POPULARITY
Abhishek Tripathi, is the Director of Mission operations of the Space Sciences Laboratory at the University of California, Berkeley. Abhi is also the Chair of the Air and Space track startups at Skydeck, which is UC Berkeley's startup accelerator program. For over two decades, Abhi has been at the forefront of human and robotic space exploration. At SpaceX, he spearheaded the certification of both the cargo and crew Dragon programs, a pivotal achievement in commercial spaceflight. His expertise was further showcased as Dragon Mission Director, where he orchestrated a dozen critical cargo resupply missions to the International Space Station. Abhi's technical acumen reached new heights when he assumed the role of Dragon Chief Engineer for Flight Reliability on the groundbreaking Crew Demo 1 and Demo 2 missions. Prior to his transformative work at SpaceX, Abhi honed his skills during a decade-long tenure as an Aerospace Systems engineer at NASA, laying the foundation for his remarkable career in space technology. We talked about the lessons learned from Abhi's journey at NASA, SpaceX and his work at the University of California, Berkeley, where he continues to lead several space missions. He shared some of the lessons learned from working at a highly demanding job at SpaceX; and also translated his experiences into lessons for startups and life in general. And Yes, he did share some of his experiences working with Elon Musk. Show Notes: Abhishek Tripathi https://www.ssl.berkeley.edu/ Setting overarching goals that ties with the vision for a company Building factories to vow consumers and the larger population (new age moats) Journey at NASA Try to work at a cutting edge company before launching a startup, (except if you are a deeply involved in a research area during postdoc or similar compelling situation) Picking advisors: Pick tactical advisors instead of strategic ones End all instances of gatekeeping (one of the rules set by Musk) Leading the Dragon mission to deliver cargo to ISS Regulations: Working with NASA/government for approvals ‘Bring me a rock exercise” Experiences working on Falcon 9 mission Transition to academia https://www.ssl.berkeley.edu/ “Other than the brutal pace of Space X, we have many of the elements of Space X at Space Sciences Laboratory at the University of California, Berkeley.” Space track https://skydeck.berkeley.edu/ What startups in the space track should possess Timing, funding, technology readiness SSL LEADERSHIP AND ADMINISTRATIVE CONTACTS https://www.ssl.berkeley.edu/administrative-contacts/ https://x.com/SpaceAbhi
A conversation with Dr. Andrew Westphal, Research Physicist of UC Berkeley's Space Sciences Laboratory. Andrew is the author of over 200 scientific papers and an active researcher in the scientific field known as cosmochemistry and he talks about how his travels have brought him to playing in Irish music sessions in Galway and a bit about his work. He even sings for us a song in Gaelic!
#BlackHole #Singularity #AdaptiveOptics Reinhard Genzel studied physics at Bonn Univ., and received his doctorate at the Max Planck Institute for Radioastronomy Bonn (1978), He was a Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics (1978-1980), Cambridge, MA, was Associate Professor of Physics and Associate Research Astronomer, Space Sciences Laboratory, University of California, Berkeley (1981- 1985), Full Professor of Physics, University of California, Berkeley (1985-1986). He is Director and Scientific Member at the Max Planck Institute for Extraterrestrial Physics (since 1986), Honorary Professor Munich Univ. (since 1988), Full Professor of Physics University of California Berkeley (since 1999). Professor Reinhard was awarded the Nobel Prize for Physics 2020 together with Roger Penrose and Andrea Ghez "for the discovery of a supermassive compact object at the center of our galaxy." Since nothing, not even light, can escape black holes, they can only be observed by the radiation and the movement of nearby objects. Since the 1990s, Reinhard and Andrea Ghez, with their respective research teams, have developed and refined techniques for studying the movement of stars. Observations of stars in the area around Sagittarius A* in the middle of our galaxy, the Milky Way, revealed a supermassive black hole. https://www.mpe.mpg.de/ir/gravity https://www.eso.org/sci/facilities/paranal/instruments/gravity/overview.html
Reinhard Genzel studied physics at Bonn Univ., and received his doctorate at the Max Planck Institute for Radioastronomy Bonn (1978), He was a Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics (1978-1980), Cambridge, MA, was Associate Professor of Physics and Associate Research Astronomer, Space Sciences Laboratory, University of California, Berkeley (1981- 1985), Full Professor of Physics, University of California, Berkeley (1985-1986). He is Director and Scientific Member at the Max Planck Institute for Extraterrestrial Physics (since 1986), Honorary Professor Munich Univ. (since 1988), Full Professor of Physics University of California Berkeley (since 1999). Professor Reinhard was awarded the Nobel Prize for Physics 2020 together with Roger Penrose and Andrea Ghez "for the discovery of a supermassive compact object at the center of our galaxy." Since nothing, not even light, can escape black holes, they can only be observed by the radiation and the movement of nearby objects. Since the 1990s, Reinhard and Andrea Ghez, with their respective research teams, have developed and refined techniques for studying the movement of stars. Observations of stars in the area around Sagittarius A* in the middle of our galaxy, the Milky Way, revealed a supermassive black hole. https://www.mpe.mpg.de/ir/gravity https://www.eso.org/sci/facilities/paranal/instruments/gravity/overview.html This episode is sponsored by Linkedin. Please visit LinkedIn.com/Impossible to post a job ad for free!
On August 21, 2017 there will be a total solar eclipse passing across the United States from the northwest to the southeast. While the path of totality will be in the center of the country, at least 60% obscuration will be seen throughout the U.S. and into Canada and Mexico. This is a historic event and millions of people will be viewing and photographing it. On today’s episode, we will discuss the what, when, and where of the eclipse and concentrate on the best and safest ways to view and photograph it. Joining us for this discussion are Senior Staff Writer Christopher Witt, our in-house telescope and optics expert, and photographer and B&H Photography Podcast veteran Todd Vorenkamp, who will explore the best ways for novices as well as experts to view and photograph the eclipse. After a break, we welcome noted astronomer and night sky photographer Dr. Tyler Nordgren who will offer his thoughts on the eclipse and explain why it might be best to not photograph this eclipse. Finally, we will be joined by Dr. Laura Peticolas from the Space Sciences Laboratory at the University of California, Berkeley. Laura will discuss her plans for the eclipse, specifically discussing the Eclipse Megamovie project, a crowd-sourcing effort to collect and share images across the path of totality. Join us for a multi-faceted conversation about this once-in-a-lifetime event. Guests: Dr. Tyler Nordgren, Dr. Laura Peticolas, Christopher Witt, Todd Vorenkamp Photograph: Tyler Nordgren Dr. Tyler Nordgren- 38:50 Dr. Laura Peticolas (Eclipse Megamovie)-56:10
“Follow the water” is the mantra of those who search for life beyond Earth. Where there's water, there may be life. Join us on a tour of watery solar system bodies that hold promise for biology. Dig beneath the icy shell of Jupiter's moon Europa, and plunge into the jets of Enceladus, Saturn's satellite. And let's not forget the Red Planet. Mars is rusty and dusty, but it wasn't always a world of dry dunes. Did life once thrive here? Also, the promise of life in the exotic hydrocarbon lakes of Titan. Science-fiction author Robert J. Sawyer joins us, and relates how these exotic outposts have prompted imaginative stories of alien life. Guests: Robert J. Sawyer – Hugo award-winning science fiction author Cynthia Phillips – Planetary geologist at the SETI Institute Alexander Hayes – Planetary scientist at the University of California, Berkeley Rachel Mastrapa – Planetary scientist for NASA and the SETI Institute Robert Lillis – Space and planetary scientist at the Space Sciences Laboratory, University of California, Berkeley Descripción en español First released February 27, 2012. Learn more about your ad choices. Visit megaphone.fm/adchoices
ENCORE “Follow the water” is the mantra of those who search for life beyond Earth. Where there’s water, there may be life. Join us on a tour of watery solar system bodies that hold promise for biology. Dig beneath the icy shell of Jupiter’s moon Europa, and plunge into the jets of Enceladus, Saturn’s satellite. And let’s not forget the Red Planet. Mars is rusty and dusty, but it wasn’t always a world of dry dunes. Did life once thrive here? Also, the promise of life in the exotic hydrocarbon lakes of Titan. Science-fiction author Robert J. Sawyer joins us, and relates how these exotic outposts have prompted imaginative stories of alien life. Guests: Robert J. Sawyer – Hugo award-winning science fiction author Cynthia Phillips – Planetary geologist at the SETI Institute Alexander Hayes – Planetary scientist at the University of California, Berkeley Rachel Mastrapa – Planetary scientist for NASA and the SETI Institute Robert Lillis – Space and planetary scientist at the Space Sciences Laboratory, University of California, Berkeley Descripción en español First released February 27, 2012.
Three members of The Berkeley Science Review (Editor-in-chief Sebastien Lounis, Web Editor Adam Hill, and BSR Author Lindsay Glesener) talk about the printed Review and the digital blog. They describe how the BSR has changed their view of science.TranscriptSpeaker 1: Spectrum's next. Speaker 2: Mm hmm. [inaudible]. Speaker 1: Welcome to spectrum the science [00:00:30] and technology show on k a l x Berkeley, a biweekly 30 minute program bringing you interviews featuring bay area scientists and technologists as well as a calendar of local events and news. Speaker 3: Good afternoon. My name is Brad Swift. In today's interview, Rick Karnofsky talks with three contributors to the Berkeley Science Review. The review is a student run by annual magazine that publishes in fallen spring. The review is also started, a blog that publishes four times a week to augment [00:01:00] the magazine. Our guests, our blog editor, Adam Hill, editor in chief Sebastian Lunas and author Lindsey Glasner. They talk about how it all gets done and what it means to them to do it. Here is Rick with the interview. First of all, welcome to spectrum. Thank you. Thanks. Thanks for why don't you introduce yourself Speaker 4: then what you do for the BSR and also what your research here at cal says. Hi, my name is Sebastian Lunas. I'm the editor in chief of the Berkeley Science Review and I'm also a fifth [00:01:30] year phd student in the graduate group in Applied Science and technology. At UC Berkeley. I do my research at the molecular foundry up at Lawrence Berkeley National Lab in Delia Milan's group and focus on studying nanocrystals of transparent conducting oxides. Great. Speaker 1: Uh, my name is Lindsey and I'm a writer for the BSR in the upcoming issue. I'm a graduate student in the physics department with a little bit of luck. I'll be graduating this December getting my phd and I work at the Space Sciences Laboratory [00:02:00] for Dr Bob Lynne. We build instruments that go on rockets, balloons and satellites to look at the solar system and sometimes things outside the solar system. Speaker 5: Yes sir. Right. For the blog. Is that right? I will be, yes. Okay. My name is Adam Hill. I am the editor of the PSR blog and we sort of work in tandem with the magazine to both keep people aware of the BSR in between issues and also to independently promote science and issues of [00:02:30] science education. Great. And your research here at cal? I am in Charles Harris's group in chemistry where I use ultra fast lasers to look at the dynamics of organic metallic catalysts. Okay. So can someone tell me a little bit about the Berkeley Science Review? Speaker 4: I'll take that one. So the Berkeley Science review is UC Berkeley is General Interest Science magazine. It's written, edited, produced entirely by UC Berkeley graduate students and it comes out twice a year. Basically the goal [00:03:00] of highlighting and showcasing and the cutting edge research that's going on at Berkeley, as well as taking a look at UC Berkeley science community and science history and doing so in a way that is accessible to a general audience. So it's not a technical publication, it's not a peer reviewed journal, it's a a general interest science magazine and it's written with the aim of being able to be picked up by anyone on campus and get an exciting look at what's going on at Berkeley. Part of the mission is also to help train editors and authors [00:03:30] through the process of putting together a professional level publication. And we're able to do that because we only publish two issues a year. So it gives us sort of a six month cycle to actually spend some time and work out really high quality content for the magazine as well as a really visually appealing layout. How long has the Berkeley Science Review been around? The science review was started in 2001 man, it's been producing two issues a year since then, so we're, we're going on 23rd issue coming out [00:04:00] this fall has a blog band active for that of the block's been around since Speaker 5: 2010 and a gold team was responsible for starting the blog since then. I think it has grown significantly in scope and readership. And how do you attract readers to both the magazine and and the blog for the blog in particular, we found that social media is one of the best routes to getting significant readership. Speaker 4: In terms of the magazine, I guess to answers, we generally just print as many as we can [00:04:30] and get them all over campus. And what's your approximate circulation? That we typically print between two to 3000 copies per issue and we distribute those across campus and then to a couple of local organizations and coffee shops around campus. Then we have a small number of subscribers, but we sort of know based on the fact that our magazine sort of disappear very quickly that we are getting a significant on our readership, but we're actually conducting a readership survey this fall to sort of get a better idea of how people actually come across the magazine, how many people are reading it, what their sort of [00:05:00] demographic makeup is, and we've also been trying to do a better job over the last year or so of integrating our magazine content with the blog. Speaker 5: And where should people look for that survey? Speaker 4: The magazine will have a prompt in it probably on the inside of the front cover with the link to the survey. We don't want people that haven't read the magazine to be filling out the survey and skewing our results. So if you do pick up the magazine interview. Yeah, exactly. If you do pick up the magazine, [00:05:30] please fill out the survey and let us know who you are. We're very interested and we'd love to hear from you. Lindsey, how did you come to volunteer as a writer? Yeah, my history with the Berkeley Science review is very short. Up until last spring, I was one of those people who would pick up the magazine when I sighed in the places on campus, but I also saw a call for pitches that was advertised to a lot of the departments. I think the particular place I saw, it was graduate student mailing Speaker 1: list in the physics department [00:06:00] and it offered the opportunity to pitch a story for the Berkeley Science Review. And I thought, well, I've got something interesting to write about. So I sent in a pitch and it was accepted. And what was your pitch? The idea for my story was inspired by my phd project, which is a project to put solar, observing x-ray instruments on a NASA rocket. And I thought it might be interesting not only from a scientific perspective, but there's also a bit of a humanist aspect to the story because I thought [00:06:30] people might want to know about what it's like to build one of these experiments and what it's like to go to a launch facility and an actually launched the rocket and once I got a little deeper into the topic, another thing that came into it was Berkeley's long history of building experiments like these. It really goes back to the beginnings of NASA, the whole thing developed together. And so that aspect kind of started taking over the story and became very important to it. Speaker 4: And then from there you just decided to volunteer to write for the blog [00:07:00] as well or, Speaker 1: