Podcasts about phospholipase c plc

  • 4PODCASTS
  • 4EPISODES
  • 30mAVG DURATION
  • ?INFREQUENT EPISODES
  • Apr 24, 2020LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about phospholipase c plc

Superheroes of Science
Angeline Lyon, Professor of Biochemistry, researches enzymes needed to maintain a healthy cardiovascular system

Superheroes of Science

Play Episode Listen Later Apr 24, 2020 30:04


Angeline Lyon, Assistant Professor of Biochemistry in the Departments of Chemistry and Biological Sciences at Purdue University, researches enzymes needed to maintain a healthy cardiovascular system. Specifically, her group studies Phospholipase C (PLC) enzymes which help trigger the release of calcium from inside the cell. Calcium oscillations drive body functions like muscle contractions, nerve impulses, and control how efficiently the heart beats. If calcium levels aren’t maintained, it can result in conditions such as irregular heartbeat, cardiac hypertrophy (abnormal enlargement, or thickening, of the heart muscle), or in severe cases it can lead to heart failure. Angeline’s lab uses multiple techniques to determine how proteins behave. X-ray crystallography is one method which helps her obtain “atomic snapshots” of proteins. This allows her to see where the amino acids are located within the proteins and consequently determine how those proteins work. Angeline also states that her lab is beginning to use electron microscopy which involves labeling proteins from a cell with a green fluorescent protein in order to track the movements of the labeled proteins within the cell. Additionally, her lab uses polymerase chain reactions (PCR) to help with protein mutations. Angeline offers advice to both undergraduate and high school students looking to get connected with opportunities to work in research labs.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 18/19
Molekulare Analyse der Funktion des TRPC6-Kanals in primären Podozyten der Maus

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 18/19

Play Episode Listen Later Feb 8, 2016


Bisher wurden sieben verschiedene TRPC-Kanäle (für „classical (oder canonical) transient receptor potential“) beschrieben, die in der Plasmamembran tierischer Zellen lokalisiert sind. Diese Kanäle gehören zu einer von sieben Familien der TRP-Ionenkanäle, deren Mitglieder an einer Vielzahl von physiologischen Funktionen im Körper beteiligt sind. Im Jahr 2005 konnten in Patienten, die an einer autosomal dominant vererbten Form der fokalen segmentalen Glomerulosklerose (FSGS) leiden, Mutationen der TRPC6-Kanäle identifiziert werden, die zu einer Überaktivität dieser Kanäle führen ( sog. “gain-of-function”-Mutationen). Etwas später (2006) wurden aber auch einige FSGS Patienten entdeckt, die keine „gain-of-function“-Mutationen im TRPC6 sondern funktionslose, sog. „loss of function“-Mutationen der Phospholipase Cɛ (PLCɛ) exprimierten. Diese Daten deuten auf eine funktionelle Interaktion zwischen TRPC6 und PLCɛ in Zellen der Niere hin, die bisher noch nicht näher untersucht worden ist. Beide Proteine könnten sich auch als Zielstrukturen für eine Pharmakotherapie der FSGS eignen. Die FSGS äußert sich durch eine Störung des glomerulären Filtrationsprozesses in der Niere, wodurch es unter anderem zu einer Proteinurie kommt. In vielen Fällen führt die FSGS terminal zur ESRD („end stage renal disease“), also zu einem akuten Nierenversagen. Glomeruli bilden die filtrierende Einheit der Niere, wobei der eigentliche Filter, welcher im Inneren des Glomerulus lokalisiert ist, aus Podozyten, Endothelzellen und der dazwischen befindlichen Basalmembran besteht. Da TRPC-Kanäle unter anderem in Podozyten exprimiert werden, liegt die Annahme nahe, dass diese Zellen durch den vermehrten Ca2+-Einstrom mutierter Kanäle bei der FSGS krankhaft verändert sein könnten. Aus diesem Grund wurden in dieser Arbeit Podozyten aus Wildtyp (WT)-Mäusen sowie TRPC6 (TRPC6-/-)- und PLCε (PLCε-/-)-gendefizienten Tieren isoliert und umfangreich durch den Nachweis podozytenspezifischer Markerproteine charakterisiert. Zellfunktionen wie Proliferation, Aktinstressfaserbildung, RhoA- und TRPC6-Aktivität wurden vergleichend in den Zellen der verschiedenen Genotypen analysiert. Es zeigte sich, dass PLCε zwar mit TRPC6 in Zellen des Nierenkortex interagieren kann, aber PLCε-/--Podozyten funktionell in ihrer Angiotensin II-induzierten Aktinstressfiberbildung und GTPγS-induzierten TRPC6-Aktivierung nicht von Wildtyp-Podozyten unterschieden werden konnten, was auf eine redundante Funktion der PLCε-vermittelten TRPC6-Aktivierung hindeutet. Eine Aktivierung von TRPC6 durch PLCε wird wahrscheinlich durch die Stimulation der wesentlich stärker exprimierten anderen PLC-Isoform PLCβ1, zumindest in Podozyten, überdeckt. Eine Expression der klonierten murinen TRPC6-FSGS-Mutanten in primär isolierten Wildtyp- und TRPC6-defizienten Podozyten war für die Zellen lethal, wodurch die Pathogenität eines erhöhten TRPC6-induzierten Ca2+-Einstroms für diese Zellen und damit den gesamten Nierenglomerulus in FSGS-Patienten noch einmal nachgewiesen werden konnte. In Zukunft könnten deswegen spezifische TRPC6-Inhibitoren eine Therapieoption zur Linderung der Symptome bei FSGS-Patienten sein.

