Podcasts about map kinase

  • 6PODCASTS
  • 8EPISODES
  • 18mAVG DURATION
  • ?INFREQUENT EPISODES
  • May 17, 2023LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about map kinase

Latest podcast episodes about map kinase

JCO Precision Oncology Conversations
Larotrectinib for TRK Fusion - Positive Lung Cancer

JCO Precision Oncology Conversations

Play Episode Listen Later May 17, 2023 28:56


JCO PO author Alexander E. Drilon, MD, shares insights into his article, “Efficacy and Safety of Larotrectinib in Patients With Tropomyosin Receptor Kinase Fusion–Positive Lung Cancers” and the article's findings of the activity of larotrectinib in patients with advanced lung cancer harboring NTRK gene fusions. Host Dr. Rafeh Naqash and Dr. Drilon discuss drug development, testing for fusions, resistance mechanisms, and cancer metastases. Click here to read the article!   TRANSCRIPT Dr. Rafeh Naqash: Hello and welcome to JCO Precision Oncology Conversations, where we bring you engaging conversations with authors of clinically relevant and highly significant JCO PO articles. I am your host, Dr. Rafeh Naqash, Social Media Editor for JCO Precision Oncology, and Assistant Professor at the OU Stephenson Cancer Center.  Today we are excited to be joined by Dr. Alexander Drilon, Chief of the Early Drug Development Service and Medical Oncologist on the Thoracic Oncology Service at the Memorial Sloan Kettering Cancer Center and lead author of the JCO Precision Oncology article “Efficacy and Safety of Larotrectinib in Patients With Tropomyosin Receptor Kinase Fusion–Positive Lung Cancers.” Our guests' disclosures will be linked in the transcript.  Dr. Drilon, welcome to the podcast and thank you for joining us today. We're really excited to be discussing this topic with you.  Dr. Alexander Drilon: It's my pleasure and thank you for the invitation. Dr. Rafeh Naqash: For the sake of this podcast, we will refer to each other using our first names. So, Alex, you've led the development for some of these agents targeting NTRK. So it's really timely that you're coming onto this podcast to not just discuss this very interesting paper that you published in JCO Precision Oncology, but also the general landscape of NTRK. So could you briefly tell us about the history of the drug development process behind NTRK fusions, when it started, how you got involved, and where it stands currently? Dr. Alexander Drilon: Sure. So, as you mentioned, my background is in lung cancer, where when I came on as a fellow, there was a lot of excitement around EGFR and ALK, but then subsequently other oncogene drivers were also discovered and many of them were fusion. So, as we know, ALK in the fuse state is a driver of many tumors, as is ROS1 and RET. And interestingly, NTRK fusions share many similarities with ALK, RET, and ROS1 in that you have an intact kinase domain that's in the three prime position, it's fused to a different gene in the five prime position and basically describes oncogenesis.  And the beautiful thing about NTRK fusions is that they are widely found across many different cancers. And I like to think of these cancers in two major buckets. So there is a bucket for cancers that are rare where we see these NTRK fusions with a very high frequency. And examples here are your secretory carcinomas of the salivary gland and the breast, for example, more congenital fibrosarcoma, where the frequency exceeds 90% in some series, and then there are much more common tumors where the frequency is much lower. So lung cancer is an example where you find it in less than 1% of cases. There are some other tumors like GI cancers also where the frequency is low. And beyond these two major groups, we also see these NTRK fusion-positive cancers occur not just in the adult population, but the pediatric population. All of that thrown together means that it was a really great setup for exploring the activity and safety of targeted therapy in what we call a ‘basket trial' paradigm, where you design a trial and instead of selecting patients based on cancer type, you ignore cancer type and, of course, you accrue by an enrolling alteration, which in this case is the NTRK fusion.  