well I think we've decided that it would be organic to have some blog entries as well because this is a project that is going to launch with any luck on November 2nd so without the timing would be appropriate to have a story about the project and then to have updates on did it launch, what's happening with the project throughout the fall. Speaker 4: This is sort of an example of how we're trying to really integrate the magazine and the web content where it's where it's organic to do so. We figured since it was an ongoing project, [00:07:30] it was a perfect opportunity to sort of transition people right from reading the magazine to reading posts on the blog and sort of integrate those two. Oh, that's great. And it's also worth mentioning that I think there's a significant cross section of the readership who don't necessarily encounter the magazine on campus, but who do read it on our website that said science review.berkeley.edu and do you have your entire back catalog online? We do. We're in the process of fully introducing the very earliest issues as actual searchable texts right [00:08:00] now their catalog in sort of a reader format where you can read them that way, but we're sort of moving towards making them more indexable and more accessible. Speaker 4: And is Lindsay's volunteer story typical? Do you normally draw authors from your readership? I would say her story is typical in that she received an email through somebody, one of the departmental email lists and that's how we do a lot of our outreach for authors. Uh, we have our own active email list that we reach out to when we do a call for pitches, but we also spray them out through the departments [00:08:30] and I would say most of our authors come from that outreach effort. A good proportion of them have read the magazine before. We've been making an effort this year to also get in touch with a lot of the first year students on campus. A lot of our writers are more senior Phd Students, but I think there's also a huge opportunity for first year Grad students that aren't bogged down their research to get involved. Speaker 6: [inaudible] this [00:09:00] is spectrum on k a LX Berkeley. Today's guests are from the Berkeley Science Review and it's Gluck. Speaker 1: How was writing for the BSR different or similar to writing for other publications? It's very challenging. I've spent the last six years getting used to scientific writing for publications or for my colleagues, and it was surprisingly [00:09:30] difficult for me to write for the BSR. I imagine that sort of a common story because it's a broader audience or, yeah, when we're writing for scientific publications, we use very specialized language with carefully chosen words that are really specific, but they're meant for people who already know what those words mean and are very comfortable hearing them and using them. I think when you're writing for a broader audience, you have to choose your words just as carefully or maybe even more so, but you [00:10:00] have to focus less on being so specific and accurate and more on whether the words will be understood and whether they'll be interesting. Speaker 1: Usually when I'm writing a scientific article, I don't need to worry about it being interesting. Hopefully. Interesting enough to site, I shouldn't mention that. In the magazine we have, I serve a number of different formats, so we have a number of different lengths of articles ranging from short little snapshots that are three or 400 words, two feature-length articles like the one that Lindsey wrote, which are typically two [00:10:30] to 4,000 words, sometimes even slightly longer. And so Lindsay jumped in as a first time author with, with one of the features with which I think are quite challenging. I think she did a great job. It was definitely a big barrier to getting started. When I first sat down to try to put some of my ideas on paper, I found it extremely challenging. After things had gotten rolling and I got feedback from the editors, which was very helpful. Speaker 1: Then it became a lot easier. Can you describe that editorial process a little bit more? Well, let's see. So we go through several drafts. So before [00:11:00] the first draft I had met with the first editor for my story. His name is Alexis and she and I had talked about our ideas for the story, which directions we thought it should take, kind of what topics we wanted to put together for the first draft and then I wrote that first draft and that was the one that for me was really challenging to get something down on paper. Then after sending that to her, she circulated it amongst some of the other editors and several of them gave me feedback on it, give me ideas, [00:11:30] pointed out which parts of the draft they thought were interesting, which ones needed more development or just weren't as relevant and then working from that and building it into a second draft is where I got a lot more inspired and writing. It became much easier at that point. It was definitely a fun article to write, although it was difficult because in order to write it, I got to delve a bit into the history of the laboratory. I work at the Space Sciences Laboratory and conduct [00:12:00] interviews with people who are around for some particular pieces of that history. So I don't want to make it sound like writing this article was a huge ordeal that I hated. It was actually a lot of fun. It was just putting the words on paper that I found very difficult at the beginning. Speaker 5: Did you find yourself interviewing a lot of faculty members who you might not have otherwise been interacting with for the piece? Speaker 1: I didn't interview anybody that I didn't know already. Ours tends to be a very intimate community where people know [00:12:30] each other, but I did have conversations with people that I probably wouldn't have talked with otherwise. So a couple of the people that I interviewed were people that I know quite well and have had conversations with before or maybe work with. And some of them were people I knew of but hadn't really ever had a chance to chat with them. And so hearing their stories about building rocket experiments when they were students was very interesting. Speaker 5: Did want to comment on that because I do find that, [00:13:00] uh, both in the case of the blog and the magazine itself, I think one of the best parts of both is the part that gets people out there and talking with scientists either in their field or tangentially related fields with whom they might never otherwise be interacting. It's very easy to get stuck in this little world of your advisor, the couple of students with whom you work on your project, you know, maybe a couple of friends who you see for beer each week. But beyond that, a scientist world can get very [00:13:30] narrow if you're not being proactive in avoiding that. And I think that both the blog and the magazine can really open new experiences to people who are writers and editors in terms of interacting with people in other disciplines or with people of significantly different ages within their own discipline who they might never have otherwise met. Speaker 1: On that note, I also wanted to say a couple of things that had occurred to me too. If you were talking and I wanted to talk about the [00:14:00] value of writing for the BSR for the authors as well as getting information out there for the public. I think this is a really useful thing for the authors who write for both the magazine in the blog in two aspects. I was thinking first about my personal experience and at the stage I'm at in my graduate student career, which is hopefully near the end, you get very zoned in on one particular subject. You kind of managed to convince yourself that this is the only thing in the world that matters [00:14:30] and you spend all your time on that and you can get a little burnt out on that. So for me at the time I started writing for the BSR, it was great to kind of force me to open up my mind a little bit and put my own project in the context of its historical perspective and also the perspective of the community. Speaker 1: It was a great way for me remind myself that there are connections to the community and that I'm not working in this kind of void. This black box down in the basement at the lab. The other thing I was [00:15:00] thinking when you mentioned how you're trying to get a lot of first year authors involved is that that could be really influential for them in choosing a thesis group. I know in the physics department it can be a little bit daunting because you have so many choices of which research group to work with, which particular topic to specialize in and I think a lot of first year physics students are just a little bit lost in that vast parameter space. So by writing for the BSR, I think that would probably encourage them [00:15:30] to find a whisper something they're interested in and start talking to people about it and I could definitely see that leading to them choosing that group to do their thesis work with Speaker 6: [inaudible].Speaker 4: Today's guests on spectrum are Adam Hill, Sebastian Lewis and Lindsay Glasner from the Berkeley Science Review Speaker 6: [inaudible].Speaker 4: [00:16:00] So the print publication is free? Yes. Is your entire budget from cal or do you get outside contributions? We do get quite a bit of funding from cow to the graduate assembly, which provides us with quite a bit of funding and then we also work with our printer. They have a relationship with an advertising agency who then in turn provide the suite of ads that are relevant to a science oriented publication that we are able then to put into our magazine. And how is the editorial stuff [00:16:30] selected each year or each issue or however frequently you guys change things up? It's basically whenever someone decides to leave and we put out a call for applications for the editorial staff, so most editors stay on for two to four issues, which is good because it helps with institutional memory and you get people that are more experienced that are able to coach. Speaker 4: The more junior editors talked about authors and editors. What about art? I mean the BSR is usually a very beautiful publication. [00:17:00] Sure. Where does that all come from? The layout staff. The BSR is sort of the unsung hero of the magazine and one of the most exciting experiences as an author and as an editor is about halfway through the process. We have a meeting with our layout staff where they first show us the designs they've come up with for various articles in the magazine and working with just the words for for quite some time. And then coming in and seeing it actually displayed in a magazine format that looks incredibly professional and is very well designed is incredibly exciting. So the way it works for the magazine is we [00:17:30] have a team of about 10 layout editors and an art director. We don't require the layout editors to come in with an experience. This is sort of another one of the examples of how the BSR is able to take people that are excited about learning about how to do layout, how many to do design and because of the timescale of the magazine, Speaker 5: it gives people enough time to learn those tools and working in an interactive team where they're going to get a lot of feedback on what they're doing and how it looks. And end up with a really amazing product. [00:18:00] What's that editorial process for the blog? Look back, we published four times a week with a crew of about a dozen authors at the moment, so we'll tend to go about a month between publications for an individual author and they'll come to me with some sort of idea. Can I write about pesticides in farming and California is efforts to insist on labeling GMO foods or something like that? You know, I'll say absolutely and the, the main interaction that I have at the [00:18:30] early stage of the process is regulating tone. Actually they're coming at it from the right viewpoint and coming at it from a balanced viewpoint where what they'll have at the end of writing this reporting more than opinion, although we also do have a category for opinion, but I like to try to avoid any ambiguity between the two. Speaker 5: Sure. I think that's an issue that a lot of blogs face is that it can be difficult to separate the editorial standpoint of the blog. Ours is basically scientists' cool from the editorial [00:19:00] standpoint of the individual authors, which can often be very specific and very passionate. Then I'll often not have particularly significant amounts of feedback or interaction with the authors until just a couple of days before their blog is scheduled to go up at which point we'll start hashing things together and seeing it in the digital format is a great way to really get a feel for how a blog post is going to come together part because you can't necessarily know how a blog reads till things like hyperlinks are in place. [00:19:30] Then we'll tend to hang it back and forth making changes when things are going well. We wrap up about the night before the blog post goes up and then the next morning we'll send it up and relate it. To your point earlier about, um, how the BSR has helped you as a researcher have a little bit more breadth than you might as a Grad student. Do you see it changing how you go forward after you leave cows, start your postdoc or whatever? Speaker 1: I think it wouldn't lead me to make decisions differently [00:20:00] after I graduate. Otherwise I don't exactly know what's on their highs and yet for me, but it gives me a little more inspiration about my field. So in that aspect, I suppose it could have a really powerful effect because the decision that I'll be faced with when I graduate is decision that many of us are faced with when we finished our PhDs, which is do you want to stay in academia? Do you want to switch to an engineering job where you can potentially make a lot more money and have a lot more say in where you live, who you work for, that sort of deal. [00:20:30] So inspiring students at a point in their graduate career at which they're about to make that decision, I think is a really good thing. So reminding them of some of the inspiring and motivating things about the field they're in could help to keep them there. The other interesting issue whenever we have anyone involved in science Speaker 7: outreach who are themselves scientists on the areas, how they see the rest of the scientific community looking at their science outreach. So I think Brad Vojtech who was on the show earlier talked about this tweet [00:21:00] of Damocles. You're always waiting until your outreach efforts like sabotage your actual career in some way. Did you have any reservations before for writing to our broader audience? Speaker 1: I would say personally, no. I didn't have any reservations about it. I think that there is a sort of pervasive fear about that in the scientific community. Like if you do too much scientific outreach then people will think that maybe you're not serious about the thing that you're actually working on. And I think that's mostly false. I hope that [00:21:30] people don't actually have that view, but I would say that pretty common. Certainly an anxiety that people have. Yeah, I think so. And there probably is some reason for it as well. I would not want to do scientific outreach to the point where I was not putting out scientific publications because especially as a woman, you want to make sure that people know you can do the work as well as do the outreach about it. I think that some of the barriers between people doing scientific research and doing scientific [00:22:00] outreach are starting to come down a bit. Speaker 1: At my laboratory we're starting to see more and more people who are working both on hard science and doing outreach as well. In particular, a friend of mine is now splitting her time, roughly 50 50 between those two things. And so she's hired by both departments at our lab. So I think any stigma about those things or at least starting to to come down and be resolved. So what should people interested in volunteering for the BSR do? [00:22:30] They should contact us by email, I think is typically the best route for both. So the email address for the Berkeley science if you blog is science review blog@gmail.com and for the magazine or for the BSR as an organization in general. It's the science review@gmaildotcomishouldalsomentionthatmostoftheinformationabouthowtogetinvolveddesirewebsiteatsciencereviewdotberkeley.edu well Lindsey, thanks for joining us. Thank you very much. Cool at all. [00:23:00] Well, thank you both for joining. Yes, thank you. Thank you very much. Speaker 2: Okay. Speaker 1: Regular feature of spectrum is to mention a few of [00:23:30] the science and technology events happening locally over the next few weeks. Here are Lisa kind of itch Renee Rao and Rick [inaudible] with the calendar. They should