POPULARITY
Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 02/02
Knowledge Discovery in Databases (KDD) ist der Prozess, nicht-triviale Muster aus großen Datenbanken zu extrahieren, mit dem Ziel, dass diese bisher unbekannt, potentiell nützlich, statistisch fundiert und verständlich sind. Der Prozess umfasst mehrere Schritte wie die Selektion, Vorverarbeitung, Evaluierung und den Analyseschritt, der als Data-Mining bekannt ist. Eine der zentralen Aufgabenstellungen im Data-Mining ist die Ausreißererkennung, das Identifizieren von Beobachtungen, die ungewöhnlich sind und mit der Mehrzahl der Daten inkonsistent erscheinen. Solche seltene Beobachtungen können verschiedene Ursachen haben: Messfehler, ungewöhnlich starke (aber dennoch genuine) Abweichungen, beschädigte oder auch manipulierte Daten. In den letzten Jahren wurden zahlreiche Verfahren zur Erkennung von Ausreißern vorgeschlagen, die sich oft nur geringfügig zu unterscheiden scheinen, aber in den Publikationen experimental als ``klar besser'' dargestellt sind. Ein Schwerpunkt dieser Arbeit ist es, die unterschiedlichen Verfahren zusammenzuführen und in einem gemeinsamen Formalismus zu modularisieren. Damit wird einerseits die Analyse der Unterschiede vereinfacht, andererseits aber die Flexibilität der Verfahren erhöht, indem man Module hinzufügen oder ersetzen und damit die Methode an geänderte Anforderungen und Datentypen anpassen kann. Um die Vorteile der modularisierten Struktur zu zeigen, werden (i) zahlreiche bestehende Algorithmen in dem Schema formalisiert, (ii) neue Module hinzugefügt, um die Robustheit, Effizienz, statistische Aussagekraft und Nutzbarkeit der Bewertungsfunktionen zu verbessern, mit denen die existierenden Methoden kombiniert werden können, (iii) Module modifiziert, um bestehende und neue Algorithmen auf andere, oft komplexere, Datentypen anzuwenden wie geographisch annotierte Daten, Zeitreihen und hochdimensionale Räume, (iv) mehrere Methoden in ein Verfahren kombiniert, um bessere Ergebnisse zu erzielen, (v) die Skalierbarkeit auf große Datenmengen durch approximative oder exakte Indizierung verbessert. Ausgangspunkt der Arbeit ist der Algorithmus Local Outlier Factor (LOF). Er wird zunächst mit kleinen Erweiterungen modifiziert, um die Robustheit und die Nutzbarkeit der Bewertung zu verbessern. Diese Methoden werden anschließend in einem gemeinsamen Rahmen zur Erkennung lokaler Ausreißer formalisiert, um die entsprechenden Vorteile auch in anderen Algorithmen nutzen zu können. Durch Abstraktion von einem einzelnen Vektorraum zu allgemeinen Datentypen können auch räumliche und zeitliche Beziehungen analysiert werden. Die Verwendung von Unterraum- und Korrelations-basierten Nachbarschaften ermöglicht dann, einen neue Arten von Ausreißern in beliebig orientierten Projektionen zu erkennen. Verbesserungen bei den Bewertungsfunktionen erlauben es, die Bewertung mit der statistischen Intuition einer Wahrscheinlichkeit zu interpretieren und nicht nur eine Ausreißer-Rangfolge zu erstellen wie zuvor. Verbesserte Modelle generieren auch Erklärungen, warum ein Objekt als Ausreißer bewertet wurde. Anschließend werden für verschiedene Module Verbesserungen eingeführt, die unter anderem ermöglichen, die Algorithmen auf wesentlich größere Datensätze anzuwenden -- in annähernd linearer statt in quadratischer Zeit --, indem man approximative Nachbarschaften bei geringem Verlust an Präzision und Effektivität erlaubt. Des weiteren wird gezeigt, wie mehrere solcher Algorithmen mit unterschiedlichen Intuitionen gleichzeitig benutzt und die Ergebnisse in einer Methode kombiniert werden können, die dadurch unterschiedliche Arten von Ausreißern erkennen kann. Schließlich werden für reale Datensätze neue Ausreißeralgorithmen konstruiert, die auf das spezifische Problem angepasst sind. Diese neuen Methoden erlauben es, so aufschlussreiche Ergebnisse zu erhalten, die mit den bestehenden Methoden nicht erreicht werden konnten. Da sie aus den Bausteinen der modularen Struktur entwickelt wurden, ist ein direkter Bezug zu den früheren Ansätzen gegeben. Durch Verwendung der Indexstrukturen können die Algorithmen selbst auf großen Datensätzen effizient ausgeführt werden.
Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02
Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying valid, novel, useful and ultimately understandable patterns in data. The core step of the KDD process is the application of Data Mining (DM) algorithms to efficiently find interesting patterns in large databases. This thesis concerns itself with three inter-related themes: Generalised interaction and rule mining; the incorporation of statistics into novel data mining approaches; and probabilistic frequent pattern mining in uncertain databases. An interaction describes an effect that variables have -- or appear to have -- on each other. Interaction mining is the process of mining structures on variables describing their interaction patterns -- usually represented as sets, graphs or rules. Interactions may be complex, represent both positive and negative relationships, and the presence of interactions can influence another interaction or variable in interesting ways. Finding interactions is useful in domains ranging from social network analysis, marketing, the sciences, e-commerce, to statistics and finance. Many data mining tasks may be considered as mining interactions, such as clustering; frequent itemset mining; association rule mining; classification rules; graph mining; flock mining; etc. Interaction mining problems can have very different semantics, pattern definitions, interestingness measures and data types. Solving a wide range of interaction mining problems at the abstract level, and doing so efficiently -- ideally more efficiently than with specialised approaches, is a challenging problem. This thesis introduces and solves the Generalised Interaction Mining (GIM) and Generalised Rule Mining (GRM) problems. GIM and GRM use an efficient and intuitive computational model based purely on vector valued functions. The semantics of the interactions, their interestingness measures and the type of data considered are flexible components of vectorised frameworks. By separating the semantics of a problem from the algorithm used to mine it, the frameworks allow both to vary independently of each other. This makes it easier to develop new methods by focusing purely on a problem's semantics and removing the burden of designing an efficient algorithm. By encoding interactions as vectors in the space (or a sub-space) of samples, they provide an intuitive geometric interpretation that inspires novel methods. By operating in time linear in the number of interesting interactions that need to be examined, the GIM and GRM algorithms are optimal. The use of GRM or GIM provides efficient solutions to a range of problems in this thesis, including graph mining, counting based methods, itemset mining, clique mining, a clustering problem, complex pattern mining, negative pattern mining, solving an optimisation problem, spatial data mining, probabilistic itemset mining, probabilistic association rule mining, feature selection and generation, classification and multiplication rule mining. Data mining is a hypothesis generating endeavour, examining large databases for patterns suggesting novel and useful knowledge to the user. Since the database is a sample, the patterns found should describe hypotheses about the underlying process generating the data. In searching for these patterns, a DM algorithm makes additional hypothesis when it prunes the search space. Natural questions to ask then, are: "Does the algorithm find patterns that are statistically significant?" and "Did the algorithm make significant decisions during its search?". Such questions address the quality of patterns found though data mining and the confidence that a user can have in utilising them. Finally, statistics has a range of useful tools and measures that are applicable in data mining. In this context, this thesis incorporates statistical techniques -- in particular, non-parametric significance tests and correlation -- directly into novel data mining approaches. This idea is applied to statistically significant and relatively class correlated rule based classification of imbalanced data sets; significant frequent itemset mining; mining complex correlation structures between variables for feature selection; mining correlated multiplication rules for interaction mining and feature generation; and conjunctive correlation rules for classification. The application of GIM or GRM to these problems lead to efficient and intuitive solutions. Frequent itemset mining (FIM) is a fundamental problem in data mining. While it is usually assumed that the items occurring in a transaction are known for certain, in many applications the data is inherently noisy or probabilistic; such as adding noise in privacy preserving data mining applications, aggregation or grouping of records leading to estimated purchase probabilities, and databases capturing naturally uncertain phenomena. The consideration of existential uncertainty of item(sets) makes traditional techniques inapplicable. Prior to the work in this thesis, itemsets were mined if their expected support is high. This returns only an estimate, ignores the probability distribution of support, provides no confidence in the results, and can lead to scenarios where itemsets are labeled frequent even if they are more likely to be infrequent. Clearly, this is undesirable. This thesis proposes and solves the Probabilistic Frequent Itemset Mining (PFIM) problem, where itemsets are considered interesting if the probability that they are frequent is high. The problem is solved under the possible worlds model and a proposed probabilistic framework for PFIM. Novel and efficient methods are developed for computing an itemset's exact support probability distribution and frequentness probability, using the Poisson binomial recurrence, generating functions, or a Normal approximation. Incremental methods are proposed to answer queries such as finding the top-k probabilistic frequent itemsets. A number of specialised PFIM algorithms are developed, with each being more efficient than the last: ProApriori is the first solution to PFIM and is based on candidate generation and testing. ProFP-Growth is the first probabilistic FP-Growth type algorithm and uses a proposed probabilistic frequent pattern tree (Pro-FPTree) to avoid candidate generation. Finally, the application of GIM leads to GIM-PFIM; the fastest known algorithm for solving the PFIM problem. It achieves orders of magnitude improvements in space and time usage, and leads to an intuitive subspace and probability-vector based interpretation of PFIM.
Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02
Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data. The core step of the KDD process is the application of a Data Mining algorithm in order to produce a particular enumeration of patterns and relationships in large databases. Clustering is one of the major data mining techniques and aims at grouping the data objects into meaningful classes (clusters) such that the similarity of objects within clusters is maximized, and the similarity of objects from different clusters is minimized. This can serve to group customers with similar interests, or to group genes with related functionalities. Currently, a challenge for clustering-techniques are especially high dimensional feature-spaces. Due to modern facilities of data collection, real data sets usually contain many features. These features are often noisy or exhibit correlations among each other. However, since these effects in different parts of the data set are differently relevant, irrelevant features cannot be discarded in advance. The selection of relevant features must therefore be integrated into the data mining technique. Since about 10 years, specialized clustering approaches have been developed to cope with problems in high dimensional data better than classic clustering approaches. Often, however, the different problems of very different nature are not distinguished from one another. A main objective of this thesis is therefore a systematic classification of the diverse approaches developed in recent years according to their task definition, their basic strategy, and their algorithmic approach. We discern as main categories the search for clusters (i) w.r.t. closeness of objects in axis-parallel subspaces, (ii) w.r.t. common behavior (patterns) of objects in axis-parallel subspaces, and (iii) w.r.t. closeness of objects in arbitrarily oriented subspaces (so called correlation cluster). For the third category, the remaining parts of the thesis describe novel approaches. A first approach is the adaptation of density-based clustering to the problem of correlation clustering. The starting point here is the first density-based approach in this field, the algorithm 4C. Subsequently, enhancements and variations of this approach are discussed allowing for a more robust, more efficient, or more effective behavior or even find hierarchies of correlation clusters and the corresponding subspaces. The density-based approach to correlation clustering, however, is fundamentally unable to solve some issues since an analysis of local neighborhoods is required. This is a problem in high dimensional data. Therefore, a novel method is proposed tackling the correlation clustering problem in a global approach. Finally, a method is proposed to derive models for correlation clusters to allow for an interpretation of the clusters and facilitate more thorough analysis in the corresponding domain science. Finally, possible applications of these models are proposed and discussed.
Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02
Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in large data collections. The most important step within the process of KDD is data mining which is concerned with the extraction of the valid patterns. KDD is necessary to analyze the steady growing amount of data caused by the enhanced performance of modern computer systems. However, with the growing amount of data the complexity of data objects increases as well. Modern methods of KDD should therefore examine more complex objects than simple feature vectors to solve real-world KDD applications adequately. Multi-instance and multi-represented objects are two important types of object representations for complex objects. Multi-instance objects consist of a set of object representations that all belong to the same feature space. Multi-represented objects are constructed as a tuple of feature representations where each feature representation belongs to a different feature space. The contribution of this thesis is the development of new KDD methods for the classification and clustering of complex objects. Therefore, the thesis introduces solutions for real-world applications that are based on multi-instance and multi-represented object representations. On the basis of these solutions, it is shown that a more general object representation often provides better results for many relevant KDD applications. The first part of the thesis is concerned with two KDD problems for which employing multi-instance objects provides efficient and effective solutions. The first is the data mining in CAD parts, e.g. the use of hierarchic clustering for the automatic construction of product hierarchies. The introduced solution decomposes a single part into a set of feature vectors and compares them by using a metric on multi-instance objects. Furthermore, multi-step query processing using a novel filter step is employed, enabling the user to efficiently process similarity queries. On the basis of this similarity search system, it is possible to perform several distance based data mining algorithms like the hierarchical clustering algorithm OPTICS to derive product hierarchies. The second important application is the classification and search for complete websites in the world wide web (WWW). A website is a set of HTML-documents that is published by the same person, group or organization and usually serves a common purpose. To perform data mining for websites, the thesis presents several methods to classify websites. After introducing naive methods modelling websites as webpages, two more sophisticated approaches to website classification are introduced. The first approach uses a preprocessing that maps single HTML-documents within each website to so-called page classes. The second approach directly compares websites as sets of word vectors and uses nearest neighbor classification. To search the WWW for new, relevant websites, a focused crawler is introduced that efficiently retrieves relevant websites. This crawler minimizes the number of HTML-documents and increases the accuracy of website retrieval. The second part of the thesis is concerned with the data mining in multi-represented objects. An important example application for this kind of complex objects are proteins that can be represented as a tuple of a protein sequence and a text annotation. To analyze multi-represented objects, a clustering method for multi-represented objects is introduced that is based on the density based clustering algorithm DBSCAN. This method uses all representations that are provided to find a global clustering of the given data objects. However, in many applications there already exists a sophisticated class ontology for the given data objects, e.g. proteins. To map new objects into an ontology a new method for the hierarchical classification of multi-represented objects is described. The system employs the hierarchical structure of the ontology to efficiently classify new proteins, using support vector machines.
Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02
Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data. The core step of the KDD process is the application of a Data Mining algorithm in order to produce a particular enumeration of patterns and relationships in large databases. Clustering is one of the major data mining tasks and aims at grouping the data objects into meaningful classes (clusters) such that the similarity of objects within clusters is maximized, and the similarity of objects from different clusters is minimized. Beside many others, the density-based clustering notion underlying the algorithm DBSCAN and its hierarchical extension OPTICS has been proposed recently, being one of the most successful approaches to clustering. In this thesis, our aim is to advance the state-of-the-art clustering, especially density-based clustering by identifying novel challenges for density-based clustering and proposing innovative and solid solutions for these challenges. We describe the development of the industrial prototype BOSS (Browsing OPTICS plots for Similarity Search) which is a first step towards developing a comprehensive, scalable and distributed computing solution designed to make the efficiency and analytical capabilities of OPTICS available to a broader audience. For the development of BOSS, several key enhancements of OPTICS are required which are addressed in this thesis. We develop incremental algorithms of OPTICS to efficiently reconstruct the hierarchical clustering structure in frequently updated databases, in particular, when a set of objects is inserted in or deleted from the database. We empirically show that these incremental algorithms yield significant speed-up factors over the original OPTICS algorithm. Furthermore, we propose a novel algorithm for automatic extraction of clusters from hierarchical clustering representations that outperforms comparative methods, and introduce two novel approaches for selecting meaningful representatives, using the density-based concepts of OPTICS and producing better results than the related medoid approach. Another major challenge for density-based clustering is to cope with high dimensional data. Many today's real-world data sets contain a large number of measurements (or features) for a single data object. Usually, global feature reduction techniques cannot be applied to these data sets. Thus, the task of feature selection must be combined with and incooperated into the clustering process. In this thesis, we present original extensions and enhancements of the density-based clustering notion to cope with high dimensional data. In particular, we propose an algorithm called SUBCLU (density based SUBspace CLUstering) that extends DBSCAN to the problem of subspace clustering. SUBCLU efficiently computes all clusters that would have been found if DBSCAN is applied to all possible subspaces of the feature space. An experimental evaluation on real-world data sets illustrates that SUBCLU is more effective than existing subspace clustering algorithms because it is able to find clusters of arbitrary size and shape, and produces determine results. A semi-hierarchical extension of SUBCLU called RIS (Ranking Interesting Subspaces) is proposed that does not compute the subspace clusters directly, but generates a list of subspaces ranked by their clustering characteristics. A hierarchical clustering algorithm can be applied to these interesting subspaces in order to compute a hierarchical (subspace) clustering. A comparative evaluation of RIS and SUBCLU shows that RIS in combination with OPTICS can achieve an information gain over SUBCLU. In addition, we propose the algorithm 4C (Computing Correlation Connected Clusters) that extends the concepts of DBSCAN to compute density-based correlation clusters. 4C benefits from an innovative, well-defined and effective clustering model, outperforming related approaches in terms of clustering quality on real-world data sets.
Knowledge Discovery in Databases (KDD) bezeichnet einen methodischen Ansatz, bei dem Datenmuster in großen Datensätzen identifiziert und explorative Hypothesen überprüft werden. KDD umfasst Auswahl, Aufbereitung und Vorverarbeitung der Daten, sowie Data Mining (Mustererkennung) und Interpretation der Ergebnisse. Die zugrunde liegenden Datensätze entstehen entweder automatisch, z.B. durch die Datenverarbeitung einer Krankenkasse oder werden in Omnibusbefragungen erhoben. Bisher wird KDD überwiegend in den Wirtschafts- und Biowissenschaften angewendet. In dieser Arbeit wird überprüft, ob KDD auch zur Exploration psychologischer Fragestellungen geeignet ist. Dazu wurde an einer frei verfügbaren medizinischen Langzeitstudie der amerikanischen Gesundheitsbehörde mit über 49 000 Teilnehmenden (Medical Expenditure Panel Survey) eine klinisch-psychologische Fragestellung untersucht. Die durch KDD gewonnenen Daten wurden mit den Befunden aus epidemiologischen und klinischen Studien verglichen. Das Verfahren erweist sich für korrelative Designs als sinnvoll einsetzbar, wenn Einschränkungen in der Reliabilität und Validität aufgrund ökonomischer Vorteile in Kauf genommen werden.