Dr. Rafeh Naqash: Excellent. Thank you for that summary. It's interesting that just yesterday in my phase I clinic, I had an individual who was supposed to go on a certain study, and liquid biopsy came back and showed an NTRK fusion for a very odd presentation of a prostate cancer, which, again, got me thinking about the paper that you published trying to read about NTRK and then this happened and I got thinking about a bunch of other questions. But, for starters, though, from a receptor standpoint and I know you published on this in different journals, could you briefly tell, for the sake of the audience, describe the pathway and the tyrosine kinase signaling and associated resistance pathways that are concurrently acting in a different direction, perhaps, and also discuss briefly from neural development? I know the pathway, the NTRK gene or TRK gene as such is involved in different neuronal signaling aspects. Could you briefly touch on that? Dr. Alexander Drilon: Sure. And thankfully there are a lot of parallels with other things that perhaps some of the listeners are more familiar with. We'll start with the fact that it is a receptor tyrosine kinase, NTRK. It's a gene that encodes a receptor tyrosine kinase just like other receptor tyrosine kinases that may be fused such as ALK, RET, and ROS1. But remember also that other RTKs are EGFR, FGFR, which are also well known. The important thing to remember for NTRK is that you have three different genes, NTRK 1, 2, and 3 that encode three different proteins which are called TRK A, B, and C. And as you intimated, in the non-oncogenic state, these are very important for the development and the maintenance of the nervous system. And in the fused state, of course, similar to other fusions that we spoke about, the chimeric oncoprotein will drive downstream signaling and tumor growth and metastases. And in general, these cancers can be very reliant on downstream signaling in the MAP Kinase pathway but may also on occasion activate other downstream pathways like the PI3 Kinase pathway. Dr. Rafeh Naqash: And I know some of that could potentially play into resistance mechanisms for some of these first or second-generation NTRK inhibitors. From a fusion partner standpoint, the data that I came across that you're very well aware of is different fusion partners, and maybe some have a slightly better prognosis than some other fusions. But, in your practice and in your experience, does it matter what the other fusion partner is if the kinase domain is intact, meaning the signaling for the NTRK gene is intact? Have you seen any differences there from the other fusion partner standpoint? Dr. Alexander Drilon: From a patient-matching perspective, as long as you think the fusion is real, and by that I mean that you look at the report and you're sure the kinase domain is there and you're sure it's in frame, meaning connected well to the five prime partner so that the DNA strand is read through, the five prime partner does not play a major role in my deciding to give a TRK inhibitor or not. I would give anyone with a functional NTRK 1, 2, or 3 fusion a TRK inhibitor. Now, the data on whether or not select fusions do better than others is, I would say, still a little immature and perhaps conditioned by a few things. There are some of the cancers in the first bucket that we talked about, like the secretory carcinomas that harbor a recurrent event such as ETV6 NTRK3. And those cancers, in my experience in clinic, patients with those tumors can be on a TRK inhibitor for a very long time. And it's unclear if that's because of the exact fusion event or if it's because of the cancer type that might be more, say, genomically naïve compared to a gastrointestinal tumor, like a colorectal cancer with an NTRK fusion. So I hesitate to say that there are very strong and convincing data that if you have a particular five prime partner, you'll absolutely do better or worse. So, in the interim, I think the most important piece is just making sure that the event is real and actionable, and if it is, then you can give a TRK inhibitor. Dr. Rafeh Naqash: Thank you so much. I totally agree. And I think, for the sake of our listeners, as we see more and more sequencing being done on patients with cancer in the advanced stage setting especially, it's important to keep in mind when you have something that you can act on that has an actionable target that is FDA approved, then it's important to give the patient that option, especially in rare fusion events such as NTRK or TRK.   