both space and science center is starting their next season of night school tonight on third Friday of the month Speaker 7: from seven to 11:00 PM Chabot opens their doors to adults 21 years in over with drinks, music, planetarium shows, telescope viewings and more. Number admission is $5 and general admission is $12 [00:24:00] visit www.chabotspace.org for more information. That's c h a, B o t space dot o r g. Remote Speaker 8: islands have been heralded as natural labs with some spectacular cases of rapid evolution in proliferation of species on November 17th at 11:00 AM in the genetics and plant biology building room 100 science at cal presents professor Rosemary Gillespie, director of the ESIC Museum of entomology [00:24:30] at UC Berkeley. She will address one of the most puzzling features of the high diversity of species on remote islands with her lecture entitled vagrant and Variability Evolution on remote islands. Science at cal is a series of free science lectures aimed at general audiences. On November 20th a museum of Paleontology at UC Berkeley will host a lecture by a university scientist, sue sumo Tomia, who will lead presentations on current research practice talks and discussions on topics [00:25:00] of paleontological interest. Coffee and snacks will be available. The lecture will be held in 1101 of the valley life sciences building on the UC Berkeley campus from 11 to 12:00 PM the new and wildly successful nerd night. East Bay will be held on Tuesday, November 27th at the Stork Club, 2130 Telegraph Avenue in Oakland, doors open at 7:00 PM and the three lectures begin at 8:00 PM you must be 21 and the emission is $8. [00:25:30] Join Calyx DJ eye on the prize and hosts in Davis and Rick Karnofsky for this scientific salon in Oakland Uptown district, Speaker 7: the Stanford Linear National Accelerator Laboratory. Slack is celebrating their 50th anniversary on Wednesday, November 28th at 7:00 PM in the Oshman family JCC Cultural Arts Center located in Jessica Lynn, Sal Townsquare at three nine two one Fabian way in Palo Alto. [00:26:00] The Commonwealth Club presents the event that is $5 for students, $10 for members and $15 for all others. Nobel Prize winner and director of Meredith's, Burton Richter and scientist Norbert Holt comp. We'll discuss how the accelerator has made cutting edge advancements from particle to astrophysics, advanced energy science and more. Sac has discovered two fundamental particles prove that protons are made of corks and shown how DNA directs protein fabrication. For [00:26:30] more on this event. Visit Commonwealth club.org now two news stories with Rennie Rao and Rick Karnofsky Science Daily has recently summarized an article by researchers at the Israel Institute of Technology published in nature materials on a novel way of splitting water into hydrogen and oxygen associate professor of material science and engineering. Abner Rothschild noted that their method of trapping light and the ultra thin films of ferric [00:27:00] oxide is the first of its kind. These rust films are about 5,000 times thinner than standard office paper and are inexpensive, stable in water, non-toxic and can oxidize water without being oxidized to get around poor transport properties. The team uses resonance, light trapping indifference between forward and backward propagating waves enhances the light absorption in quarter wave or in some cases deeper sub wavelength [00:27:30] films amplifying the intensity close to the surface, allowing charged carriers created by the light to reach the surface and oxidize water. This is a promising step into harvesting solar energy and storing it as hydrogen. Speaker 8: UC Berkeley's greater good science center has launched an interactive, shareable online gratitude journal through November. People in the campus community are invited to participate in the cal gratitude challenge by keeping a two week online [00:28:00] gratitude journal. The website was made both to conduct research and educate people about the powers of gratitude in their lives both before and after a 14 day period. Participants are asked to fill out surveys intended to measure traits like resilience, attachment tendencies, and happiest the projects designers are hoping for around a thousand participants. The website is located@thanksfor.org that's t h n. X, the number four [00:28:30] [inaudible] dot org Speaker 2: [inaudible]. The music or during the show is by Los Donna David from his album folk and acoustic released under creative Commons license 3.0 [00:29:00] attribution. [inaudible] [inaudible]. Thank you for listening to spectrum. If you have comments about the show, please send them to us via email or email address is spectrum@klxatyahoo.com [00:29:30] join us in two weeks at this same time. [inaudible]. See acast.com/privacy for privacy and opt-out information.
Three members of The Berkeley Science Review (Editor-in-chief Sebastien Lounis, Web Editor Adam Hill, and BSR Author Lindsay Glesener) talk about the printed Review and the digital blog. They describe how the BSR has changed their view of science.TranscriptSpeaker 1: Spectrum's next. Speaker 2: Mm hmm. [inaudible]. Speaker 1: Welcome to spectrum the science [00:00:30] and technology show on k a l x Berkeley, a biweekly 30 minute program bringing you interviews featuring bay area scientists and technologists as well as a calendar of local events and news. Speaker 3: Good afternoon. My name is Brad Swift. In today's interview, Rick Karnofsky talks with three contributors to the Berkeley Science Review. The review is a student run by annual magazine that publishes in fallen spring. The review is also started, a blog that publishes four times a week to augment [00:01:00] the magazine. Our guests, our blog editor, Adam Hill, editor in chief Sebastian Lunas and author Lindsey Glasner. They talk about how it all gets done and what it means to them to do it. Here is Rick with the interview. First of all, welcome to spectrum. Thank you. Thanks. Thanks for why don't you introduce yourself Speaker 4: then what you do for the BSR and also what your research here at cal says. Hi, my name is Sebastian Lunas. I'm the editor in chief of the Berkeley Science Review and I'm also a fifth [00:01:30] year phd student in the graduate group in Applied Science and technology. At UC Berkeley. I do my research at the molecular foundry up at Lawrence Berkeley National Lab in Delia Milan's group and focus on studying nanocrystals of transparent conducting oxides. Great. Speaker 1: Uh, my name is Lindsey and I'm a writer for the BSR in the upcoming issue. I'm a graduate student in the physics department with a little bit of luck. I'll be graduating this December getting my phd and I work at the Space Sciences Laboratory [00:02:00] for Dr Bob Lynne. We build instruments that go on rockets, balloons and satellites to look at the solar system and sometimes things outside the solar system. Speaker 5: Yes sir. Right. For the blog. Is that right? I will be, yes. Okay. My name is Adam Hill. I am the editor of the PSR blog and we sort of work in tandem with the magazine to both keep people aware of the BSR in between issues and also to independently promote science and issues of [00:02:30] science education. Great. And your research here at cal? I am in Charles Harris's group in chemistry where I use ultra fast lasers to look at the dynamics of organic metallic catalysts. Okay. So can someone tell me a little bit about the Berkeley Science Review? Speaker 4: I'll take that one. So the Berkeley Science review is UC Berkeley is General Interest Science magazine. It's written, edited, produced entirely by UC Berkeley graduate students and it comes out twice a year. Basically the goal [00:03:00] of highlighting and showcasing and the cutting edge research that's going on at Berkeley, as well as taking a look at UC Berkeley science community and science history and doing so in a way that is accessible to a general audience. So it's not a technical publication, it's not a peer reviewed journal, it's a a general interest science magazine and it's written with the aim of being able to be picked up by anyone on campus and get an exciting look at what's going on at Berkeley. Part of the mission is also to help train editors and authors [00:03:30] through the process of putting together a professional level publication. And we're able to do that because we only publish two issues a year. So it gives us sort of a six month cycle to actually spend some time and work out really high quality content for the magazine as well as a really visually appealing layout. How long has the Berkeley Science Review been around? The science review was started in 2001 man, it's been producing two issues a year since then, so we're, we're going on 23rd issue coming out [00:04:00] this fall has a blog band active for that of the block's been around since Speaker 5: 2010 and a gold team was responsible for starting the blog since then. I think it has grown significantly in scope and readership. And how do you attract readers to both the magazine and and the blog for the blog in particular, we found that social media is one of the best routes to getting significant readership. Speaker 4: In terms of the magazine, I guess to answers, we generally just print as many as we can [00:04:30] and get them all over campus. And what's your approximate circulation? That we typically print between two to 3000 copies per issue and we distribute those across campus and then to a couple of local organizations and coffee shops around campus. Then we have a small number of subscribers, but we sort of know based on the fact that our magazine sort of disappear very quickly that we are getting a significant on our readership, but we're actually conducting a readership survey this fall to sort of get a better idea of how people actually come across the magazine, how many people are reading it, what their sort of [00:05:00] demographic makeup is, and we've also been trying to do a better job over the last year or so of integrating our magazine content with the blog. Speaker 5: And where should people look for that survey? Speaker 4: The magazine will have a prompt in it probably on the inside of the front cover with the link to the survey. We don't want people that haven't read the magazine to be filling out the survey and skewing our results. So if you do pick up the magazine interview. Yeah, exactly. If you do pick up the magazine, [00:05:30] please fill out the survey and let us know who you are. We're very interested and we'd love to hear from you. Lindsey, how did you come to volunteer as a writer? Yeah, my history with the Berkeley Science review is very short. Up until last spring, I was one of those people who would pick up the magazine when I sighed in the places on campus, but I also saw a call for pitches that was advertised to a lot of the departments. I think the particular place I saw, it was graduate student mailing Speaker 1: list in the physics department [00:06:00] and it offered the opportunity to pitch a story for the Berkeley Science Review. And I thought, well, I've got something interesting to write about. So I sent in a pitch and it was accepted. And what was your pitch? The idea for my story was inspired by my phd project, which is a project to put solar, observing x-ray instruments on a NASA rocket. And I thought it might be interesting not only from a scientific perspective, but there's also a bit of a humanist aspect to the story because I thought [00:06:30] people might want to know about what it's like to build one of these experiments and what it's like to go to a launch facility and an actually launched the rocket and once I got a little deeper into the topic, another thing that came into it was Berkeley's long history of building experiments like these. It really goes back to the beginnings of NASA, the whole thing developed together. And so that aspect kind of started taking over the story and became very important to it. Speaker 4: And then from there you just decided to volunteer to write for the blog [00:07:00] as well or, Speaker 1: well I think we've decided that it would be organic to have some blog entries as well because this is a project that is going to launch with any luck on November 2nd so without the timing would be appropriate to have a story about the project and then to have updates on did it launch, what's happening with the project throughout the fall. Speaker 4: This is sort of an example of how we're trying to really integrate the magazine and the web content where it's where it's organic to do so. We figured since it was an ongoing project, [00:07:30] it was a perfect opportunity to sort of transition people right from reading the magazine to reading posts on the blog and sort of integrate those two. Oh, that's great. And it's also worth mentioning that I think there's a significant cross section of the readership who don't necessarily encounter the magazine on campus, but who do read it on our website that said science review.berkeley.edu and do you have your entire back catalog online? We do. We're in the process of fully introducing the very earliest issues as actual searchable texts right [00:08:00] now their catalog in sort of a reader format where you can read them that way, but we're sort of moving towards making them more indexable and more accessible. Speaker 4: And is Lindsay's volunteer story typical? Do you normally draw authors from your readership? I would say her story is typical in that she received an email through somebody, one of the departmental email lists and that's how we do a lot of our outreach for authors. Uh, we have our own active email list that we reach out to when we do a call for pitches, but we also spray them out through the departments [00:08:30] and I would say most of our authors come from that outreach effort. A good proportion of them have read the magazine before. We've been making an effort this year to also get in touch with a lot of the first year students on campus. A lot of our writers are more senior Phd Students, but I think there's also a huge opportunity for first year Grad students that aren't bogged down their research to get involved. Speaker 6: [inaudible] this [00:09:00] is spectrum on k a LX Berkeley. Today's guests are from the Berkeley Science Review and it's Gluck. Speaker 1: How was writing for the BSR different or similar to writing for other publications? It's very challenging. I've spent the last six years getting used to scientific writing for publications or for my colleagues, and it was surprisingly [00:09:30] difficult for me to write for the BSR. I imagine that sort of a common story because it's a broader audience or, yeah, when we're writing for scientific publications, we use very specialized language with carefully chosen words that are really specific, but they're meant for people who already know what those words mean and are very comfortable hearing them and using them. I think when you're writing for a broader audience, you have to choose your words just as carefully or maybe even more so, but you [00:10:00] have to focus less on being so specific and accurate and more on whether the words will be understood and whether they'll be interesting. Speaker 1: Usually when I'm writing a scientific article, I don't need to worry about it being interesting. Hopefully. Interesting enough to site, I shouldn't mention that. In the magazine we have, I serve a number of different formats, so we have a number of different lengths of articles ranging from short little snapshots that are three or 400 words, two feature-length articles like the one that Lindsey wrote, which are typically two [00:10:30] to 4,000 words, sometimes even slightly longer. And so Lindsay jumped in as a first time author with, with one of the features with which I think are quite challenging. I think she did a great job. It was definitely a big barrier to getting started. When I first sat down to try to put some of my ideas on paper, I found it extremely challenging. After things had gotten rolling and I got feedback from the editors, which was very helpful. Speaker 1: Then it became a lot easier. Can you describe that editorial process a little bit more? Well, let's see. So we go through several drafts. So before [00:11:00] the first draft I had met with the first editor for my story. His name is Alexis and she and I had talked about our ideas for the story, which directions we thought it should take, kind of what topics we wanted to put together for the first draft and then I wrote that first draft and that was the one that for me was really challenging to get something down on paper. Then after sending that to her, she circulated it amongst some of the other editors and several of them gave me feedback on it, give me ideas, [00:11:30] pointed out which parts of the draft they thought were interesting, which ones needed more development or just weren't as relevant and