grund analyse filter etwas familien funktion maus mitglieder patienten im jahr tieren inneren vielzahl einheit funktionen prim symptome bisher real housewives of atlanta stimulation interaktion annahme zellen plc proliferation in zukunft nachweis niere mutationen linderung kanals esrd diese daten nierenversagen fsgs therapieoption angiotensin ii endothelzellen ddc:600 wildtyp pharmakotherapie pathogenit genotypen zellfunktionen plasmamembran glomeruli zielstrukturen basalmembran proteinurie eine aktivierung trpc6 ca2 einstrom podozyten phospholipase c plc beide proteine
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 16/19
Liganden-abhängige Desensitisierung und pro-algetische Signalwege des hMrgX1-Rezeptors

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 16/19

Play Episode Listen Later Dec 10, 2013


Der humane Mas-related gene X1 (hMrgX1)-Rezeptor ist ein G-Protein-gekoppelter Rezeptor, der selektiv in nozizeptiven Spinalganglienneuronen exprimiert wird. Eine spezifische Aktivierung des Rezeptors durch das Proenkephalin-Spaltprodukt BAM8-22 (bovine adrenal medulla 8-22) wird als schmerzhaft wahrgenommen. Damit stellt der hMrgX1-Rezeptor eine neue molekulare Zielstruktur für eine potentiell nebenwirkungsarme, analgetische Therapie dar. Trotz dieses Potentials sind die pro-algetischen Signalwege des hMrgX1-Rezeptors bislang nicht verstanden. Der MrgX1-Rezeptor entwickelte sich unter hohem positivem Selektionsdruck und kommt nur in Primaten vor. Trotzdem wurden die nicht-homologen MrgC-Rezeptoren der Nagetiere zur Analyse des hMrgX1-Rezeptors verwendet. Im Rahmen dieser Arbeit wurden daher zunächst vergleichende Ligandenprofile des hMrgX1- und der MrgC-Rezeptoren aus Maus und Ratte erstellt. Dabei wurden deutliche Unterschiede offensichtlich, da der hMrgX1-Rezeptor exklusiv von BAM8-22 aktiviert wurde, während die MrgC-Rezeptoren durch weitere Liganden, u. a. Spaltprodukte des Proopiomelanocortins, z. T. sogar effizienter aktiviert wurden. Zudem konnte gezeigt werden, dass die MrgC-vermittelte Ca2+-Mobilisation auf Grund einer β-Arrestin-abhängigen Rezeptorendozytose deutlich desensitisierte, während der hMrgX1-Rezeptor resistent gegenüber dieser Liganden-induzierten Regulation war. Daher können die MrgC-Rezeptoren der Nagetiere nicht als Modellsytem für den hMrgX1-Rezeptor verwendet werden, so dass in dieser Arbeit weiterführend Signalwege des hMrgX1-Rezeptors in Spinalganglienneuronen-ähnlichen F11-Zellen und primären Spinalganglienneuronen untersucht wurden. Dabei zeigte sich eine duale funktionelle Regulation des etablierten pro-algetischen TRPV1 (transient receptor potential cation channel vanilloid 1)-Ionenkanals. Zum einen sensitisierte der hMrgX1-Rezeptor den TRPV1 über einen etablierten, Proteinkinase C-abhängigen Signalweg. Zum anderen zeigte sich eine direkte hMrgX1-mediierte Aktivierung des TRPV1. Dieser Regulationsmechanismus wurde durch eine Phospholipase C (PLC)-β-induzierte Produktion des endogenen TRPV1-Liganden Diacylglycerol und durch die Degradation des tonisch TRPV1-inhibierenden PLC-β-Substrates Phosphatidylinositol-4,5-bisphosphat vermittelt. Neben der TRPV1-Modulation induzierte der hMrgX1-Rezeptor die Expression verschiedener Gene, deren zentrale Bedeutung bei der inflammatorischen und neuropathischen Schmerzchronifizierung etabliert ist. Einerseits wurde eine hMrgX1-induzierte Phosphorylierung der extracellular signal-regulated kinases 1/2 beobachtet, die in einer Aktivierung von serum response factor-abhängigen Reportergenkonstrukten und in der Induktion von c-Fos auf mRNA- und von early growth response protein 1 auf mRNA- und Proteinebene resultierte. Andererseits zeigte sich die transkriptionelle Ca2+/Calcineurin-abhängige Aktivierung des nuclear factor of activated t cells, die in der Induktion des CCR2 (chemokine receptor 2) auf mRNA- und Proteinebene resultierte. Somit konnte erstmalig ein physiologischer Induktor des CCR2 in Spinalganglienneuronen beschrieben werden. Weiterhin wurde nach der Etablierung der endogenen Proteinexpression des hMrgX1-Rezeptors in LAD2-Mastzellen eine BAM8-22-induzierte Freisetzung des CCR2-Agonisten chemokine ligand 2 ermittelt, so dass der hMrgX1-Rezeptor die parakrine Stimulation von nozizeptiven Spinalganglienneuronen durch Mastzellen fördern könnte. Diese Dissertation trägt somit zum besseren molekularen Verständnis akuter und chronischer pro-algetischer Funktionen des hMrgX1-Rezeptors bei und könnte damit die Entwicklung neuer analgetischer Wirkstoffe ermöglichen.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19
Regulation podosomaler Adhäsionen in Makrophagen durch Cofilin-regulatorische Signalwege