Now, you've touched upon this in your paper, but before we go into the details of the paper, specifically, I wanted you to briefly talk about the testing mechanisms which are important for some of these fusions and play into, for example, ROS1 ALK fusions also. Could you tell us what are the most appropriate ways to test for these fusions in patients harboring cancers, both from a tissue standpoint and from a blood-based assay standpoint? Dr. Alexander Drilon: This is a great question because if you don't have a test that's optimally poised to pick up an NTRK fusion, then you can't act on it. And a patient who would have benefited very durably from a TRK inhibitor won't get access to it. So there are different ways of testing for NTRK fusions, and I like to think of the central dogma here where you have DNA becomes RNA becomes protein because that really helps anchor the different types of assays that you might use. We commonly use next-generation sequencing of DNA, but even if you have a very good next-generation sequencing assay, that does have its limitations because there are some fusions that are structurally just difficult to pick up even with a great DNA-based NGS assay.  And for that reason, we and others have found that in tumors that have an equivocal NTRK fusion, or perhaps where you didn't find something but you really suspect that you missed something, particularly in cases where, historically, like congenital fibrosarcoma where you know there's a very good likelihood of finding NTRK fusion, we then reach for an RNA-based assay because at the RNA level, you've removed things like the intra-DNA based capture challenging. And so I think that from a nucleic acid standpoint, leveraging a test that looks both at DNA and RNA, maximizes the likelihood of finding this fusion. And just remember that there are different NGS assays in terms of the approach to design and some might be more Amplicon-based and that's less optimal, but the hybrid-capture-based ones tend to be better. The DNA and RNA tests can be done on tumors, and in blood, you could do a liquid biopsy. It's very hard to fish out RNA in blood given the current technology so we're still limited to circulating tumor DNA which shares the liabilities of doing DNA testing on a tumor sample. But if you find it and it looks real, then it's certainly actionable even if you detect an NTRK fusion with a liquid biopsy.  Now going back to the central dogma there, the third piece which we haven't touched on is protein. And there have been many papers published now on the utility of immunohistochemistry, and this helps you confirm that the TRK A, B, and C proteins are actually expressed. And what tends to happen is in many fusions, the chimeric oncoproteins strongly express as TRK A, B, and C that helps provide a complementary test or assay that confirms that you're dealing with something that is actionable.  So that is a very contemporary approach and a very thorough approach to looking for these NTRK fusions where you do DNA and RNA if possible. And if you still have questions, ask your pathologist to see if they can do Pan-TRK IHC. But depending on the resource environment that you're in, there are older tests like FISH which we use for ALK that can also find these fusions. RT-PCR which only finds particular events, these can detect NTRK fusions but really don't have the breadth and comprehensiveness as the other assays that we discussed like NGS.  Dr. Rafeh Naqash: Thank you so much, Alex, for that amazing summary of all the methods that potentially could help detect this rare but important event. From a therapeutic standpoint, now, taking a deeper dive into your very interesting JCO Precision Oncology paper that looked at larotrectinib data from a pooled analysis of two trials, a phase II and a phase I. Could you tell us a little background about these two trials, the patient population and what kind of data were you trying to evaluate? And then we can discuss some of the interesting results that you showcase in the paper. Dr. Alexander Drilon: It really helps as a background to realize that the initial approach to this was really on a basket trial where the programs for larotrectinib, which is a selective TRK A, B, and C inhibitor, and the other drug entrectinib, which inhibits ROS1 in addition to TRK, really accrued pediatric and adult cancers with NTRK fusions. And this paper pulls out the lung cancer subset and we'll discuss that in detail. But before getting into that, it's important to know that in the tumor agnostic data set of all patients with an NTRK fusion of any type, larotrectinib achieved a response rate of approximately 80%, entrectinib of approaching 60%, and disease control was durable with a median PFS for larotrectinib of approximately 28 months, and with entrectinib numerically, the number was lower at 11 months.   