then working from that and building it into a second draft is where I got a lot more inspired and writing. It became much easier at that point. It was definitely a fun article to write, although it was difficult because in order to write it, I got to delve a bit into the history of the laboratory. I work at the Space Sciences Laboratory and conduct [00:12:00] interviews with people who are around for some particular pieces of that history. So I don't want to make it sound like writing this article was a huge ordeal that I hated. It was actually a lot of fun. It was just putting the words on paper that I found very difficult at the beginning. Speaker 5: Did you find yourself interviewing a lot of faculty members who you might not have otherwise been interacting with for the piece? Speaker 1: I didn't interview anybody that I didn't know already. Ours tends to be a very intimate community where people know [00:12:30] each other, but I did have conversations with people that I probably wouldn't have talked with otherwise. So a couple of the people that I interviewed were people that I know quite well and have had conversations with before or maybe work with. And some of them were people I knew of but hadn't really ever had a chance to chat with them. And so hearing their stories about building rocket experiments when they were students was very interesting. Speaker 5: Did want to comment on that because I do find that, [00:13:00] uh, both in the case of the blog and the magazine itself, I think one of the best parts of both is the part that gets people out there and talking with scientists either in their field or tangentially related fields with whom they might never otherwise be interacting. It's very easy to get stuck in this little world of your advisor, the couple of students with whom you work on your project, you know, maybe a couple of friends who you see for beer each week. But beyond that, a scientist world can get very [00:13:30] narrow if you're not being proactive in avoiding that. And I think that both the blog and the magazine can really open new experiences to people who are writers and editors in terms of interacting with people in other disciplines or with people of significantly different ages within their own discipline who they might never have otherwise met. Speaker 1: On that note, I also wanted to say a couple of things that had occurred to me too. If you were talking and I wanted to talk about the [00:14:00] value of writing for the BSR for the authors as well as getting information out there for the public. I think this is a really useful thing for the authors who write for both the magazine in the blog in two aspects. I was thinking first about my personal experience and at the stage I'm at in my graduate student career, which is hopefully near the end, you get very zoned in on one particular subject. You kind of managed to convince yourself that this is the only thing in the world that matters [00:14:30] and you spend all your time on that and you can get a little burnt out on that. So for me at the time I started writing for the BSR, it was great to kind of force me to open up my mind a little bit and put my own project in the context of its historical perspective and also the perspective of the community. Speaker 1: It was a great way for me remind myself that there are connections to the community and that I'm not working in this kind of void. This black box down in the basement at the lab. The other thing I was [00:15:00] thinking when you mentioned how you're trying to get a lot of first year authors involved is that that could be really influential for them in choosing a thesis group. I know in the physics department it can be a little bit daunting because you have so many choices of which research group to work with, which particular topic to specialize in and I think a lot of first year physics students are just a little bit lost in that vast parameter space. So by writing for the BSR, I think that would probably encourage them [00:15:30] to find a whisper something they're interested in and start talking to people about it and I could definitely see that leading to them choosing that group to do their thesis work with Speaker 6: [inaudible].Speaker 4: Today's guests on spectrum are Adam Hill, Sebastian Lewis and Lindsay Glasner from the Berkeley Science Review Speaker 6: [inaudible].Speaker 4: [00:16:00] So the print publication is free? Yes. Is your entire budget from cal or do you get outside contributions? We do get quite a bit of funding from cow to the graduate assembly, which provides us with quite a bit of funding and then we also work with our printer. They have a relationship with an advertising agency who then in turn provide the suite of ads that are relevant to a science oriented publication that we are able then to put into our magazine. And how is the editorial stuff [00:16:30] selected each year or each issue or however frequently you guys change things up? It's basically whenever someone decides to leave and we put out a call for applications for the editorial staff, so most editors stay on for two to four issues, which is good because it helps with institutional memory and you get people that are more experienced that are able to coach. Speaker 4: The more junior editors talked about authors and editors. What about art? I mean the BSR is usually a very beautiful publication. [00:17:00] Sure. Where does that all come from? The layout staff. The BSR is sort of the unsung hero of the magazine and one of the most exciting experiences as an author and as an editor is about halfway through the process. We have a meeting with our layout staff where they first show us the designs they've come up with for various articles in the magazine and working with just the words for for quite some time. And then coming in and seeing it actually displayed in a magazine format that looks incredibly professional and is very well designed is incredibly exciting. So the way it works for the magazine is we [00:17:30] have a team of about 10 layout editors and an art director. We don't require the layout editors to come in with an experience. This is sort of another one of the examples of how the BSR is able to take people that are excited about learning about how to do layout, how many to do design and because of the timescale of the magazine, Speaker 5: it gives people enough time to learn those tools and working in an interactive team where they're going to get a lot of feedback on what they're doing and how it looks. And end up with a really amazing product. [00:18:00] What's that editorial process for the blog? Look back, we published four times a week with a crew of about a dozen authors at the moment, so we'll tend to go about a month between publications for an individual author and they'll come to me with some sort of idea. Can I write about pesticides in farming and California is efforts to insist on labeling GMO foods or something like that? You know, I'll say absolutely and the, the main interaction that I have at the [00:18:30] early stage of the process is regulating tone. Actually they're coming at it from the right viewpoint and coming at it from a balanced viewpoint where what they'll have at the end of writing this reporting more than opinion, although we also do have a category for opinion, but I like to try to avoid any ambiguity between the two. Speaker 5: Sure. I think that's an issue that a lot of blogs face is that it can be difficult to separate the editorial standpoint of the blog. Ours is basically scientists' cool from the editorial [00:19:00] standpoint of the individual authors, which can often be very specific and very passionate. Then I'll often not have particularly significant amounts of feedback or interaction with the authors until just a couple of days before their blog is scheduled to go up at which point we'll start hashing things together and seeing it in the digital format is a great way to really get a feel for how a blog post is going to come together part because you can't necessarily know how a blog reads till things like hyperlinks are in place. [00:19:30] Then we'll tend to hang it back and forth making changes when things are going well. We wrap up about the night before the blog post goes up and then the next morning we'll send it up and relate it. To your point earlier about, um, how the BSR has helped you as a researcher have a little bit more breadth than you might as a Grad student. Do you see it changing how you go forward after you leave cows, start your postdoc or whatever? Speaker 1: I think it wouldn't lead me to make decisions differently [00:20:00] after I graduate. Otherwise I don't exactly know what's on their highs and yet for me, but it gives me a little more inspiration about my field. So in that aspect, I suppose it could have a really powerful effect because the decision that I'll be faced with when I graduate is decision that many of us are faced with when we finished our PhDs, which is do you want to stay in academia? Do you want to switch to an engineering job where you can potentially make a lot more money and have a lot more say in where you live, who you work for, that sort of deal. [00:20:30] So inspiring students at a point in their graduate career at which they're about to make that decision, I think is a really good thing. So reminding them of some of the inspiring and motivating things about the field they're in could help to keep them there. The other interesting issue whenever we have anyone involved in science Speaker 7: outreach who are themselves scientists on the areas, how they see the rest of the scientific community looking at their science outreach. So I think Brad Vojtech who was on the show earlier talked about this tweet [00:21:00] of Damocles. You're always waiting until your outreach efforts like sabotage your actual career in some way. Did you have any reservations before for writing to our broader audience? Speaker 1: I would say personally, no. I didn't have any reservations about it. I think that there is a sort of pervasive fear about that in the scientific community. Like if you do too much scientific outreach then people will think that maybe you're not serious about the thing that you're actually working on. And I think that's mostly false. I hope that [00:21:30] people don't actually have that view, but I would say that pretty common. Certainly an anxiety that people have. Yeah, I think so. And there probably is some reason for it as well. I would not want to do scientific outreach to the point where I was not putting out scientific publications because especially as a woman, you want to make sure that people know you can do the work as well as do the outreach about it. I think that some of the barriers between people doing scientific research and doing scientific [00:22:00] outreach are starting to come down a bit. Speaker 1: At my laboratory we're starting to see more and more people who are working both on hard science and doing outreach as well. In particular, a friend of mine is now splitting her time, roughly 50 50 between those two things. And so she's hired by both departments at our lab. So I think any stigma about those things or at least starting to to come down and be resolved. So what should people interested in volunteering for the BSR do? [00:22:30] They should contact us by email, I think is typically the best route for both. So the email address for the Berkeley science if you blog is science review blog@gmail.com and for the magazine or for the BSR as an organization in general. It's the science review@gmaildotcomishouldalsomentionthatmostoftheinformationabouthowtogetinvolveddesirewebsiteatsciencereviewdotberkeley.edu well Lindsey, thanks for joining us. Thank you very much. Cool at all. [00:23:00] Well, thank you both for joining. Yes, thank you. Thank you very much. Speaker 2: Okay. Speaker 1: Regular feature of spectrum is to mention a few of [00:23:30] the science and technology events happening locally over the next few weeks. Here are Lisa kind of itch Renee Rao and Rick [inaudible] with the calendar. They should both space and science center is starting their next season of night school tonight on third Friday of the month Speaker 7: from seven to 11:00 PM Chabot opens their doors to adults 21 years in over with drinks, music, planetarium shows, telescope viewings and more. Number admission is $5 and general admission is $12 [00:24:00] visit www.chabotspace.org for more information. That's c h a, B o t space dot o r g. Remote Speaker 8: islands have been heralded as natural labs with some spectacular cases of rapid evolution in proliferation of species on November 17th at 11:00 AM in the genetics and plant biology building room 100 science at cal presents professor Rosemary Gillespie, director of the ESIC Museum of entomology [00:24:30] at UC Berkeley. She will address one of the most puzzling features of the high diversity of species on remote islands with her lecture entitled vagrant and Variability Evolution on remote islands. Science at cal is a series of free science lectures aimed at general audiences. On November 20th a museum of Paleontology at UC Berkeley will host a lecture by a university scientist, sue sumo Tomia, who will lead presentations on current research practice talks and discussions on topics [00:25:00] of paleontological interest. Coffee and snacks will be available. The lecture will be held in 1101 of the valley life sciences building on the UC Berkeley campus from 11 to 12:00 PM the new and wildly successful nerd night. East Bay will be held on Tuesday, November 27th at the Stork Club, 2130 Telegraph Avenue in Oakland, doors open at 7:00 PM and the three lectures begin at 8:00 PM you must be 21 and the emission is $8. [00:25:30] Join Calyx DJ eye on the prize and hosts in Davis and Rick Karnofsky for this scientific salon in Oakland Uptown district, Speaker 7: the Stanford Linear National Accelerator Laboratory. Slack is celebrating their 50th anniversary on Wednesday, November 28th at 7:00 PM in the Oshman family JCC Cultural Arts Center located in Jessica Lynn, Sal Townsquare at three nine two one Fabian way in Palo Alto. [00:26:00] The Commonwealth Club presents the event that is $5 for students, $10 for members and $15 for all others. Nobel Prize winner and director of Meredith's, Burton Richter and scientist Norbert Holt comp. We'll discuss how the accelerator has made cutting edge advancements from particle to astrophysics, advanced energy science and more. Sac has discovered two fundamental particles prove that protons are made of corks and shown how DNA directs protein fabrication. For [00:26:30] more on this event. Visit Commonwealth club.org now two news stories with Rennie Rao and Rick Karnofsky Science Daily has recently summarized an article by researchers at the Israel Institute of Technology published in nature materials on a novel way of splitting water into hydrogen and oxygen associate professor of material science and engineering. Abner Rothschild noted that their method of trapping light and the ultra thin films of ferric [00:27:00] oxide is the first of its kind. These rust films are about 5,000 times thinner than standard office paper and are inexpensive, stable in water, non-toxic and can oxidize water without being oxidized to get around poor transport properties. The team uses resonance, light trapping indifference between forward and backward propagating waves enhances the light absorption in quarter wave or in some cases deeper sub wavelength [00:27:30] films amplifying the intensity close to the surface, allowing charged carriers created by the light to reach the surface and oxidize water. This is a promising step into harvesting solar energy and storing it as hydrogen. Speaker 8: UC Berkeley's greater good science center has launched an interactive, shareable online gratitude journal through November. People in the campus community are invited to participate in the cal gratitude challenge by keeping a two week online [00:28:00] gratitude journal. The website was made both to conduct research and educate people about the powers of gratitude in their lives both before and after a 14 day period. Participants are asked to fill out surveys intended to measure traits like resilience, attachment tendencies, and happiest the projects designers are hoping for around a thousand participants. The website is located@thanksfor.org that's t h n. X, the number four [00:28:30] [inaudible] dot org Speaker 2: [inaudible]. The music or during the show is by Los Donna David from his album folk and acoustic released under creative Commons license 3.0 [00:29:00] attribution. [inaudible] [inaudible]. Thank you for listening to spectrum. If you have comments about the show, please send them to us via email or email address is spectrum@klxatyahoo.com [00:29:30] join us in two weeks at this same time. [inaudible]. Hosted on Acast. See acast.com/privacy for more information.
