POPULARITY
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Die photodynamische Krebstherapie (PDT) hat sich in den letzten Jahren zu einer etablierten Routinebehandlung im klinischen Alltag entwickelt. Die wichtigste Komponente der PDT ist der dabei verwendete Photosensibilisator, dessen physiko-chemische Eigenschaften den Erfolg der Therapie maßgeblich bestimmen. Die detaillierte Kenntnis der in einem natürlichen System auftretenden Wechselwirkungen und Reaktionen zwischen dem Photosensibilisator und biologischen Molekülen ist daher ein wichtiger Schritt in Richtung einer effektiveren und sichereren Anwendung der PDT. Ausgehend von der Entwicklung neuartiger, BChl-basierter PDT-Sensibilisatoren wurden die folgenden Untersuchungen durchgeführt. Es wurden zwei Methoden zur Fraktionierung von humanem Blutplasma etabliert, mittels derer umfangreiche Studien zur Pigmentverteilung von Tetrapyrrolen auf die wichtigsten Blutplasma-Fraktionen durchgeführt werden konnten. Die Pigmentverteilung konnte mit einer Reihe von chemischen Eigenschaften dieser Pigmente korreliert werden. Die hier vorliegende Studie mit insgesamt 22 untersuchten Pigmenten ist die erste systematische Arbeit zu diesem Thema, das für die PDT von zentraler Bedeutung ist. Die Stabilität und Art der Pigmentbindung an die Lipoproteine, sowie diesbezügliche Veränderungen über die Zeit wurden näher charakterisiert. Ebenso konnte die Aggregation und Deaggregation von Pigmenten in Blutplasma, in Detergens-Umgebung, und in FSM verfolgt werden. Die Photostabilität von Tetrapyrrolen in Lipoproteinen, in Detergentien, und in wässrigen Lösungen wurde bestimmt, besonders in Abhängigkeit von der vorherrschenden Sauerstoff-Konzentration. Der bei Belichtung feststellbare Sauerstoff-Verbrauch konnte mittels einer Clark-Elektrode quantifiziert werden. Durch Verwendung von ROS-Quenchern konnte gezeigt werden, dass in Lipoproteinen und in organischen Lösungsmitteln überwiegend Photoreaktionen des Typs II, d. h. unter Beteiligung von Singulett-Sauerstoff stattfinden. Dies konnte in den Lipoproteinen durch HPTLC-Analysen der Oxidationsprodukte des endogenen Cholesterins der Lipoproteine verifiziert werden, in organischen Lösungsmitteln durch Zugabe von Cholesterin. Es konnten photoinduzierte Veränderungen der Oberflächenladung von Lipoproteinen, sowie photoinduzierte Quervernetzungen und Fragmentierungen des Apolipoproteins A-I nachgewiesen werden. Die photoinduzierten Hydro- und Endoperoxide wurden durch zwei fluoreszenzspektroskopische Testverfahren quantifiziert. Durch HPLC-Analysen belichteter Lipoproteine konnten sowohl Oxidationsprodukten der ROS-generierenden Tetrapyrrole selbst, als auch der endogenen Carotinoide der Lipoproteine identifiziert werden. Vergleichende Studien in organischen Lösungsmitteln zeigten eine zum Teil unerklärliche Abhängigkeit der Photostabilität der Tetrapyrrole von der Art des verwendeten Lösungsmittels. Es konnte erstmals ein Photoprodukt isoliert und spektroskopisch charakterisiert werden, bei dem es photoinduziert zu einer kovalenten Bindung eines Lösungsmittelmoleküls (Aceton) an ein Tetrapyrrolmolekül (BChl a) kam.