So with that background, this paper in JCO PO, in the interest of featuring the activity for lung cancers with NTRK fusions, pulled out 20 patients with NTRK fusion-positive lung cancers. And the punchline is that the activity was pretty comparable to that seen with a bigger data set. So the objective response rate was 73% and many patients had a partial response, 67% of the cases, 7% had a complete response, and really only a minority had primary progressive disease, 1 patient out of the 15 evaluable patients. These responses and clinical benefit overall were durable and the median duration of response was almost 34 months, with a median progression-free survival of almost 35 and a half months and an overall survival median of 40.7 months.  And just to talk about how that stacks up compared to other targeted therapies, this certainly is in the ballpark of some of the best ALK inhibitors that we have for ALK fusion-positive lung cancer. It's also comparable to osimertinib for EGFR mutant lung cancer. So we can confidently view TRK inhibition in lung cancers with NTRK fusions as a highly-active therapy.  Dr. Rafeh Naqash: Absolutely. I think you touched upon this earlier where in your cohort at least 50% of patients had central nervous system involvement, and it looks like larotrectinib does have CNS activity and benefit. Could you speak to the differences between potential entrectinib and larotrectinib from a CNS efficacy standpoint? And the second part of that question was going to be when you identify this fusion in patients, for example, with lung cancer, now, since TRK does have a role in neuronal development, do you think there is a role for closer CNS monitoring in these patients if they have not had brain metastasis identified because of the fact that they have an NTRK fusion? Is there some predilection for CNS involvement from a metastasis standpoint? It's just something that I've been thinking of over the last couple of days after I saw my patient who does have CNS involvement but with prostate cancer, which I have not seen in the phase I setting in all the prostate patients that I've come across. So what are your thoughts on that?  Dr. Alexander Drilon: These are great questions. In lung cancers with NTRK fusions, there is a proclivity for metastasis to the CNS. And thankfully, both of these TKIs, larotrectinib and entrectinib, do have coverage of the CNS. Now, from a design perspective, the initial thought was perhaps entrechtinib was more CNS-penetrant. But if you look at the overall response rates in patients with brain metastases and the intracranial response rates where you have patients with target lesions in the brain that you're able to measure; if you look across the aisle, entrectinib and larotrectinib have comparable results, with the objective response rate being in the order of 50% to 60% and the intracranial response rate being also in the order of about 50% to 60%. So at the end of the day, it appears as if, despite the previous hypothesis that maybe one drug would work better in the CNS than the other, we're seeing equally good effects with both drugs.  For the second question you asked, it's also a very interesting question because, like you mentioned, the TRK receptors play a role in nervous system development. But we have not observed a much higher frequency of CNS metastases in NTRK fusion-positive lung cancers or cancers in general that I know of, compared to cancers that are wild type for an oncogene or have other oncogenes. So what's more important really to think about when you sort of chew on the fact that these TRK inhibitors are involved in nervous system development are the potential side effects that you may see in patients that you treat with these TRK inhibitors. Dr. Rafeh Naqash: Absolutely. Now, from the therapy standpoint that you discuss here, duration of responses, objective responses that you saw in your analysis were very impressive for these patients with lung cancer. In your clinical practice if you see a lung cancer patient with this fusion and you treat them with larotrectinib or entrectinib, and they have, let's say, de novo CNS metastases that are asymptomatic, do you generally try the targeted therapy first and hold off, perhaps, brain directed therapy in that setting? Similar to what one would do with osimertinib perhaps or alectinib?  