Podcasts about das epstein barr virus ebv

  • 5PODCASTS
  • 6EPISODES
  • 30mAVG DURATION
  • ?INFREQUENT EPISODES
  • Sep 30, 2024LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about das epstein barr virus ebv

Latest podcast episodes about das epstein barr virus ebv

MS-Perspektive - der Multiple Sklerose Podcast mit Nele Handwerker
#271: Aufschlussreiche Einblicke in die Auswirkungen von EBV auf MS mit Prof. Dr. Christian Münz

MS-Perspektive - der Multiple Sklerose Podcast mit Nele Handwerker

Play Episode Listen Later Sep 30, 2024 30:37


Erfahre mehr über den Zusammenhang zwischen EBV und MS, einschließlich Theorien, Mechanismen und potenziellen Behandlungsmöglichkeiten. Das komplette Interview zum Nachlesen findest Du auf meinem Blog: https://ms-perspektive.de/271-christian-munz Das Epstein-Barr-Virus (EBV) und sein Einfluss auf Multiple Sklerose (MS) beschäftigen Dr. Christian Münz schon seit Langem. Als Professor für Virale Immunbiologie am Institut für Experimentelle Immunologie der Universität Zürich hat er zu den neuesten Studien und Forschungsergebnissen beigetragen, die einen starken Zusammenhang zwischen einer EBV-Infektion und der späteren Entwicklung von MS aufzeigen. Wir sprechen darüber, wie sicher die Theorie ist, welche Wirkmechanismen vermutet werden und welche zukünftigen Behandlungsstrategien sich daraus ergeben könnten. Schließlich ist EBV extrem weit verbreitet und nur ein kleiner Teil der Bevölkerung leidet an MS. Inhaltsverzeichnis Einleitung - Wer ist Prof. Christian Münz? EBV und seine Bedeutung Beziehung zwischen EBV und MS Behandlungsstrategien und Fortschritte Forschung und Herausforderungen Blitzlicht-Fragerunde Verabschiedung Einleitung - Wer ist Prof. Christian Münz? Mein Name ist Christian Münz, ich bin Co-Direktor des Instituts für Experimentelle Immunologie an der Universität Zürich. Ich habe ursprünglich in Tübingen Biochemie studiert und dann lange Zeit in New York an der Rockefeller University geforscht, bevor ich 2008 nach Europa zurückkehrte, um meine derzeitige Position in Zürich anzutreten. Ich bin verheiratet, habe zwei Kinder und eine Katze. Meine Hobbys sind Segeln und alles, was die Schweiz an Aktivitäten im Freien zu bieten hat. Wie und wo können Interessierte deine Forschungsaktivitäten verfolgen? Hauptsächlich auf der Website unseres Instituts. Leider bin ich nicht so sehr auf LinkedIn und Instagram unterwegs, daher muss ich hauptsächlich auf die Website unseres Instituts verweisen, auf der wir unsere neuen Erkenntnisse veröffentlichen und mehr oder weniger Links zu unseren neuen Forschungsstudien haben. Christian Münz auf PubMed --- Bis bald und mach das Beste aus Deinem Leben, Nele Mehr Informationen und positive Gedanken erhältst Du in meinem kostenlosen Newsletter. Hier findest Du eine Übersicht zu allen bisherigen Podcastfolgen.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06
Etablierung der Interaktion des viralen Onkoproteins LMP1 mit den zellulären Signalproteinen der TRAF-Proteinfamilie als Zielstruktur für Inhibitoren