Black holes have been the stuff of science fiction since their discovery in the late sixties. But now a new, nimble NASA telescope is using its powerful x-ray vision to hunt for these abundant yet invisible, massive space oddities.
"I feel your vibe!” Well, that describes a number of fabled locales that claim to pulse with mysterious energy – perhaps prompting books to fly across the room or airplanes to vanish into thin air. But what's the science behind it? We examine spots marked with an X, for “extraordinary” – from a haunted house to the Bermuda Triangle – to sort out natural from supernatural phenomena. Plus, what causes the aurora borealis… a haywire Russian space probe… and just what the heck is an “energy vortex,” anyway? Guests: • Phil Plait – Skeptic and keeper of Discover Magazine's blog: badastronomy • Mike Borg – Group Sales Coordinator, Winchester Mystery House • Jim Underdown – Executive Director, Center for Inquiry, Los Angeles • Peter Williams – Hydrodynamicist at Agilent Technologies • Guy P. Harrison – Writer and business owner in Southern California, author of 50 Popular Beliefs That People Think Are True • Rob Lillis – Space and Planetary Physicist, Space Sciences Laboratory, University of California, Berkeley Learn more about your ad choices. Visit megaphone.fm/adchoices
"I feel your vibe!” Well, that describes a number of fabled locales that claim to pulse with mysterious energy – perhaps prompting books to fly across the room or airplanes to vanish into thin air. But what’s the science behind it? We examine spots marked with an X, for “extraordinary” – from a haunted house to the Bermuda Triangle – to sort out natural from supernatural phenomena. Plus, what causes the aurora borealis… a haywire Russian space probe… and just what the heck is an “energy vortex,” anyway? Guests: • Phil Plait – Skeptic and keeper of Discover Magazine’s blog: badastronomy • Mike Borg – Group Sales Coordinator, Winchester Mystery House • Jim Underdown – Executive Director, Center for Inquiry, Los Angeles • Peter Williams – Hydrodynamicist at Agilent Technologies • Guy P. Harrison – Writer and business owner in Southern California, author of 50 Popular Beliefs That People Think Are True • Rob Lillis – Space and Planetary Physicist, Space Sciences Laboratory, University of California, Berkeley
Nicholas McConnell, PhD candidate in Astrophysics at UCB summer 2012, and Jeff Silverman, PhD of Astrophysics from UCB in 2011, part one of three, talk about exoplanets and the search for water in the universe. To help analyze data www.galaxyzoo.org or www.planethunters.orgTranscriptSpeaker 1: Spectrum's next [inaudible]. Welcome to spectrum science and technology show on k a l x Berkeley, [00:00:30] a biweekly 30 minute program bringing you interviews featuring bay area scientists and technologists as well as a calendar of local events and news. Speaker 2: Good afternoon. My name is Brad Swift. I'm joined today by spectrum contributors, Rick Karnofsky and Lisa Katovich. Our interview is with Jeff Silverman, a recent phd in astrophysics from UC Berkeley and Nicholas McConnell, a phd candidate unscheduled to be awarded his phd in astrophysics by UC Berkeley this summer. [00:01:00] Jeff and Nicholas have generously agreed to help spectrum present three shows on astronomy, explaining the big ideas, recent experiments, international collaborations and improvements and observations on technology that are transforming astronomy. In part one we discuss extra solar planets known as exoplanets and the search for liquid water in the universe. Nicholas McConnell and Jeff Silverman. Welcome to spectrum. Thanks for having us do. You're both astronomers. Yup. And today you're going to talk with us about [00:01:30] what's been happening in astronomy in say, the past five years that really stands out for you. That's very salient that you think's important. Nicholas, why don't you bring up the first topic that we're going to discuss here? Speaker 2: Sure. Well, there are many things to choose from, but for me, one of the most exciting things that I think has been happening is that over the last two or three years, thanks mostly to a NASA satellite called the Kepler mission. Astronomers have been discovering literally thousands of new planets orbiting other stars, uh, in our own galaxy every year. [00:02:00] And one particularly exciting discovery that happened in December, 2011 was we found a planet around another star that appeared to be in the so called habitable zone of that planet. The zone where the distance from the star was appropriate that the temperature on the planet could possibly be not too cold and not too hot to have liquid water. And how much of that exoplanet research is done here in the bay area? Quite a large amount. There's a large healthy exoplanet team in the UC Berkeley Astronomy Department, [00:02:30] and many scientists here are heavily involved in the Kepler mission besides this planet in the habitable zone. Speaker 2: Like Nicholas mentioned, thousands of planets have been discovered by this Kepler mission of all shapes and sizes from nearly earth size to Uranus and Neptune size. Did you put her in a little bit bigger orbiting their stars that are sun-like sometimes a little bit smaller, sometimes a little bit bigger than the sun at various distances. There's maybe a couple of examples where we've seen a system of a few planets that sort [00:03:00] of mimic the sizes of planets in our solar system at some of the distances, but most of these planets are found very close to their host star. Nothing like what we see in our own solar system, things that are the size of Jupiter and Saturn that are orbiting even closer than mercury. And so this is a huge weird question that's outstanding. People are trying to figure out how do you make these systems, how do you make these planetary systems and why are they so prevalent and so different from what we know in our own solar system. Speaker 2: And are there some sort of limitations to the [00:03:30] finding techniques to, to locate these planets that might sort of bias you towards finding these large close planets spoken like a true scientist? Yes, we are absolutely biased to find big planets that are very close to their stars. So the first handful of planets that were found were very big. These so-called hot Jupiters, very big Jupiter sized planets near their stars. We are definitely biased by the techniques to find these kinds of planets. Capillary is doing a bit of a better job finding smaller planets, finding them further out. And so we're getting into a point [00:04:00] in time where we're close to being able to find similar looking systems to the solar system, bigger planets further out earth planets around the distance of earth from the sun and we're not really finding them as often as you might expect. Speaker 2: And so it does seem still that even taking into account some of this bias that our solar system is a bit of an oddball now that's certainly may change in the next few years. This is a huge fast moving field, but right now we're still an odd ball. Yeah. I have to say that the, the Kepler mission was designed [00:04:30] so that over the course of the missions lifetime, which was roughly a three year time period, starting maybe 2010 and going through 2013 or so, it was designed so that over that period it could detect a planet, maybe twice the size of our earth but orbiting at star at the same distance that the earth orbits the sun. So capillary is definitely doing a better job than previous missions, finding planets that aren't quite as small as earth but are getting down in that region where we can say this plant is actually fairly similar to the planet earth. Speaker 2: And because we're now simply becoming [00:05:00] able to start to find planets like this, we can begin to say things about how common are earth like planets relative to these hot Jupiters that Jeff was talking about before when we had only detected the hot Jupiters, there was nothing we could say about their relative abundance in the universe compared to planets like the earth was their technology. And Kepler that made this possible. Was there a breakthrough somehow in the, the instrument? The thing Kepler does is it measures the brightness coming from a star [00:05:30] over and over and over again. Uh, and what happens is that if a planet passes in front of the star along the line of sight to Earth, it blocks a little bit of the disk of the star. And so the star gets very slightly fatter. But these differences in the stars brightness are smaller than a percent. Speaker 2: And so in order to pick out that signal that you need to have an instrument that can measure the brightness of a star very, very accurately, repeatedly over and over again and simply by having it outside ears, atmosphere, having it in space and all of the different instrumental [00:06:00] things they did inside that satellite enables Kepler to measure stellar brightnesses with more precision than any instrument that we'd done this for previously. Another interesting piece of technology that was something that they had to tackle. And it's still sort of one of the limitations actually of Kepler, is because you're measuring the brightness of thousands of stars many, many times over and over and over again. That's a huge amount of data, just pure raw pictures that you have floating on a spacecraft and you need to beam those down to earth, to big computers to hold those. Speaker 2: And so [00:06:30] one of the biggest limitations from my understanding is just the bandwidth. It is hard to move that ms send that many, you know, picture files basically from space down, you know, different satellites to big data centers on earth. And so they kind of do it in big bursts and in chunks and they only take certain subsets of the pictures of different stars. Very, very close, a little snapshot, postage stamps right around each of the stars that they're monitoring. And it's still huge amounts of data. Uh, and so this has been a big breakthrough for a number of different [00:07:00] astronomy discoveries, is the large amount of data being able to move it through the Internet, through fiber optics and storing it and going through it in a fast, efficient way. Do you know if there's any kind of preliminary data analysis actually on the coupler? Speaker 2: I'm not completely sure, but there is some, as far as I know, a basic calibrations and, and basic work that it does before it sends down some of the products. But looking, as Nicholas said, for these very slight amounts of dimming in the stars takes a lot of computing power [00:07:30] and fancy algorithms that are run on big machines back on earth. And one of the really interesting things that's actually been done with the Keppra or data is after this processing, after you have, um, sort of your reduced scientific measurements. Um, recently these data have been put on the Internet so that by crowdsourcing people can go, ah, I think the website is called Kepler Zoo. And look at the period, the, the patterns of brightness versus time for all of these different stars. Um, and humans can try to find patterns that the best computer algorithms have failed to find. Um, and [00:08:00] I think there is a space of patterns that computers don't do very well at, but humans are better at. Um, so we're using the public to try to get more planets, uh, than when we, we'd be able to do just the astronomy community by itself. Speaker 1: [inaudible] this is spectrum on k l x Berkeley. We are talking about exoplanets with Jeff Silverman and Nicholas McConnell [00:08:30] reflecting on coupler. How do you, Speaker 2: I think it's changed your worldview. The entire subfield and astronomy have of exoplanets. Planets around other stars effectively didn't exist until the mid to late nineties. So when I was in elementary school, it was nice to think about planets on around other stars and see it in the movies. But it was very scifi. Speaker 3: Fast forward to to mean in college, in the early two thousands [00:09:00] taking astronomy classes, astronomers had discovered a handful of these exoplanets. And I distinctly remember one of my professors saying, you know, we found a few, we're going to find some more in the future. One day you'll pick up the newspaper and the front page will be a picture of an exoplanet. And sure enough, a few years ago, Berkeley astronomers took a picture of an exoplanet and it made the front page newspaper. Uh, and I'll never forget seeing that picture on the front page of the newspaper, just like my professor in college predicted. This is a very fast moving field. We're going to find even more planets earth-like [00:09:30] around sunlight stars that could very well have liquid water. It'll possibly be not that rare to have an earth-like planet in the very near future. Personally, to me, I think it's great. It makes me hope that perhaps we can find an exact earth analog around a sun analog and perhaps there is intelligent life or some kind of life that we can find. And I think an amazing thing that astronomers can do for the world. Speaker 4: I think with the discovery of planets that are similar [00:10:00] to Earth or at least about the same sizes, or we're beginning to go from detecting one, then a couple to actually doing decent statistics where we can project how many have planets about the same size of earth exist, say in our galaxy. I tried to do a very, very rough calculation this morning. If you ask how many earth sized planets are there in the Milky Way, I think the answer is there's probably about a billion or a couple billion. And so I think that's just another interesting way of looking at how [00:10:30] earth is not necessarily unique environment in the universe, but just as we have so much diversity here on earth than in our galaxy. We have evidence now that there is space and room to have as much diversity possibly throughout our galaxy. So I think we really are getting a profound sense of just what kind of environment we have for possibly life and for different conditions, not only in our own solar system, but in this much larger piece of the universe that we're [00:11:00] only beginning to explore. Speaker 5: [inaudible]Speaker 6: you're listening to spectrum on k a l x, Berkeley. We are talking about astrophysics with Nicholas McConnell and Jeff Silverman. Speaker 5: [inaudible]Speaker 3: let's talk about water in the universe. So we've found quite a bit of water [00:11:30] in the universe, oddly enough, sort of starting on the biggest scales. There's, there's some nebulae, some clusters of gas and particles out in the universe that are huge reservoirs of water and sort of related huge reservoirs of alcohols, ethanol's, things like that. Coming a little bit closer to home and looking a little bit more recently. In the past maybe five or 10 years, there's been quite a few new detections, new possible detections, new lines of evidence of liquid water, ice water in our solar system in very interesting [00:12:00] places. One, the moon of Saturn known as, and Solidus is a very shiny, very bright object. It's very, very white, snowy, clean looking objects. A handful of craters have much less cratered than our own moon, a little smaller than our moon as well. Speaker 3: But it had some weird features to it. It looks kind of neat. And so the the Cassini spacecraft, which has been around exploring Saturn and its moon systems and its ring system for the past decade or so, did a few very close flybys of this very interesting moon in solidus [00:12:30] figured out that most of the surface is solid ice water, ice, ammonia, hydrocarbons, stuff as well. Also notice that there were geysers coming off of the surface, which we've seen geysers on a couple of other moons of Jupiter and Saturn, but these were kind of interesting and Cassini was there and we lucked out and Cassini actually flew through one of these geysers and got to detect the particles from the geyser itself, right? They're very direct institute measurements of what's in the guys there and it was mostly water and some ammonia, which was [00:13:00] interesting. And then there's evidence that there was actually more organic compounds in there and so possibly there, this could lead to life. Speaker 3: There could be some kind of bacteria down in the innards of in solidus. That's sort of pushing a a little bit, sort of the next step beyond what the evidence is actually telling us. But it's very, very tantalizing. Just about four or five years ago, a NASA panel on moons and moon explorations in the solar system said that in Solidus is probably the best possibility [00:13:30] for current life outside of earth in our own solar system. And the idea is that underneath this sort of very smooth, icy surface, there's probably a liquid ocean, mostly water, maybe a little bit of salt water, like I said, a little ammonia, some organic compounds, perhaps probably not gray whales and great white sharks. Probably not even little fish and shrimp, but it seems reasonable that there could be microscopic organisms, some kind of life, you know, to be determined. Speaker 3: But it's possible. [00:14:00] There's liquid water, there's reasonable conditions. It's not too salty, it's not too acidic, it's not too hot. And there does seem to be at least the building blocks, some of these organic compounds, perhaps one outstanding issue is how thick is this outer ice layer. So there's been some ideas of what we should send another mission that's just going to drill in there and it had the little submarine and go look around for fish and organisms, but we don't actually have a great handle on how thick that ice layer is. Uh, so Cassini is continuing to study this moon along with the [00:14:30] rest of the stuff in the Saturn system. Other moons, the planet itself, the Rings, uh, and we'll hopefully learn a little bit more about it, but they're already in the works, uh, both NASA, Japanese and European missions to go explore in salad. It's even more now if you want to go a little bit closer than Enceladus, one of the most promising planets areas in our solar system where Speaker 4: people have thought about the possibility of liquid water, where we certainly know that frozen water exists and where we have a headstart on [00:15:00] objects actually on the surface exploring is the planet Mars. And there've been some recent discoveries about both water in the past history of Mars and possibly salty liquid water, actually existing present day on Mars that are fueling a lot of excitement in the scientific community. Right now we have two different kinds of instruments that are doing fantastic observations of Mars. One of them is called the Mars or condescends orbiter. It is a satellite in orbit around Mars that can take fantastically detailed [00:15:30] photographs of the Martian surface. You can see features about a few feet across on the Martian surface with the satellite and then the other are the famous Mars Rovers. Spirit and opportunity spirit recently shut down, met its demise even though these two rovers outlasted their nominal mission timeline by a factor of 10 or so, Opportunity is still exploring the Martian surface and in both cases, instruments have found evidence for water on Mars. Speaker 4: In the case of opportunity. The rover fairly recently [00:16:00] discovered this mineral vein in a rock in a crater on Mars that scientists are pretty certain, could only have been created by liquid water flowing through a crack in the rocket, some ancient time and marches history and creating this particular mineral known as gypsum in certain variances what we use to make plaster of Paris here on Earth. So there is evidence that in particular Martian environments, there was almost certainly liquid water on Mars in the past. Combine that with theoretical models of how the planet and its atmosphere would have evolved over time. [00:16:30] And there are some pictures of ancient Mars being this sort of lush liquid water, much warmer environment than it is today. And so possibly Mars in its past was a hospitable environment for life. Although I'll emphasize we've, we have not yet detected any evidence of present day or fossilized life on Mars, but frankly, we haven't explored a very large fraction of that planet yet. Speaker 4: So I wouldn't be entirely surprised if some discovery came along in the future. Another very, very interesting observation on Mars coming [00:17:00] from the Mars reconnaissance orbiter is that looking over time at the edges of some of the craters on Mars in the warm seasons, they actually found stream like features that looked like dark streams were appearing on the edges of craters and over the course of the warm season as these craters were being more exposed to the sun and warming up a little bit, the streams lengthen as you might expect, little trickles of liquid water to flow downhill and based on mineral analysis which you can do using spectroscopy [00:17:30] from the orbiter and just generally the overall pattern of how these streams change with the seasons. We think that's good evidence that some sort of salty water was creating the streams. Unfortunately we were not able to directly detect water. What we see, it looks more to be like residue from a salt water stream where the water evaporated or where the water is just below the surface. But it seems that in certain seasons and certain places of the planet, there could actually be water and liquid form just at the surface or just below the surface [00:18:00] of Mars today. I mean if you have salt water on Mars, then I think there's at least some chance that you could have some kind of primitive life forum thriving in it. [inaudible] Speaker 3: it's been amazing in the last few years using the orbiter and the rovers on Mars, the different lines of evidence that we have for this ice, either on the surface or just below the surface centimeters below the surface, inches below the surface. And so NASA just recently launched a mission to head to Mars and even bigger rover, something like the size of a small car [00:18:30] that's going to go around and specifically look for water, look for organic molecules, building blocks of life in different parts than where we've already explored on Mars. Speaker 4: And that rover is called curiosity and it's supposed to land on the Martian surface this summer. Is there water on the moon? Our Moon, there is water on the moon in the form of hydrous molecules, so where water is directly incorporated into a solid rock, but I don't think there's any evidence for frozen or liquid water on the moon, [00:19:00] certainly not liquid water. Speaker 5: [inaudible]Speaker 4: can you reflect on the importance of water being discovered in our solar system or in some other solar system or galaxy? Speaker 2: Clearly on earth, water is essential [00:19:30] for all life forms and so whereas there are ideas about exotic kinds of life that could exist without our requirement of having water. It certainly seems like the most natural place to start looking for life outside of our own planet. So knowing that it exists in liquid form in different places in the universe and knowing Lisa in our own solar system where it exists is I think a really good start toward actually doing an Ernest search for life outside earth, maybe in our own solar system. [00:20:00] And I think just knowing how much water there actually is in our universe makes it seem like the universe is maybe a friendlier place than we thought it was. Okay. Speaker 3: One of the basic questions in astronomy of humanity, one of the things that got me interested in astronomy originally was are we alone in the universe? Is there life out there in the solar system, in our galaxy, and looking for water is probably the best way, the most direct way to find where that life could be. Being able to go visit Mars, the Moon, various [00:20:30] moons in our own solar system. Looking for that life in the water or around the water, I think is is something that's a fundamental question for all humankind, not just scientists and astronomers. Speaker 7: That ends one, Jeff Silverman and Nicholas McConnell. We'll be back with part two on our next show. We'll talk about Super Novi and black holes. Rick Karnofsky and Lisa Catholic joined me [00:21:00] for the calendar and the new black hole, Speaker 8: the harmonic oscillators of the 21st century presented by Andrew Strom and dear professor of physics, Harvard University, Monday, March 12th at four 15 to 5:30 PM La Conte Hall Room Number One in the 20th century. Many problems across all of physics were solved by perturb native methods which reduce them to harmonic oscillators. Black holes are poised to play a similar role for the problems of 21st century physics. They are at once [00:21:30] the simplest and most complex objects in the physical universe. Professors durometer will give an introduction to the subject intended for a general audience Speaker 9: daily and Nardo art science evening rendezvous or laser is a monthly series of lectures, presentations, and networking between artists and scientists. This month, laser is on Monday, March 12th at the [inaudible] room of the front building at the University of San Francisco to one 30 zero Fulton Street. It is free, but [00:22:00] please RSVP to p at [inaudible] dot com the event starts at seven with a talk by [inaudible] Viskontas on the art and neuroscience of effective music performance. What is it about this art form that draws people in? What distinguishes a performance that is technically accurate but unmusical from one that elicits the chills. We will explore how music engages the brain and why it continues to be a worldwide addiction. This will be followed by Rebecca Cayman's talk, making the invisible visible [00:22:30] discoveries between art and science, the history of artists as scientists and scientists as artists will be shared drying from the collections of the American philosophical society and the Chemical Heritage Foundation. The development of new art science collaborations will also be discussed. Shawmut caught true of the Stanford Physics Department. We'll speak on are there more dimensions of space which we'll discuss how the extra dimensions proposed by some models such as string theory may explain and unify puzzles [00:23:00] of modern physics. The night we'll conclude with Scott killed doll and Nathaniel stern who will discuss beaming Twitter messages to glaze five eight one D and exoplanet 20 light years away that can support extra terrestrial life using DIY technology. The website for laser is www.leonardo.info Speaker 8: the creative destruction of medicine Wednesday, March 14th at 6:00 PM at the Commonwealth Club of San Francisco on the second [00:23:30] floor of five 95 market street, Eric Topol, MD, director of the Scripps Translational Science Institute, Co founder and vice chairman of the West Wireless Health Institute and author of the creative destruction of medicine. Dr Topol says that is poised to go through its biggest shakeup in history and unprecedented convergence of technologies such as the ability to digitize human genomes and the invention of wireless tools is gaining momentum, thrusting the medical field into the digital era. Tickets are $20 [00:24:00] for general public, $8 for members and $7 for students. Speaker 9: Ask a scientist is hosting a puzzle party on Pi Day Wednesday, March 14th at 7:00 PM this is a math and logic puzzle competition for teams of up to six people. It is free, but you're encouraged to support the venue by purchasing foods and or drinks. The winning team will get a round of drinks and an overwhelming sense of pride. Bring a jacket in case there is overflow onto the sidewalk of the bizarre [00:24:30] cafe. Five nine two seven California at 21st in San Francisco visit. Ask a scientist sf.com for more info. Speaker 7: Yeah, Speaker 6: the March Science at cal lecture will be given at 11:00 AM on Saturday, March 17th in the genetics and plant biology building room 100 the talk will be given by Dr Hazel Bane and is entitled The Sun a star in our own backyard. Dr Bain is a post doc with the Ruben Rahmati high energy spectroscopic [00:25:00] solar imager solar physics group at the Space Sciences Laboratory at UC Berkeley. Her main area of research involves studying solar eruptive events such as flares, jets, and coronal mass ejections using both space and ground-based instruments. In describing her talk, Dr Bane said the stars in the night sky have always been a source of intrigue and wonder with our very own star at the center of our solar system, the sun offers us a unique [00:25:30] opportunity to study the inner workings of these giant balls of plasma. Starting at the core, I will discuss the processes occurring at the different layers of the sun onto news. Speaker 9: The four mile long t veteran particle accelerator at Chicago's Fermi lab was closed in September, 2011 after being one of the most powerful accelerators for 20 years, but in analyzing 500 trillion subatomic particles, Asians from the CDF and DCO, the team says that they may [00:26:00] have generated about a thousand Higgs Bosons the particle that is responsible for mass in the standard model of physics in a previous episode of spectrum that you can download from iTunes you, we interviewed Dr Simoni Pig Ingreso about the hunt for the Higgs. The probability of these measurements being due to a statistical fluke instead of the measurements of the Higgs is about one in 30 or about 2.2 sigma. This is well below the one chance in 3.5 million or five sigma that will be used to claim the actual discovery of the Higgs. [00:26:30] The energy of the detected events is between 115 billion and 135 billion electron volts, which is in good agreement with the range of 124 billion electron volts to 126 billion electron volts that turns large. Hadron collider established with 3.6 sigma certainty. The large Hadron collider is on winter break, but we'll be fixed up again in April to continue trying to find the Higgs with five sigma certainty. Speaker 8: The Cal Energy Corp is offering internships [00:27:00] around the world from Brazil to Germany to Ghana, to China, as well as in the bay area. During the summer of 2012 internships will offer UC Berkeley undergraduates the opportunity to pursue challenging hands on projects and energy and climate research. According to the office of the vice chancellor for research among the projects, cal energy core interns will be involved in our efforts to create green coal as industrial fuel, helping to produce biofuels, working on improving photovoltaics for integration into the [00:27:30] electricity grid, building models to better understand climate change and designing and testing. Cookstoves. The internship program provides a $600 weekly stipend for all interns as well as funding to cover transportation and housing. All placements are full time, more information and application forms are available at the cow energy core website. Speaker 9: Yeah, Speaker 6: explaining science to an 11 year old. The flame challenge sponsored by the Center for communicating science is an attempt to reach the very core of [00:28:00] science communication. The contest asks scientists and generally clever people to submit their own explanations of what a flame is, explanations that would captivate an 11 year old. The flame challenge contest is open for entries between March 2nd and April 2nd with the winners to be announced in June. Entries can be in writing, video or graphics and they can be playful or serious as long as they are accurate and connect with the young judges. For more information and entry [00:28:30] forms, visit the challenge website. Flame challenge.org Speaker 7: [inaudible] music curse during the show goes by on Donna David [inaudible] on for his album title folk and acoustic [00:29:00] just made available by creative Commons license 3.0 contribution. [inaudible]. Thank you for listening to spectrum. If you have comments about the show [inaudible] [00:29:30] to our email address is [inaudible] means in two weeks. It's Speaker 6: the same Speaker 5: [inaudible]. See acast.com/privacy for privacy and opt-out information.