Dr. Alexander Drilon: Absolutely. It's the same paradigm because we know that we are seeing in a larger population of patients, just generally good activity, both extracranially and intracranially. The goal is to try to spare patients the extra side effects of doing radiation by only giving the TKI. And in practice, even outside of the trial, in patients that I've treated with CNS metastases, the activity has been very good. Dr. Rafeh Naqash: Thank you so much. Now, all TKI therapies have, unfortunately, resistance mechanisms that come up eventually, in my experience at least. What is your experience as far as understanding resistance mechanisms on TRK-based therapies and potential second options after that, whether it's second-generation TRK inhibitors or subsequent targeted therapies in this space? Dr. Alexander Drilon: Thankfully, this has been looked at extensively and I like to categorize resistance into two major groups. So there's a type of resistance which we call on-target resistance and another type which we call off-target resistance. In simple terms, cancers that acquire on-target resistance are still dependent on the NTRK or TRK pathway. And often what happens is, like with other oncogene-targeted therapy pairs, you see the acquisition of a resistance mutation in the kinase domain of NTRK 1, 2, 3 that either changes the dynamics of the kinase or sort of kicks the drug off of the binding site due to steric hindrance.  And for those patients, companies have designed next-generation TRK inhibitors that abrogate resistance, meaning they were designed so that they would work despite the presence of these resistance mutations. And a few of them include repotrectinib, talatrectinib, and selitrectinib that are thought to have activity, but there are many other newer ones that are currently being explored. I will say that there's proof of concept that has been published as well showing that patients who progress on a first-generation TRK inhibitor like larotrectinib or entrectinib who develop acquired resistance that's on-target can respond very well to a next-generation NTRK inhibitor. And while these aren't approved just yet, these are of course available in clinical trials. Now, the second major group is more problematic. This is off-target resistance. And when I describe this to patients, what I usually say is that the cancer sort of ‘phones a friend' and activates a second gene perhaps that isn't NTRK. And examples of that include KRAS or MET or BRAF, very well-known oncogenes in other contexts, but it leads to a reliance outside of the NTRK or TRK pathway per se, which still effectively reactivates the MAP kinase pathway. What to do in that situation? Well, there are select cases and there have been case reports published of patients who get a combination. Say if it's acquired MET amplification, you give a MET inhibitor with a TRK inhibitor and that combination can work. But in many other cases where you don't have access to a combination on a clinical trial or on compassionate use, then you really default to the standard of care for that cancer type. So if it's lung cancer and they've never had chemotherapy before, then it would be platinum-based chemotherapy, say with pemetrexed and a third drug, perhaps if they have lung adenocarcinoma.  Dr. Rafeh Naqash: Thank you so much. This is definitely an exciting field and exciting time to be in this space of drug development, and especially when we have so many interesting tumor-agnostic approvals that have come along in the last few years and more to come. And you've led a lot of this development with several other leaders in this field. So it was very nice discussing this with you, and hopefully, our listeners find it equally interesting and educationally relevant to what we see day in and day out as we perform more and more sequencing for patients with cancer and try to identify some of these rare or not so rare events that are targetable and can definitely change the course of a patient's therapy and outcomes. So thank you once again, Alex, for the discussion on this paper.  