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06

Play Episode Listen Later Apr 22, 2013


Das Epstein-Barr Virus (EBV) ist mit einer Reihe von lebensbedrohlichen Krankheiten assoziiert. Dazu zählen unter anderem Nasopharynxkarzinome, Hodgkin-Lymphome und lymphoproliferative Erkrankungen nach Organtransplantationen. Dennoch gibt es bisher keinen wirksamen Therapieansatz, der sich spezifisch mit der Rolle von EBV in diesen malignen Erkrankungen auseinandersetzt. Das latente Membranprotein 1 (LMP1) ist das primäre Onkogen von EBV und essenziell für die Transformation von B-Zellen durch das Virus. Für eine effiziente Transformation von Zellen ist die Aktivierung verschiedener zellulärer Signalwege durch LMP1 notwendig. LMP1 besitzt jedoch keine enzymatische Aktivität und die Induktion der Signalwege ist somit abhängig von der Rekrutierung verschiedener zellulärer Adapterproteine. Die Ausbildung der notwendigen Signalkomplexe wird über zwei C-terminale Aktivierungs-Regionen (CTAR1 und CTAR2) vermittelt. Verschiedene Mitglieder der Tumornekrosefaktor (TNF)-Rezeptor-assoziierten Faktoren (TRAF)-Protein-Familie spielen bei der Induktion der Signalwege durch diese beiden CTAR-Domänen eine zentrale Rolle. Nach grundlegenden Protein-Protein-Interaktionsstudien zwischen LMP1 und rekombinanten TRAF-Proteinen wurde hier die Interaktion zwischen TRAF2 und LMP1 als Zielstruktur für Inhibitoren vorgestellt. TRAF2 ist essenziell für die Aktivierung des NF-κB-Signalweges durch die CTAR1-Domäne und somit für das Überleben EBV-transformierter Zellen. Die Bindung von TRAF2 an LMP1 wurde biochemisch näher charakterisiert und die gewonnen Erkenntnisse verwendet, um ein System zu etablieren, mit dem Inhibitoren gegen den Komplex aus LMP1 und TRAF2 identifiziert werden können. Dieses ELISA-basierte System erfüllt die Anforderungen, die allgemein an hochdurchsatzfähige Systeme gestellt werden. In einem Pilotscreen einer Bibliothek mit Naturstoffen wurden Substanzen identifiziert, die die Bindung von TRAF2 an LMP1 in vitro inhibierten. Die potenteste Substanz inhibierte die Interaktion von TRAF2 und LMP1 mit einem IC50 von 8 µM in diesen in vitro Studien. Weiterhin zeigte diese Substanz eine spezifische biologische Wirkung auf die Vitalität von EBV-transformierten B-Zellen. Zusätzlich konnte in den Protein-Protein-Interaktionsstudien zwischen den verschiedenen TRAF-Proteinen und LMP1 erstmals eine direkte Bindung von TRAF6 an LMP1 gezeigt werden. Entgegen der bisherigen Modellvorstellung, nach der TRAF6 indirekt über Adapterproteine an LMP1 gebunden wird, konnte hier gezeigt werden, dass TRAF6 direkt an die LMP1-Sequenz P379VQLSY innerhalb der CTAR2-Domäne bindet. Diese Sequenz ist essenziell für die Aktivierung verschiedener TRAF6-abhängiger Signalwege durch die CTAR2-Domäne. Auf der Oberfläche von TRAF6 wird die Bindung an LMP1 durch dieselbe Bindetasche vermittelt, über die auch die Interaktion mit zellulären Rezeptoren stattfindet. Diese direkte Interaktion zwischen LMP1 und TRAF6 ist wichtig für die Aktivierung des NF κB-Signalweges durch die CTAR2-Domäne. TRAF6-Mutanten, die nicht mehr in der Lage waren, mit LMP1 zu interagieren, waren ebenfalls nicht mehr dazu fähig, die Induktion von NF κB-Signalen durch die CTAR2-Domäne von LMP1 in embryonalen TRAF6-/- Mausfibroblasten wiederherzustellen. Ebenfalls konnte neben der direkten Bindung von TRAF6 an LMP1 hier eine weitere neue Protein-Protein-Interaktion für TRAF6 beschrieben werden. TRAF6 bindet direkt an das TNF-Rezeptor-assoziierte Todesdomänenprotein (TRADD). Die Interaktion zwischen TRAF6 und TRADD unterscheidet sich jedoch von der Bindung anderer TRAF-Proteine an TRADD. Die in vitro Studien zeigten, dass TRAF6 in der Lage ist, sowohl mit Teilen des N-Terminus, als auch mit Teilen des C-Terminus von TRADD zu interagieren. Diese bisher nicht beschriebene Art der direkten Interaktion von TRAF6 mit TRADD eröffnet neue Einblicke in den Aufbau des LMP1-Signalkomplexes.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Die Rolle der Epstein-Barr Virus nukleären Antigene 3A und 3C in der B-Zellimmortalisierung