Nicholas McConnell, PhD candidate in Astrophysics at UCB summer 2012, and Jeff Silverman, PhD of Astrophysics from UCB in 2011, part one of three, talk about exoplanets and the search for water in the universe. To help analyze data www.galaxyzoo.org or www.planethunters.orgTranscriptSpeaker 1: Spectrum's next [inaudible]. Welcome to spectrum science and technology show on k a l x Berkeley, [00:00:30] a biweekly 30 minute program bringing you interviews featuring bay area scientists and technologists as well as a calendar of local events and news. Speaker 2: Good afternoon. My name is Brad Swift. I'm joined today by spectrum contributors, Rick Karnofsky and Lisa Katovich. Our interview is with Jeff Silverman, a recent phd in astrophysics from UC Berkeley and Nicholas McConnell, a phd candidate unscheduled to be awarded his phd in astrophysics by UC Berkeley this summer. [00:01:00] Jeff and Nicholas have generously agreed to help spectrum present three shows on astronomy, explaining the big ideas, recent experiments, international collaborations and improvements and observations on technology that are transforming astronomy. In part one we discuss extra solar planets known as exoplanets and the search for liquid water in the universe. Nicholas McConnell and Jeff Silverman. Welcome to spectrum. Thanks for having us do. You're both astronomers. Yup. And today you're going to talk with us about [00:01:30] what's been happening in astronomy in say, the past five years that really stands out for you. That's very salient that you think's important. Nicholas, why don't you bring up the first topic that we're going to discuss here? Speaker 2: Sure. Well, there are many things to choose from, but for me, one of the most exciting things that I think has been happening is that over the last two or three years, thanks mostly to a NASA satellite called the Kepler mission. Astronomers have been discovering literally thousands of new planets orbiting other stars, uh, in our own galaxy every year. [00:02:00] And one particularly exciting discovery that happened in December, 2011 was we found a planet around another star that appeared to be in the so called habitable zone of that planet. The zone where the distance from the star was appropriate that the temperature on the planet could possibly be not too cold and not too hot to have liquid water. And how much of that exoplanet research is done here in the bay area? Quite a large amount. There's a large healthy exoplanet team in the UC Berkeley Astronomy Department, [00:02:30] and many scientists here are heavily involved in the Kepler mission besides this planet in the habitable zone. Speaker 2: Like Nicholas mentioned, thousands of planets have been discovered by this Kepler mission of all shapes and sizes from nearly earth size to Uranus and Neptune size. Did you put her in a little bit bigger orbiting their stars that are sun-like sometimes a little bit smaller, sometimes a little bit bigger than the sun at various distances. There's maybe a couple of examples where we've seen a system of a few planets that sort [00:03:00] of mimic the sizes of planets in our solar system at some of the distances, but most of these planets are found very close to their host star. Nothing like what we see in our own solar system, things that are the size of Jupiter and Saturn that are orbiting even closer than mercury. And so this is a huge weird question that's outstanding. People are trying to figure out how do you make these systems, how do you make these planetary systems and why are they so prevalent and so different from what we know in our own solar system. Speaker 2: And are there some sort of limitations to the [00:03:30] finding techniques to, to locate these planets that might sort of bias you towards finding these large close planets spoken like a true scientist? Yes, we are absolutely biased to find big planets that are very close to their stars. So the first handful of planets that were found were very big. These so-called hot Jupiters, very big Jupiter sized planets near their stars. We are definitely biased by the techniques to find these kinds of planets. Capillary is doing a bit of a better job finding smaller planets, finding them further out. And so we're getting into a point [00:04:00] in time where we're close to being able to find similar looking systems to the solar system, bigger planets further out earth planets around the distance of earth from the sun and we're not really finding them as often as you might expect. Speaker 2: And so it does seem still that even taking into account some of this bias that our solar system is a bit of an oddball now that's certainly may change in the next few years. This is a huge fast moving field, but right now we're still an odd ball. Yeah. I have to say that the, the Kepler mission was designed [00:04:30] so that over the course of the missions lifetime, which was roughly a three year time period, starting maybe 2010 and going through 2013 or so, it was designed so that over that period it could detect a planet, maybe twice the size of our earth but orbiting at star at the same distance that the earth orbits the sun. So capillary is definitely doing a better job than previous missions, finding planets that aren't quite as small as earth but are getting down in that region where we can say this plant is actually fairly similar to the planet earth. Speaker 2: And because we're now simply becoming [00:05:00] able to start to find planets like this, we can begin to say things about how common are earth like planets relative to these hot Jupiters that Jeff was talking about before when we had only detected the hot Jupiters, there was nothing we could say about their relative abundance in the universe compared to planets like the earth was their technology. And Kepler that made this possible. Was there a breakthrough somehow in the, the instrument? The thing Kepler does is it measures the brightness coming from a star [00:05:30] over and over and over again. Uh, and what happens is that if a planet passes in front of the star along the line of sight to Earth, it blocks a little bit of the disk of the star. And so the star gets very slightly fatter. But these differences in the stars brightness are smaller than a percent. Speaker 2: And so in order to pick out that signal that you need to have an instrument that can measure the brightness of a star very, very accurately, repeatedly over and over again and simply by having it outside ears, atmosphere, having it in space and all of the different instrumental [00:06:00] things they did inside that satellite enables Kepler to measure stellar brightnesses with more precision than any instrument that we'd done this for previously. Another interesting piece of technology that was something that they had to tackle. And it's still sort of one of the limitations actually of Kepler, is because you're measuring the brightness of thousands of stars many, many times over and over and over again. That's a huge amount of data, just pure raw pictures that you have floating on a spacecraft and you need to beam those down to earth, to big computers to hold those. Speaker 2: And so [00:06:30] one of the biggest limitations from my understanding is just the bandwidth. It is hard to move that ms send that many, you know, picture files basically from space down, you know, different satellites to big data centers on earth. And so they kind of do it in big bursts and in chunks and they only take certain subsets of the pictures of different stars. Very, very close, a little snapshot, postage stamps right around each of the stars that they're monitoring. And it's still huge amounts of data. Uh, and so this has been a big breakthrough for a number of different [00:07:00] astronomy discoveries, is the large amount of data being able to move it through the Internet, through fiber optics and storing it and going through it in a fast, efficient way. Do you know if there's any kind of preliminary data analysis actually on the coupler? Speaker 2: I'm not completely sure, but there is some, as far as I know, a basic calibrations and, and basic work that it does before it sends down some of the products. But looking, as Nicholas said, for these very slight amounts of dimming in the stars takes a lot of computing power [00:07:30] and fancy algorithms that are run on big machines back on earth. And one of the really interesting things that's actually been done with the Keppra or data is after this processing, after you have, um, sort of your reduced scientific measurements. Um, recently these data have been put on the Internet so that by crowdsourcing people can go, ah, I think the website is called Kepler Zoo. And look at the period, the, the patterns of brightness versus time for all of these different stars. Um, and humans can try to find patterns that the best computer algorithms have failed to find. Um, and [00:08:00] I think there is a space of patterns that computers don't do very well at, but humans are better at. Um, so we're using the public to try to get more planets, uh, than when we, we'd be able to do just the astronomy community by itself. Speaker 1: [inaudible] this is spectrum on k l x Berkeley. We are talking about exoplanets with Jeff Silverman and Nicholas McConnell [00:08:30] reflecting on coupler. How do you, Speaker 2: I think it's changed your worldview. The entire subfield and astronomy have of exoplanets. Planets around other stars effectively didn't exist until the mid to late nineties. So when I was in elementary school, it was nice to think about planets on around other stars and see it in the movies. But it was very scifi. Speaker 3: Fast forward to to mean in college, in the early two thousands [00:09:00] taking astronomy classes, astronomers had discovered a handful of these exoplanets. And I distinctly remember one of my professors saying, you know, we found a few, we're going to find some more in the future. One day you'll pick up the newspaper and the front page will be a picture of an exoplanet. And sure enough, a few years ago, Berkeley astronomers took a picture of an exoplanet and it made the front page newspaper. Uh, and I'll never forget seeing that picture on the front page of the newspaper, just like my professor in college predicted. This is a very fast moving field. We're going to find even more planets earth-like [00:09:30] around sunlight stars that could very well have liquid water. It'll possibly be not that rare to have an earth-like planet in the very near future. Personally, to me, I think it's great. It makes me hope that perhaps we can find an exact earth analog around a sun analog and perhaps there is intelligent life or some kind of life that we can find. And I think an amazing thing that astronomers can do for the world. Speaker 4: I think with the discovery of planets that are similar [00:10:00] to Earth or at least about the same sizes, or we're beginning to go from detecting one, then a couple to actually doing decent statistics where we can project how many have planets about the same size of earth exist, say in our galaxy. I tried to do a very, very rough calculation this morning. If you ask how many earth sized planets are there in the Milky Way, I think the answer is there's probably about a billion or a couple billion. And so I think that's just another interesting way of looking at how [00:10:30] earth is not necessarily unique environment in the universe, but just as we have so much diversity here on earth than in our galaxy. We have evidence now that there is space and room to have as much diversity possibly throughout our galaxy. So I think we really are getting a profound sense of just what kind of environment we have for possibly life and for different conditions, not only in our own solar system, but in this much larger piece of the universe that we're [00:11:00] only beginning to explore. Speaker 5: [inaudible]Speaker 6: you're listening to spectrum on k a l x, Berkeley. We are talking about astrophysics with Nicholas McConnell and Jeff Silverman. Speaker 5: [inaudible]Speaker 3: let's talk about water in the universe. So we've found quite a bit of water [00:11:30] in the universe, oddly enough, sort of starting on the biggest scales. There's, there's some nebulae, some clusters of gas and particles out in the universe that are huge reservoirs of water and sort of related huge reservoirs of alcohols, ethanol's, things like that. Coming a little bit closer to home and looking a little bit more recently. In the past maybe five or 10 years, there's been quite a few new detections, new possible detections, new lines of evidence of liquid water, ice water in our solar system in very interesting [00:12:00] places. One, the moon of Saturn known as, and Solidus is a very shiny, very bright object. It's very, very white, snowy, clean looking objects. A handful of craters have much less cratered than our own moon, a little smaller than our moon as well. Speaker 3: But it had some weird features to it. It looks kind of neat. And so the the Cassini spacecraft, which has been around exploring Saturn and its moon systems and its ring system for the past decade or so, did a few very close flybys of this very interesting moon in solidus [00:12:30] figured out that most of the surface is solid ice water, ice, ammonia, hydrocarbons, stuff as well. Also notice that there were geysers coming off of the surface, which we've seen geysers on a couple of other moons of Jupiter and Saturn, but these were kind of interesting and Cassini was there and we lucked out and Cassini actually flew through one of these geysers and got to detect the particles from the geyser itself, right? They're very direct institute measurements of what's in the guys there and it was mostly water and some ammonia, which was [00:13:00] interesting. And then there's evidence that there was actually more organic compounds in there and so possibly there, this could lead to life. Speaker 3: There could be some kind of bacteria down in the innards of in solidus. That's sort of pushing a a little bit, sort of the next step beyond what the evidence is actually telling us. But it's very, very tantalizing. Just about four or five years ago, a NASA panel on moons and moon explorations in the solar system said that in Solidus is probably the best possibility [00:13:30] for current life outside of earth in our own solar system. And the idea is that underneath this sort of very smooth, icy surface, there's probably a liquid ocean, mostly water, maybe a little bit of salt water, like I said, a little ammonia, some organic compounds, perhaps probably not gray whales and great white sharks. Probably not even little fish and shrimp, but it seems reasonable that there could be microscopic organisms, some kind of life, you know, to be determined. Speaker 3: But it's possible. [00:14:00] There's liquid water, there's reasonable conditions. It's not too salty, it's not too acidic, it's not too hot. And there does seem to be at least the building blocks, some of these organic compounds, perhaps one outstanding issue is how thick is this outer ice layer. So there's been