But before we end, we'd like to spend a couple of minutes trying to know about the investigator. So could you tell us a little bit about your career trajectory, how you started your fellowship perhaps, how you ended up in drug development, and how you've successfully contributed so much in this field to date? Dr. Alexander Drilon: Sure. So I'm originally from the Philippines, was born there, finished med school, and really wanted to come to the United States to sort of broaden my education and my residency program in internal medicine, then called St. Luke's Roosevelt under Columbia, had a program that sent people to rotate through Memorial Sloan Kettering Cancer where I currently work. So that was my first exposure with oncology. I fell in love with it and eventually became a fellow, fortunately, at Memorial Sloan Kettering. And I mentioned earlier that during that time I had subspecialized in lung cancer and there was a lot of excitement around targeted therapy for oncogene-driven lung cancer. And that was my point of entry. I saw these drugs work very well and I said that if I were in a position to develop newer agents, perhaps for other oncogenes where there wasn't anything developed just yet, that would be really cool. And that was my entry into the phase I world where things later on expanded really the tumor agnostic interrogation using the same principles that were familiar to me in the lung cancer world. And I think I've been very fortunate with the environment and the ability, especially with good in-house sequencing, to match many patients to these trials. And it's been wonderful to see several of these drugs approved. Larotrectinib was the sort of seminal tumor-agnostic approval of a targeted therapy for the first time by any regulatory body. And like you said, the hope is that we see several more of these. Dr. Rafeh Naqash: Awesome. That sounds like a very interesting, phenomenal journey that you've had, and a lot of it is also probably related to the kind of people that you met, mentors, and other people who helped you along the way. And then, of course, you've done a lot for other fellows and trainees in this space of drug development. So thank you again, Alex, for joining us, and thank you for choosing JCO Precision Oncology as a destination for your work. I look forward to interacting with you further subsequently and hopefully seeing more development in this space of novel therapies for fusions and other interesting targets in the lung cancer space.  So thank you for listening to JCO Precision Oncology Conversations. Don't forget to give us a rating or review and be sure to subscribe so you never miss an episode. You can find all ASCO shows at asco.org/podcasts.  The purpose of this podcast is to educate and to inform. This is not a substitute for professional medical care and is not intended for use in the diagnosis or treatment of individual conditions.   Guests on this podcast express their own opinions, experience, and conclusions. Guest statements on the podcast do not express the opinions of ASCO. The mention of any product, service, organization, activity, or therapy should not be construed as an ASCO endorsement.  Bio: Alexander E. Drilon, MD, is a medical oncologist specializing in the treatment of lung cancer. He is chief of early drug development service at Memorial Sloan Kettering Cancer Center. He has clinical expertise in lung cancer and early-phase clinical trials.   COIs Alexander Drilon Honoraria: Medscape, OncLive, PeerVoice, Physicians' Education Resource, Targeted Oncology, MORE Health, Research to Practice, Foundation Medicine, PeerView Consulting or Advisory Role: Ignyta, Loxo, TP Therapeutics, AstraZeneca, Pfizer, Blueprint Medicines, Genentech/Roche, Helsinn Therapeutics, BeiGene, Hengrui Therapeutics, Exelixis, Bayer, Tyra Biosciences, Verastem, Takeda/Millennium, BerGenBio, MORE Health, Lilly, AbbVie, 14ner Oncology/Elevation Oncology, Remedica, Archer, Monopteros Therapeutics, Novartis, EMD Serono/Merck, Melendi, Repare Therapeutics Research Funding: Foundation Medicine Patents, Royalties, Other Intellectual Property: Wolters Kluwer (Royalties for Pocket Oncology) Other Relationship: Merck, GlaxoSmithKline, Teva, Taiho Pharmaceutical, Pfizer, PharmaMar, Puma Biotechnology