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Ein Habitat von Escherichia coli ist der Gastrointestinaltrakt von Säugetieren, der sich durch anaerobe Bedingungen und eine hohe Osmolalität auszeichnet. E. coli ist aber auch freilebend in Gegenwart von Sauerstoff in der Umwelt bei variierenden Osmolalitäten nachzuweisen. Eine Adaptation an diese ständig wechselnden Umweltbedingungen ist entscheidend für Wachstum und Überleben. In dieser Arbeit wurde der Adaptationsprozess an erhöhte Osmolalitäten durch globale Proteomanalysen untersucht. Zusätzlich wurden verschiedene Aspekte des Prozesses im Detail analysiert, um weitere regulatorische Komponenten aufzudecken. Es wurden globale Proteomveränderungen im pI-Bereich 4-7 nach osmotischem Stress unter aeroben Bedingungen zeitabhängig visualisiert. Es konnte eine verstärkte Produktion von 12 Proteinen nachgewiesen werden. 11 zusätzliche Proteine akkumulierten in Zellen, die einem osmotischen Stress ausgesetzt waren, der durch Zugabe des Salzes NaCl ausgelöst wurde. Der Großteil der durch Massenspektrometrie identifizierten Proteine waren Proteine mit allgemeiner Schutzfunktion, die auf transkriptioneller Ebene vom globalen Stressregulator RpoS reguliert werden. Der Vergleich von aeroben und anaeroben Bedingungen ergab eine Überlappung der akkumulierten Proteine von 50 %. Durch ergänzende Proteomanalysen mit alternativen Gelsystemen konnten zwei weitere Proteine identifiziert werden, die an der Osmostressantwort beteiligt sind. Die Zugabe des kompatiblen Soluts Glycinbetain resultierte in einer verminderten Akkumulation von 9 RpoS-regulierten Proteinen bei Salzstress unter aeroben Bedingungen. Für mindestens zwei Proteine konnte eine gegenläufige Regulation nachgewiesen werden. Unter anaeroben Bedingungen verminderte Glycinbetain die Akkumulation eines Proteins (ProX) nach Zugabe von NaCl. Es wurden Proteomanalysen einer K+-Aufnahmemutante im Vergleich zum Wildtyp bei hyperosmotischem Stress erstellt, um den Einfluss der erhöhten intrazellulären K+-Konzentration auf die nachfolgende Stressantwort zu untersuchen. Es konnte gezeigt werden, dass die Regulation von zwei Proteinen (ProX und TnaA) von der K+-Akkumulation abhängig ist. Das Regulationsmuster weiterer Proteine, insbesondere metabolischer Enzyme, war durch die fehlende Akkumulation von K+ in der Mutante beeinflusst. Es wurde eine Methode entwickelt, um Veränderungen der Proteininteraktionen direkt nach Salzstress aufzuzeigen. Durch Fixierung der Zellen mit Formaldehyd und anschließender Fraktionierung der Proteine konnten umfassende Veränderungen im Interaktionsmuster periplasmatischer Proteine nachgewiesen werden. Eine Bildung von Sauerstoffradikalen bei hyperosmotischem Stress konnte unter Verwendung eines Fluoreszenzfarbstoffes erstmalig in E. coli nachgewiesen werden. Die Inhibierung der Radikalbildung durch Inkubation mit Natriumascorbat führte zu einer verminderten Überlebenswahrscheinlichkeit der Zellen bei sehr hohen NaCl-Konzentrationen. Zellen, die in Gegenwart von Natriumascorbat einem Salzstress ausgesetzt waren, wiesen verminderte Mengen bestimmter Osmostress-involvierter Proteine auf. Für E. coli Stämme, denen Sauerstoffradikal-abbauende Enzyme wie Katalase und Superoxiddismutase fehlten, wurde eine erhöhte Salzstressresistenz gezeigt. Die phänotypische Analyse einer hdhA Mutante ergab verminderte Wachstumsraten bei erhöhten Osmolalitäten. Die Mutante war im Vergleich zum Wildtyp durch reduzierte Biofilmbildung und Beweglichkeit sowie Veränderungen im Proteom nach hyperosmotischem Stress gekennzeichnet. Die osmotisch induzierte, cytoplasmatische Trehalase TreF reguliert die intrazelluläre Trehalosekonzentration bei Salzstress unter aeroben Bedingungen. Unter anaeroben Bedingungen konnten keine Unterschiede in den Trehalosekonzentrationen in einer treF-Mutante im Vergleich zum Wildtyp beobachtet werden. Die Zugabe des kompatiblen Solutes Glycinbetain führte unabhängig von der Sauerstoffverfügbarkeit zur verstärkten Produktion von TreF.
Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 01/07
Ziel der vorliegenden Arbeit war die Untersuchung der UL11- und UL20-Homologe des equinen Herpesvirus Typ 1 (EHV-1). Dabei sollte vor allem auf deren Funktionen in späten Stadien des Replikationszyklus und auf ein mögliches Zusammenspiel eingegangen werden. Zunächst wurde das UL20-Protein identifiziert und sowohl strukturell als auch funktionell charakterisiert. Ein in Kaninchen hergestelltes Antiserum reagierte in Western Blot-Analysen spezifisch mit zwei Proteinen mit apparenten Molekulargewichten von 25 und 75 kDa, und trotz zweier Konsensussequenzen im offenen Leserahmen UL20 führte eine Hemmung der N-Glykosylierung des Proteins zu keiner Veränderung dieser Laufeigenschaften. Das Protein, das ab 6 h p.i. in Zellen nachweisbar war, wurde der Klasse der γ1-Proteine zugeordnet und als Bestandteil der Virushülle identifiziert. Eine Assoziation des UL20-Proteins mit zellulären Membranen zeigte sich nach Fraktionierung infizierter Zellen und nach Immunfluoreszenzfärbung UL20-exprimierender Zellen. UL20-Deletionsmutanten der EHV-1-Stämme RacL11 und RacH wurden über BAC-Mutagenese hergestellt. Die negativen Viren führten in Einschritt-Wachstumskinetiken zu bis zu 1000fach geringeren extrazellulären Titern als die entsprechenden Wildtyp-Viren. Die intrazelluläre Infektiosität war dagegen nur um das 3fache erniedrigt. Diese Ergebnisse wiesen auf eine Funktion von pUL20 beim späten "viral egress" hin. Eine Bedeutung des Proteins im "cell-to-cell-spread" wurde durch Untersuchung des Plaquephänotyps gezeigt. Während die Ausgangsviren und Revertanten zu deutlichen Plaques führten, bestanden die Plaques der Deletionsmutanten aus nur wenigen infizierten Zellen. Eine initiale Charakterisierung des UL11-Proteins von EHV-1 liegt bereits vor. Das Tegumentprotein, das eine Konsensussequenz für eine N-Myristylierung aufweist, assoziiert in infizierten Zellen mit Membranen und spielt eine Rolle im "viral egress" und vor allem im "cell-to-cell-spread". Zur genaueren Einordnung dieser Funktionen wurden die Auswirkungen der Deletion des Großteils der UL11-spezifischen Sequenzen auf die Replikation von EHV-1 in Zellkultur vor dem genetischen Hintergrund verschiedener EHV-1-Isolate (RacL22, RacL11), -Stämme (KyA) und -Mutanten (L11Δ49) untersucht. Sämtliche rekombinante Viren waren auf nicht komplementierenden Zelllinien vermehrungsfähig. Das UL11-Protein ist daher auch in Verbindung mit der Deletion der für die Glykoproteine E und I kodierenden Gene (KyA) bzw. der fehlenden Expression des UL49-Proteins für die Replikation von EHV-1 in Zellkultur als nicht essentiell anzusehen. Die Bestimmung eines Wachstumswertes der Deletionsmutanten und Ausgangsviren ergab jedoch Hinweise auf eine mögliche Interaktion von pUL11 mit den Glykoproteinen E und I bzw. dem Tegumentprotein pUL49. Die Funktion des UL11-Proteins im "cell-to-cell-spread" konnte durch Untersuchung des Plaquephänotyps, bei dem die UL11-deletierten Viren zu deutlich kleineren Plaques als die Ausgangsviren führten, bestätigt, jedoch nicht genauer definiert werden. Untersuchungen eines in seiner Myristylierungs-Sequenz mutierten UL11-Proteins ergaben weder eine Verschiebung der Laufeigenschaften im Western Blot, noch eine veränderte Verteilung in der transfizierten Zelle. Allerdings konnte eine Assoziation von pUL11 mit Lipid Rafts gezeigt werden. Diese muss über eine Modifikation des Proteins durch Myristylierung oder Palmitylierung vermittelt sein. Das UL20-Protein dagegen war nicht spezifisch in den Lipid Rafts angereichert. Von einem Zusammenspiel der beiden Proteine in diesen Membranbereichen in ihrer Funktion beim "cell-to-cell-spread" ist daher nicht auszugehen.