some ideas of what we should send another mission that's just going to drill in there and it had the little submarine and go look around for fish and organisms, but we don't actually have a great handle on how thick that ice layer is. Uh, so Cassini is continuing to study this moon along with the [00:14:30] rest of the stuff in the Saturn system. Other moons, the planet itself, the Rings, uh, and we'll hopefully learn a little bit more about it, but they're already in the works, uh, both NASA, Japanese and European missions to go explore in salad. It's even more now if you want to go a little bit closer than Enceladus, one of the most promising planets areas in our solar system where Speaker 4: people have thought about the possibility of liquid water, where we certainly know that frozen water exists and where we have a headstart on [00:15:00] objects actually on the surface exploring is the planet Mars. And there've been some recent discoveries about both water in the past history of Mars and possibly salty liquid water, actually existing present day on Mars that are fueling a lot of excitement in the scientific community. Right now we have two different kinds of instruments that are doing fantastic observations of Mars. One of them is called the Mars or condescends orbiter. It is a satellite in orbit around Mars that can take fantastically detailed [00:15:30] photographs of the Martian surface. You can see features about a few feet across on the Martian surface with the satellite and then the other are the famous Mars Rovers. Spirit and opportunity spirit recently shut down, met its demise even though these two rovers outlasted their nominal mission timeline by a factor of 10 or so, Opportunity is still exploring the Martian surface and in both cases, instruments have found evidence for water on Mars. Speaker 4: In the case of opportunity. The rover fairly recently [00:16:00] discovered this mineral vein in a rock in a crater on Mars that scientists are pretty certain, could only have been created by liquid water flowing through a crack in the rocket, some ancient time and marches history and creating this particular mineral known as gypsum in certain variances what we use to make plaster of Paris here on Earth. So there is evidence that in particular Martian environments, there was almost certainly liquid water on Mars in the past. Combine that with theoretical models of how the planet and its atmosphere would have evolved over time. [00:16:30] And there are some pictures of ancient Mars being this sort of lush liquid water, much warmer environment than it is today. And so possibly Mars in its past was a hospitable environment for life. Although I'll emphasize we've, we have not yet detected any evidence of present day or fossilized life on Mars, but frankly, we haven't explored a very large fraction of that planet yet. Speaker 4: So I wouldn't be entirely surprised if some discovery came along in the future. Another very, very interesting observation on Mars coming [00:17:00] from the Mars reconnaissance orbiter is that looking over time at the edges of some of the craters on Mars in the warm seasons, they actually found stream like features that looked like dark streams were appearing on the edges of craters and over the course of the warm season as these craters were being more exposed to the sun and warming up a little bit, the streams lengthen as you might expect, little trickles of liquid water to flow downhill and based on mineral analysis which you can do using spectroscopy [00:17:30] from the orbiter and just generally the overall pattern of how these streams change with the seasons. We think that's good evidence that some sort of salty water was creating the streams. Unfortunately we were not able to directly detect water. What we see, it looks more to be like residue from a salt water stream where the water evaporated or where the water is just below the surface. But it seems that in certain seasons and certain places of the planet, there could actually be water and liquid form just at the surface or just below the surface [00:18:00] of Mars today. I mean if you have salt water on Mars, then I think there's at least some chance that you could have some kind of primitive life forum thriving in it. [inaudible] Speaker 3: it's been amazing in the last few years using the orbiter and the rovers on Mars, the different lines of evidence that we have for this ice, either on the surface or just below the surface centimeters below the surface, inches below the surface. And so NASA just recently launched a mission to head to Mars and even bigger rover, something like the size of a small car [00:18:30] that's going to go around and specifically look for water, look for organic molecules, building blocks of life in different parts than where we've already explored on Mars. Speaker 4: And that rover is called curiosity and it's supposed to land on the Martian surface this summer. Is there water on the moon? Our Moon, there is water on the moon in the form of hydrous molecules, so where water is directly incorporated into a solid rock, but I don't think there's any evidence for frozen or liquid water on the moon, [00:19:00] certainly not liquid water. Speaker 5: [inaudible]Speaker 4: can you reflect on the importance of water being discovered in our solar system or in some other solar system or galaxy? Speaker 2: Clearly on earth, water is essential [00:19:30] for all life forms and so whereas there are ideas about exotic kinds of life that could exist without our requirement of having water. It certainly seems like the most natural place to start looking for life outside of our own planet. So knowing that it exists in liquid form in different places in the universe and knowing Lisa in our own solar system where it exists is I think a really good start toward actually doing an Ernest search for life outside earth, maybe in our own solar system. [00:20:00] And I think just knowing how much water there actually is in our universe makes it seem like the universe is maybe a friendlier place than we thought it was. Okay. Speaker 3: One of the basic questions in astronomy of humanity, one of the things that got me interested in astronomy originally was are we alone in the universe? Is there life out there in the solar system, in our galaxy, and looking for water is probably the best way, the most direct way to find where that life could be. Being able to go visit Mars, the Moon, various [00:20:30] moons in our own solar system. Looking for that life in the water or around the water, I think is is something that's a fundamental question for all humankind, not just scientists and astronomers. Speaker 7: That ends one, Jeff Silverman and Nicholas McConnell. We'll be back with part two on our next show. We'll talk about Super Novi and black holes. Rick Karnofsky and Lisa Catholic joined me [00:21:00] for the calendar and the new black hole, Speaker 8: the harmonic oscillators of the 21st century presented by Andrew Strom and dear professor of physics, Harvard University, Monday, March 12th at four 15 to 5:30 PM La Conte Hall Room Number One in the 20th century. Many problems across all of physics were solved by perturb native methods which reduce them to harmonic oscillators. Black holes are poised to play a similar role for the problems of 21st century physics. They are at once [00:21:30] the simplest and most complex objects in the physical universe. Professors durometer will give an introduction to the subject intended for a general audience Speaker 9: daily and Nardo art science evening rendezvous or laser is a monthly series of lectures, presentations, and networking between artists and scientists. This month, laser is on Monday, March 12th at the [inaudible] room of the front building at the University of San Francisco to one 30 zero Fulton Street. It is free, but [00:22:00] please RSVP to p at [inaudible] dot com the event starts at seven with a talk by [inaudible] Viskontas on the art and neuroscience of effective music performance. What is it about this art form that draws people in? What distinguishes a performance that is technically accurate but unmusical from one that elicits the chills. We will explore how music engages the brain and why it continues to be a worldwide addiction. This will be followed by Rebecca Cayman's talk, making the invisible visible [00:22:30] discoveries between art and science, the history of artists as scientists and scientists as artists will be shared drying from the collections of the American philosophical society and the Chemical Heritage Foundation. The development of new art science collaborations will also be discussed. Shawmut caught true of the Stanford Physics Department. We'll speak on are there more dimensions of space which we'll discuss how the extra dimensions proposed by some models such as string theory may explain and unify puzzles [00:23:00] of modern physics. The night we'll conclude with Scott killed doll and Nathaniel stern who will discuss beaming Twitter messages to glaze five eight one D and exoplanet 20 light years away that can support extra terrestrial life using DIY technology. The website for laser is www.leonardo.info Speaker 8: the creative destruction of medicine Wednesday, March 14th at 6:00 PM at the Commonwealth Club of San Francisco on the second [00:23:30] floor of five 95 market street, Eric Topol, MD, director of the Scripps Translational Science Institute, Co founder and vice chairman of the West Wireless Health Institute and author of the creative destruction of medicine. Dr Topol says that is poised to go through its biggest shakeup in history and unprecedented convergence of technologies such as the ability to digitize human genomes and the invention of wireless tools is gaining momentum, thrusting the medical field into the digital era. Tickets are $20 [00:24:00] for general public, $8 for members and $7 for students. Speaker 9: Ask a scientist is hosting a puzzle party on Pi Day Wednesday, March 14th at 7:00 PM this is a math and logic puzzle competition for teams of up to six people. It is free, but you're encouraged to support the venue by purchasing foods and or drinks. The winning team will get a round of drinks and an overwhelming sense of pride. Bring a jacket in case there is overflow onto the sidewalk of the bizarre [00:24:30] cafe. Five nine two seven California at 21st in San Francisco visit. Ask a scientist sf.com for more info. Speaker 7: Yeah, Speaker 6: the March Science at cal lecture will be given at 11:00 AM on Saturday, March 17th in the genetics and plant biology building room 100 the talk will be given by Dr Hazel Bane and is entitled The Sun a star in our own backyard. Dr Bain is a post doc with the Ruben Rahmati high energy spectroscopic [00:25:00] solar imager solar physics group at the Space Sciences Laboratory at UC Berkeley. Her main area of research involves studying solar eruptive events such as flares, jets, and coronal mass ejections using both space and ground-based instruments. In describing her talk, Dr Bane said the stars in the night sky have always been a source of intrigue and wonder with our very own star at the center of our solar system, the sun offers us a unique [00:25:30] opportunity to study the inner workings of these giant balls of plasma. Starting at the core, I will discuss the processes occurring at the different layers of the sun onto news. Speaker 9: The four mile long t veteran particle accelerator at Chicago's Fermi lab was closed in September, 2011 after being one of the most powerful accelerators for 20 years, but in analyzing 500 trillion subatomic particles, Asians from the CDF and DCO, the team says that they may [00:26:00] have generated about a thousand Higgs Bosons the particle that is responsible for mass in the standard model of physics in a previous episode of spectrum that you can download from iTunes you, we interviewed Dr Simoni Pig Ingreso about the hunt for the Higgs. The probability of these measurements being due to a statistical fluke instead of the measurements of the Higgs is about one in 30 or about 2.2 sigma. This is well below the one chance in 3.5 million or five sigma that will be used to claim the actual discovery of the Higgs. [00:26:30] The energy of the detected events is between 115 billion and 135 billion electron volts, which is in good agreement with the range of 124 billion electron volts to 126 billion electron volts that turns large. Hadron collider established with 3.6 sigma certainty. The large Hadron collider is on winter break, but we'll be fixed up again in April to continue trying to find the Higgs with five sigma certainty. Speaker 8: The Cal Energy Corp is offering internships [00:27:00] around the world from Brazil to Germany to Ghana, to China, as well as in the bay area. During the summer of 2012 internships will offer UC Berkeley undergraduates the opportunity to pursue challenging hands on projects and energy and climate research. According to the office of the vice chancellor for research among the projects, cal energy core interns will be involved in our efforts to create green coal as industrial fuel, helping to produce biofuels, working on improving photovoltaics for integration into the [00:27:30] electricity grid, building models to better understand climate change and designing and testing. Cookstoves. The internship program provides a $600 weekly stipend for all interns as well as funding to cover transportation and housing. All placements are full time, more information and application forms are available at the cow energy core website. Speaker 9: Yeah, Speaker 6: explaining science to an 11 year old. The flame challenge sponsored by the Center for communicating science is an attempt to reach the very core of [00:28:00] science communication. The contest asks scientists and generally clever people to submit their own explanations of what a flame is, explanations that would captivate an 11 year old. The flame challenge contest is open for entries between March 2nd and April 2nd with the winners to be announced in June. Entries can be in writing, video or graphics and they can be playful or serious as long as they are accurate and connect with the young judges. For more information and entry [00:28:30] forms, visit the challenge website. Flame challenge.org Speaker 7: [inaudible] music curse during the show goes by on Donna David [inaudible] on for his album title folk and acoustic [00:29:00] just made available by creative Commons license 3.0 contribution. [inaudible]. Thank you for listening to spectrum. If you have comments about the show [inaudible] [00:29:30] to our email address is [inaudible] means in two weeks. It's Speaker 6: the same Speaker 5: [inaudible]. Hosted on Acast. See acast.com/privacy for more information.
The fourth in a series of NASA podcasts for Sun-Earth Day 2007: Living in the Atmosphere of the Sun. This podcast features an interview with Isabel Hawkins, Director of the Center for Science Education at the Space Sciences Laboratory of the University of California, Berkeley. Dr. Hawkins is the informal lead for the 2007 Sun-Earth Day program.