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Jul 6, 2007


Das Epstein-Barr Virus (EBV) infiziert ruhende primäre humane B-Zellen und indu-ziert deren unbegrenzte Proliferation. Dieser Prozess der Wachstumstransformation stellt ein Modellsystem dar, das die pathogenen Mechanismen in der Tumorentsteh-ung widerspiegelt. Die Epstein-Barr Virus nukleären Antigene 3A und 3C (EBNA-3A und EBNA-3C) werden in Publikationen aus dem Zeitraum von 1993 bis 1996 als essentiell für den Prozess der B-Zellimmortalisierung eingestuft. In dieser Arbeit wurde mit einer neuen Technologie, der Maxi-EBV Methode, die Rolle der EBNA-3A und -3C Proteine erneut untersucht. Sowohl mit EBNA-3A negativen als auch mit EBNA-3C negativen Viren konnten erstmals Kulturen von infizierten B-Zellen etabliert werden. Während sich aus EBNA-3A negativen B-Zellkulturen Langzeitkulturen etablieren ließen, starben EBNA-3C negative B-Zellkulturen in der Regel nach 40-70 Tagen ab. Die Effizienz der B-Zellimmortalisierung von EBNA-3A negativen Viren war im Vergleich zur Wildtyp infizierten B-Zellen 24-fach, die der EBNA-3C negativen Viren 140-fach erniedrigt. Sowohl EBNA-3A negative, als auch EBNA-3C negative LCLs sind in ihrer Viabilität eingeschränkt, weisen jedoch unveränderte Zellteilungsraten auf. Die weitere Charakterisierung der EBNA-3A negativen LCLs ergab, dass diese eine Variante des viralen LMP1-Proteins exprimieren. Offen blieb, ob diese Variante das Auswachsen der EBNA-3A negativen B-Zellkulturen begünstigt hat. In der Folge wurden die EBNA-3A negativen LCLs zur Identifizierung von EBNA-3A-Zielgenen eingesetzt und zahlreiche aktivierte und reprimierte Kandidatengene identifiziert. Eines dieser Kandidatengene, Matrix-Metalloproteinase 7 (MMP-7), das durch EBNA-3A induziert wird, wurde im Rahmen dieser Arbeit validiert. Auch mit EBNA-3C negative Viren konnten wider Erwarten LCLs erzeugt werden, die für einen begrenzten Zeitraum in Kultur gehalten werden können. Aus dem Material eines Spenders war es auch möglich, EBNA-3C negative Langzeitkulturen zu etablieren. Die Mehrzahl der EBNA-3C negativen infizierten B-Zellkulturen durchlaufen jedoch zwischen Tag 40 und 70 eine Krise und sterben. Mit der Generierung eines konditionalen EBNA-3C Systems, durch Transfektion eines Tetrazyklin-regulierbaren EBNA-3C Expressionsvektors in frisch isolierte primäre B-Zellen und anschließender Infektion mit EBNA-3C negativen Viren, wurde ein neuer Weg geschaffen, um EBNA-3C-Funktionen zu untersuchen. Dieses 2-Schrittsystem kann nun im Prinzip für jede Virusmutante eingesetzt werden.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Untersuchungen zur funktionellen Äquivalenz zwischen Notch und EBNA2 in EBV-immortalisierten B-Zellen

