TRADD). Die Interaktion zwischen TRAF6 und TRADD unterscheidet sich jedoch von der Bindung anderer TRAF-Proteine an TRADD. Die in vitro Studien zeigten, dass TRAF6 in der Lage ist, sowohl mit Teilen des N-Terminus, als auch mit Teilen des C-Terminus von TRADD zu interagieren. Diese bisher nicht beschriebene Art der direkten Interaktion von TRAF6 mit TRADD eröffnet neue Einblicke in den Aufbau des LMP1-Signalkomplexes.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Regulation von Apoptose und Überleben durch Signalwege von LMP1 und TNF-Rezeptor 1

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Nov 21, 2007


TRADD spielt als Adaptermolekül eine zentrale Rolle in der Signaltransduktion von LMP1 und TNF-Rezeptor 1. Während es allerdings durch den TNFR1 neben der Aktivierung verschiedener Signalwege auch zur Induktion von Apoptose und Nekrose kommt, handelt es sich bei LMP1 um ein Protein mit transformierendem Potential. Bei den jeweiligen TRADD-Bindestellen von LMP1 und TNFR1 handelt es sich um zwei strukturell vollkommen unterschiedliche Domänen. Und auch auf der Seite von TRADD wird die Bindung über zwei verschiedene Domänen vermittelt. Im Rahmen dieser Doktorarbeit sollte die Frage beantwortet werden, ob die TRADD-Bindestelle intrinsisch die biologischen Effekte der Signaltransduktion bestimmt oder ob diese durch den Rezeptorkontext festgelegt werden. Zur Beantwortung dieser Frage wurde in einem Domain Swapping Experiment die TRADD-Bindestelle des konstitutiv aktiven LMP1-TNFR1 sowie des TNFR1 gegen die putative TRADD-Bindestelle von LMP1 ausgetauscht. Es konnte erstmals gezeigt werden, dass die Aminosäuren 370-386 die vollständige TRADD-Bindestelle von LMP1 umfassen. Weiter konnte gezeigt werden, dass diese Aminosäuren im LMP1-TNFR1- sowie im TNFR1-Kontext ausreichend sind, um den NF-κB und den JNK1 Signalweg zu aktivieren. Die Aktivierung des JNK1 Signalweges durch LMP1-TNFR1-CTAR2 verläuft unabhängig von TRAF2 und abhängig von TRAF6 und auch die Aktivierung des NF-κB Signalweges durch dieses Rezeptorkonstrukt verläuft TRAF6-abhängig. Damit konnte gezeigt werden, dass die LMP1-spezifischen Charakteristika der Signaltransduktion durch die TRADD-Bindestelle festgelegt und mit ihr zusammen übertragen werden. Obwohl die Aminosäuren 370-386 von LMP1 funktionell sind, sind sie auch im LMP1-TNFR1 sowie im TNFR1 Kontext nicht in der Lage Apoptose zu induzieren. Damit konnte im Rahmen dieser Doktorarbeit gezeigt werden, dass die Aminosäuren 370-386 von LMP1 intrinsisch und unabhängig vom Rezeptorkontext den nicht-apoptotischen Phänotyp der Signaltransduktion festlegen. Außerdem wurde im Rahmen dieser Doktorarbeit die Beteiligung von TRAF7 an der Signaltransduktion von LMP1 untersucht. Dazu wurde traf7 aus einer cDNA kloniert. Zusätzlich wurden verschiedene Deletionsmutanten sowie Fusionen mit dem fluoreszierenden Protein mRFP hergestellt. Es konnte eine Threonin-Phosphorylierung von TRAF7(1-383) nachgewiesen werden. Mittels Fluoreszenzmikroskopie konnte eine Lokalisierung von TRAF7 in vesikulären Strukturen beobachtet werden. Eine Mutante, der der RING- sowie der Zink-Finger fehlen, zeigte hingegen eine gleichmäßige zytosolische Verteilung. Außerdem konnte in dieser Doktorarbeit mit Hilfe von spezifischer siRNA gezeigt werden, dass TRAF7 an der Aktivierung des JNK1 Signalweges durch LMP1 beteiligt ist.