Science Signaling Podcast
Science Signaling Podcast, 16 April 2013

Science Signaling Podcast

Play Episode Listen Later Apr 15, 2013 16:00


Analysis of VEGF signaling identifies potential therapeutic strategies for treating pathological angiogenesis.

Science Signaling Podcast
Science Signaling Podcast, 10 January 2012

Science Signaling Podcast

Play Episode Listen Later Jan 9, 2012 13:48


Exploiting crosstalk between signaling pathways may lead to more effective melanoma therapies.

Science Signaling Podcast
Science Signaling Podcast, 25 October 2011

Science Signaling Podcast

Play Episode Listen Later Oct 24, 2011 16:23


A combination of functional and proteomics approaches identifies regulators of ERK signaling in Drosophila.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 09/19
Untersuchungen zur Expression und Regulation des niedermolekularen Hitzeschockproteins αB-Crystallin in der Niere in vivo und in vitro

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 09/19

Play Episode Listen Later Oct 23, 2008


Das kleine Hitzeschockprotein αB-Crystallin ist in vielen verschiedenen Gewebetypen u.a. in der Niere nachweisbar. Es wird sowohl unter physiologischen als auch unter pathophysiologischen Bedingungen exprimiert. Viele verschiedene Stressfaktoren induzieren in den betroffenen Zellen die Expression von αB-Crystallin, das – wie viele andere Hsps - als molekulares Chaperone die Zellen vor sonst letalen Umgebungseinflüssen schützt. Dies wird bewerkstelligt, indem es partiell oder komplett entfaltete, fehlgefaltete oder aggregierte Polypeptide bindet und deren native Konformation wiederherstellt, oder bei irreversibler Schädigung dem lysosomalen Abbau zuführt. Im Nierenmark stellen hohe extrazelluläre Konzentrationen an NaCl und Harnstoff, die im Rahmen der Harnkonzentrierung das interstitielle Milieu prägen, die größte Bedrohung für die Zellen der medullären Nephronanteile dar. Wie vorliegende Untersuchungen zeigen, exprimieren die Zellen der medullären Sammelrohre und der dünnen Schenkel der Henle-Schleife αB-Crystallin konstitutiv sehr stark und es macht im Innenmark etwa 2% des gesamten Zellproteins aus. Im Nierenkortex ist αB-Crystallin hingegen kaum nachweisbar. Da die αB-Crystallin Expression parallel zum osmotischen Gradienten vom Nierenkortex zum Innenmark ansteigt und in Diurese im Nierenmark signifikant abfällt, kann man davon ausgehen, dass die αB-Crystallin Expression wesentlich durch die interstitielle Osmolalität reguliert wird. Diese Annahme wird durch die vorliegenden in-vitro-Versuche mit MDCK-Zellen unterstützt, die zeigen, dass αB-Crystallin durch hypertonen Stress induzierbar ist. Interessanterweise führt auch eine erhöhte extrazelluläre Harnstoffkonzentration zur αB-Crystallin Induktion. αB-Crystallin wird daher vermutlich über andere Regulationsmechanismen induziert als beispielsweise Hsp72, ein gut untersuchtes Hsp in der Niere und TonEBP-Zielgen, welches durch erhöhte Harnstoffkonzentrationen nicht induzierbar ist. Dafür spricht auch, dass bei der Induktion von αB-Crystallin die JNK MAP-Kinase eine Rolle spielt und nicht die p38 MAP-Kinase, die an der Expression vieler anderer durch Hypertonizität induzierbarer Gene, u.a. Hsp72, beteiligt ist. Interaktionen zwischen αB-Crystallin und Stukturen des Zytoskeletts konnten im Rahmen dieser Arbeit nicht nachgewiesen werden. Die Ergebnisse lassen vermuten, dass αB-Crystallin im Rahmen der Harnkonzentrierung eine bedeutende Funktion für die Zellen im Innenmark der Niere zukommt und dass dessen Expression nicht nur durch hypertonen Stress, sondern auch durch hohe Harnstoffkonzentrationen und vermutlich mehrere andere Stressfaktoren im Nierenmark reguliert wird.

Medizin - Open Access LMU - Teil 14/22
Interleukin 31 mediates MAP kinase and STAT1/3 activation in intestinal epithelial cells and its expression is upregulated in inflammatory bowel disease

Medizin - Open Access LMU - Teil 14/22

Play Episode Listen Later Jan 1, 2007


Background/aim: Interleukin 31 (IL31), primarily expressed in activated lymphocytes, signals through a heterodimeric receptor complex consisting of the IL31 receptor alpha (IL31Rtextgreeka) and the oncostatin M receptor (OSMR). The aim of this study was to analyse IL31 receptor expression, signal transduction, and specific biological functions of this cytokine system in intestinal inflammation.Methods: Expression studies were performed by RT-PCR, quantitative PCR, western blotting, and immunohistochemistry. Signal transduction was analysed by western blotting. Cell proliferation was measured by MTS assays, cell migration by restitution assays.Results: Colorectal cancer derived intestinal epithelial cell (IEC) lines express both IL31 receptor subunits, while their expression in unstimulated primary murine IEC was low. LPS and the proinflammatory cytokines TNF-textgreeka, IL1textgreekb, IFN-textgreekg, and sodium butyrate stimulation increased IL31, IL31Rtextgreeka, and OSMR mRNA expression, while IL31 itself enhanced IL8 expression in IEC. IL31 mediates ERK-1/2, Akt, STAT1, and STAT3 activation in IEC resulting in enhanced IEC migration. However, at low cell density, IL31 had significant antiproliferative capacities (p

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19
Einfluss von Testosteron auf die lokale Immunzellfunktion nach Trauma und Blutverlust im Mausmodell