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Jan 29, 2007


Notch-Signale spielen bei der Entwicklung von Lymphozyten eine wichtige Rolle. So induzieren Notch1-Signale in Lymphozyten-Vorläuferzellen im Knochenmark die Entwicklung zu T-Zellen, während Notch2-Signale essentiell für die Differenzierung reifer B-Zellen zu Marginalzonen-B-Zellen sind. Das Epstein-Barr Virus (EBV) infiziert reife B-Zellen und regt diese zur permanenten Proliferation an. EBNA2, das erste Protein, das in EBV-infizierten B-Zellen exprimiert wird, verwendet zur Regulation von Zielgenen den gleichen Signalweg wie Notch und wird deshalb als (partielles) funktionelles Äquivalent eines aktivierten Notch-Rezeptors (NotchIC) bezeichnet. Notch und EBNA2 können sich bezüglich der Muskelzelldifferenzierung gegenseitig ersetzen, die Proliferation in B-Zellen kann dagegen nur EBNA2 induzieren. Ziel dieser Arbeit war es zu untersuchen, mit Hilfe welcher Zielgene Notch und EBNA2 unterschiedliche und gemeinsame Funktionen vermitteln. Zu diesem Zweck wurde ein Zellsystem etabliert, bei dem Tetrazyclin-regulierbares aktives Notch1IC oder Notch2IC in humane reife EBV-immortalisierte B-Zellen eingebracht wurde. In diesem System konnten Notch1IC oder Notch2IC in Abwesenheit von EBNA2 exprimiert werden, sowie EBNA2 in Abwesenheit von NotchIC. Die Expression von Zielgenen wurde anhand einer Microarray- Analyse untersucht. Damit sollten Notch1IC-, Notch2IC- und EBNA2-regulierte Zielgene identifiziert werden. Hierbei wurde vornehmlich auf Unterschiede und Gemeinsamkeiten zwischen Notch1IC- und Notch2IC-regulierten Genen, sowie zwischen NotchIC- und EBNA2-regulierten Genen eingegangen. Durch Notch1IC wurden 270 Gene induziert und 374 Gene reprimiert. Notch2IC konnte 757 Gene induzieren und 959 Gene reprimieren. EBNA2 induzierte 6.250 Gene und reprimierte 6.811 Gene. Die Auswertung der Zielgene in der Clusteranalyse ergab, dass viele Gene reguliert wurden, die mit dem Zellzyklus und der Immunmodulation assoziiert sind. Aus diesem Grund sollten diese beiden Signalwege näher untersucht werden. In dem beschriebenen Zellsystem konnten weder Notch1IC noch Notch2IC die EBNA2-vermittelte Proliferation ersetzen. So konnten Notch1IC und Notch2IC zwar einige Zellzyklus-Gene induzieren, die aber assoziierten eher mit der S-Phase und mit der Mitose. Die von EBNA2 stark induzierten Gene c-Myc und LMP1, sowie die G1-Phase assoziierten D-Cycline und der Cyclin-abhängigen Kinasen CDK4 und CDK6 konnten durch NotchIC nicht oder nur schwach induziert werden. Vermutlich können Notch1IC und Notch2IC die Proliferation weder aufrechterhalten noch induzieren, da sie nicht fähig sind, G1-Phase Gene, sowie c-Myc und LMP1 ausreichend stark zu induzieren. Der Einfluss von NotchIC auf die Immunmodulation war mit der von EBNA2 vergleichbar. Die Repression vieler Gene, die mit der Immunmodulation assoziieren, weist darauf hin, dass sowohl Notch1IC, Notch2IC als auch EBNA2 die Immunantwort negativ regulieren. So könnten B-Zellrezeptor (BCR)-Signale über die Repression von Komponenten und Signalmolekülen des BCR abgeschwächt werden, die Antigenpräsentation über die Repression von MHC-Molekülen vermindert werden und der allgemeine Aktivierungszustand zusätzlich über die Repression von Komplement-, Toll-like- und Fc-Rezeptoren vermindert werden. Ebenso konnte gezeigt werden, dass Notch1IC, Notch2IC und EBNA2 den Klassenwechsel negativ beeinflussen. Dies wird möglicherweise über die transkriptionelle Repression der Interleukin-Rezeptoren IL4Rα1 und IL13Rα1, sowie über die Modulation von Molekülen des Signalwegs vermittelt, die die Expression von sterilen Transkripten induzieren und somit die Voraussetzung zum Klassenwechsel bilden.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Das EBNA1-Protein des Epstein-Barr Virus: Genetische und funktionelle Analyse

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Jul 2, 2004


Das Epstein-Barr Virus (EBV) infiziert primäre humane B-Zellen und kann deren unbegrenzte Proliferation induzieren. Dieser Prozess der Wachstumstransformation von B–Zellen ist ein Modellsystem, das die pathogenen Mechanismen bei der Tumorentstehung widerspiegelt. Das Epstein-Barr Virus nukleäre Antigen 1 (EBNA1) wurde als essentiell für den Prozess der Wachstumstransformation primärer humaner B-Lymphozyten beschrieben, weil es an der latenten Replikation über den viralen Replikations-Ursprung oriP, der extrachromosomalen Erhaltung des Virus-Episoms und der transkriptionellen Trans-aktivierung der latenten Gene beteiligt ist (Rickinson und Kieff, 2001). Dieses Postulat wurde nie experimentell untersucht, da die genetische Analyse mit den bisherigen Methoden nicht möglich war. Das Maxi-EBV-System macht das Genom von EBV einer genetischen Manipulation zugänglich und erlaubt auch die Herstellung von Viren, denen essentielle Gene fehlen (Delecluse et al., 1998). Ein Ziel meiner Doktorarbeit war die Herstellung und Analyse eines EBNA1-negativen Virus. Entgegen der Lehrmeinung war es mit EBNA1-negativem Maxi-EBV möglich, wachstums-transformierte Zellklone nach Infektion von primären humanen B-Lymphozyten zu etablieren. Das virale Genom war in sämtlichen erhaltenen lymphoblastoiden Zelllinien so integriert, dass alle untersuchten latenten EBV-Proteine exprimiert wurden. Meine Ergebnisse zeigen eindeutig, dass EBNA1 prinzipiell für die Wachstumstransformation entbehrlich ist. Mit EBNA1-positiven Viren werden die primären B-Zellen jedoch mindestens um den Faktor 10.000 besser wachstumstransformiert. Da EBNA1 den episomalen Status des Virusgenoms vermittelt, scheint die Etablierung des EBV-Genoms in infizierten Zellen der limitierende Schritt zu sein. Auch in vivo im SCID-Maus-Modell erwies sich EBNA1 als entbehrlich für die Tumorbildung, womit es nicht als essentielles Onkogen von EBV betrachtet werden kann. Ein weiterer im Rahmen dieser Doktorarbeit untersuchter Aspekt war die Frage, ob EBNA1 für die extrachromosomale Erhaltung und Replikation des EBV-Episoms durch heterologe Genprodukte ersetzt werden kann. Zu diesem Zweck wurden Fusionsproteine aus der DNA-Bindedomäne von EBNA1 mit den zellulären Proteinen Histon H1 bzw. HMG-I (Mitglied der hoch mobilen Protein-Gruppe) hergestellt. Ich konnte zeigen, dass HMG-I:EBNA1- und H1:EBNA1-Fusionsproteine in der Lage sind, kleine oriP-enthaltende Plasmide und Maxi-EBVs episomal zu erhalten und die zelluläre Replikations-Maschinerie zu rekrutieren. Zusätzlich dazu unterstützen die Fusionsproteine im EBNA1-negativen Maxi-EBV die Produktion infektiöser Viren. Für ein konditional regulierbares Vektorsystem wurden Fusionsproteine aus der EBNA1-Transaktivierungsdomäne und der DNA-Bindedomäne des Tet-Repressors (TetR) hergestellt. Diese Proteine sollten mit Tet-Operator-Sequenzen (TetO, TetR-Bindemotiv) interagieren, die multimerisiert auf oriP-basierte Vektoren kloniert wurden. Dadurch sollte die Erhaltung der oriP-basierten Vektoren in der Zelle konditional regulierbar gestaltet werden. Es gelang in dieser Doktorarbeit zum ersten Mal ein System zu etablieren, mit dem Plasmide episomal erhalten werden und bei Zugabe von Doxyzyklin konditional regulierbar verloren gehen. Dieses erstmals realisierte konditional regulierbare Vektorsystem schafft neue Wege, die virale und zelluläre Replikation genauer zu untersuchen. Außerdem öffnen sich Möglichkeiten für eine sicherere Gentherapie, da die viralen Anteile auf ein Minimum reduziert werden können. Mit einem solchen System könnten EBV-Genvektoren in B-Zellen eingeführt werden und nach Expression des auf dem Vektor kodierten, therapeutischen Gens könnte die Genfähre durch Tetrazyklin-Applikation wieder aus dem Patienten entfernt werden.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Identifizierung und Charakterisierung von Zielgenen des Epstein-Barr Virus nukleären Antigens 2 (EBNA2)