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19

Play Episode Listen Later Jun 22, 2006


Klinische und tierexperimentelle Studien zeigen eine geschlechtsspezifische Immunantwort nach traumatisch-hämorrhagischem Schock. Insgesamt wiesen männliche Sexualhormone eher immunsuppressive Eigenschaften auf, während weibliche Sexualhormone immunprotektiv wirkten. Neben einer Unterdrückung der systemischen Immunantwort fand sich bei männlichen Mäusen eine Kompromittierung der Wundimmunzellfunktion und der Wundheilung. Ob die geschlechtsspezifische lokale Immunantwort und eingeschränkte Wundheilung nach traumatisch-hämorrhagischem Schock durch den Einfluss von Testosteron vermittelt werden, war bislang unbekannt. In der vorliegenden Arbeit konnte bei männlichen Mäusen durch Kastration zwei Wochen vor Durchführung des traumatisch-hämorrhagischen Schocks eine Verbesserung der Zytokinsekretionsfähigkeit von Wundimmunzellen gezeigt werden. Gleichzeitig wurde durch Kastration der Mäuse eine unkontrollierte inflammatorische Reaktion in der Wunde verhindert. Diese lokalen immunologischen Veränderungen unter solchen Bedingungen waren verbunden mit einer normalisierten Reisfestigkeit der Wundhaut in kastrierten Mäusen. Insgesamt bestätigen die Ergebnisse dieser Studien, dass Testosteron für die lokale Immunsuppression von männlichen Versuchstieren am Ort der Wunde verantwortlich ist. In weiteren Studien konnte darüber hinaus gezeigt werden, dass die inflammatorische Reaktion nach schwerem Trauma, Blutverlust und Schock auf molekularer Ebene unter anderem durch die intrazellulären Signaltransduktionsmechanismen der p38 MAP-Kinase-Familie vermittelt wird. Hierbei konnte eine direkte, geschlechtsspezifische Aktivierung der p38 MAP-Kinase nach traumatisch-hämorrhagischem Schock nachgewiesen werden. Da in Milz- und Peritonealmakrophagen ähnliche Zytokinsekretionsmuster wie in der Wunde nachgewiesen wurden, scheint die Annahme gerechtfertigt, die Ergebnisse auf die in der Wunde ablaufenden Mechanismen zu übertragen. Der scheinbare Widerspruch einer erhöhten p38-Aktivierung in männlichen Mäusen bei erniedrigter Zytokinsekretionsfähigkeit der Immunzellen scheint auf einer Erschöpfungsreaktion dieser Zellen zu beruhen. Eine adäquate, immunkompetente Reaktion dieser Zellen auf entsprechende Reize könnte nach traumatisch-hämorrhagischem Schock nicht mehr gegeben sein. Die Ergebnisse dieser Studien deuten darauf hin, dass das androgene Steroidhormon Testosteron für die nachgewiesenen immunsuppressiven Reaktionen nach Trauma und schwerem Blutverlust verantwortlich ist.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Release of bFGF from endotelial cells is mediated by protease induced HSP27 phosphorylation via p38-MAPK pathway

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Jan 30, 2006


Introduction: Factors and other stimuli that lead to the release of basic fibroblast growth factor (bFGF) from endothelial cells may be essential for physiological processes such as development and angiogenesis. The release mechanisms are somewhat obscure and it has previously been shown that in the case of shear stress induced bFGF release cell matrix interaction is critically mediating that bFGF release (Gloe et al., 2002). Considering the potential role of proteolytically modified extra-cellular matrix components in the induction of cellular signaling cascades, the aim of the present study was to investigate whether elastase activity contributes to the release of bFGF from endothelial cells. Methods and results: Treatment of porcine aortic endothelial cells with elastase led to a release of bFGF in a concentration-dependent manner. This release was strictly regulated and could be reduced by inhibition of integrin v3. Moreover, bFGF was translocated towards the cell membrane after elastase treatment as well as shear stress exposure, in close proximity to HSP27. Furthermore, elastase treatment led to a p38 MAP Kinase dependent HSP27 phosphorylation and this phospho-HSP27 could be shown to co-precipitate with bFGF. Conclusion: We conclude that elastolytic activities activated by shear stress are involved in the active release of bFGF from endothelial cells and that phosphorylation of HSP27 is prerequisite for this release mechanism. The results may reflect the critical role of proteases in the initial process of angiogenesis induction.