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Oct 30, 2003


Das Epstein Barr Virus (EBV) ist ein ubiquitär vorkommendes Herpesvirus, mit dem etwa weltweit 90% der erwachsenen Bevölkerung permanent infiziert sind. Die zumeist asymptomatisch verlaufende Infektion betrifft primäre B–Zellen des Rachenraumes, die nach Aufnahme des Virus entweder zur Virus-Produktion (lytischer Zyklus) oder zur Proliferation angeregt werden (Latenzprogramm, Entstehung von B-Lymphoblasten). Letzteres wird durch den viralen Transkriptionsfaktor EBNA2 kontrolliert, der durch seine viralen und zellulären Zielgene ruhende B-Zellen in vitro immortalisieren kann. Die EBV-infizierten B-Lymphoblasten werden in vivo effizient durch T-Zellen erkannt und abgetötet. EBV entkommt der Immunantwort durch Persistenz in Gedächtnis-B-Zellen, die vermutlich durch Differenzierung der infizierten B-Lymphoblasten entstehen. Es gibt Hinweise, dass diese Differenzierung EBV-vermittelt unter der Mitwirkung von T-Helfer-Zellen abläuft, was auf eine komplexe Kommunikation des Virus mit dem Immunsystem schließen lässt. In der vorliegenden Arbeit wurden Mechanismen der EBV-vermittelten B-Zell-Immortalisierung und -Kommunikation untersucht. Ein Vergleich von EBNA2-Zielgenen mit Zielgenen des Protoonkogens c-myc, das bei Überexpression B-Zell-Proliferation induzieren kann, ermöglichte dabei die Unterscheidung von Zielgenen, die mit Proliferation und B-Zell-Kommunikation assoziiert sind. Die methodische Herangehensweise bestand in der Proteom-Analyse (2D-Gelelektrophorese mit massenspektrometrischer Proteinidentifikation), Promotoraktivitäts-Analyse (nukleärer Run-On) und einer umfassenden mRNA-Expressions-Analyse (DNA-Chip-Hybridisierung) konditional oder permanent MYC- oder EBV/EBNA2-abhängig proliferierender Zellen. Die erhaltenen Daten bestätigen, dass die von EBNA2 und MYC gemeinsam induzierten Zielgene in grundlegende Prozesse der Lebenserhaltung wie den Nukleotid-, Protein-, und Polyamin-Stoffwechsel, sowie in die oxidative Stressantwort, DNA-Reparatur und Zellteilung involviert sind. Dagegen waren gegensätzlich regulierte Gene funktionell in den Bereich B-Zell-Signaltransduktion- und B-Zell-Kommunikation einzuordnen. Die EBV-abhängige Proliferation ist sowohl mit der Aktivierung des NFkB-Signalwegs assoziiert, als auch mit der verstärkten Expression zentraler Komponenten der Interferon (IFN)-Antwort (insbesondere STAT1) und mit der Repression von Komponenten des B-Zell-Rezeptors (BCR) und der BCR-Signaltransduktion. Die NFkB-Aktivierung führt zur Induktion von antiapoptotischen Genen und von Chemoattraktoren für T-Helferzellen. Die aus Array- und Protein-Daten hervorgehende EBV/EBNA2-vermittelte Aktivierung des NFkB- und des IFN-Signalweges einerseits und die MYC-vermittelte Repression derselben andererseits könnten das molekulare Bindeglied zwischen EBV-vermittelter T-Zell-Stimulation und MYC-vermittelter Immuntoleranz darstellen. Die chemokinvermittelte T-Zell-Rekrutierung und die vermutlich durch STAT1-Expression begünstigte Antigen-präsentation weisen T-Zellen eine aktive Rolle bei der Reifung von EBV-infizierten Lymphoblasten zu B-Gedächtniszellen zu.