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19

Play Episode Listen Later Oct 20, 2005


Podosomen sind ein prominenter Teil des Aktinzytoskelettes primärer humaner Makrophagen und wahrscheinlich essentiell für Adhäsion, Matrixverdau und gerichtete Migration. In der vorliegenden Arbeit wurde die Regulation dieser Strukturen untersucht. Es konnte zunächst gezeigt werden, dass Monozyten Podosomen nicht nur auf starren, künstlichen Oberflächen wie Glas-Deckgläschen ausbilden, sondern auch auf einem Monolayer aus Endothelzellen. Dies unterscheidet sie klar von anderen Adhäsionsstrukturen wie z.B. focal adhesions. Auch in verschiedenen Zelllinien, unter anderem in Krebszellen, ließen sich podosomale Strukturen nachweisen bzw. induzieren. Diese Befunde sind Hinweis einerseits auf die physiologische Relevanz von Podosomen und andererseits auf eine wahrscheinlich weite Verbreitung dieser Strukturen in verschiedenen Zelltypen. Podosomen sind hochdynamische Strukturen mit einer Halbwertszeit von 2-12 Minuten, das heißt, es werden permanent Podosomen abgebaut und neu gebildet. Dazu ist die Polymerisation und Depolymerisation von filamentösem (F-)Aktin notwendig. Regulationsmechanismen F-Aktin-aufbauender Wege sind gut untersucht und bekannt, weshalb in der vorliegenden Arbeit F-Aktin-abbauende Wege untersucht wurden. Ein wichtiger Regulator des Aktinzytoskelettes ist Cofilin, das die Depolymerisierung von Aktinfilamenten beschleunigt und unter anderem durch Phosphorylierung am Serin-3 inaktiviert werden kann. Folgende Ergebnisse sprechen für eine wichtige Rolle von Cofilin in der Podosomen-Regulation: Es konnte eine spezifische Lokalisation von Cofilin und phosphoryliertem Cofilin in der Aktin-reichen Podosomen-Kernstruktur nachgewiesen werden. Im Western Blot zeigte sich eine Korrelation des Grades der Cofilin-Phosphorylierung mit der Podosomenanzahl. Durch Mikroinjektion eines kurzen Peptids, welches die Cofilin-Phosphorylierung inhibiert, sowie durch Transfektion von Cofilin-siRNA konnte die Podosomen-Bildung reduziert werden. Die am besten untersuchten Cofilin-Kinasen sind die LIM-Kinasen 1 und 2. Mittels RT-PCR war in unserer Arbeitsgruppe bereits die Expression von LIMK1 in Makrophagen nachgewiesen worden. Auch Ergebnisse im Western Blot sowie in DNA-Arrays weisen auf LIMK1 als dominante Isoform in Makrophagen hin. In fixierten Präparaten konnte allerdings weder mit kommerziell erhältlichen noch mit einem selbst hergestellten, gegen die LIM-Domänen von LIMK1 gerichteten Antikörper eine spezifische Lokalisation von LIMK1 an Podosomen nachgewiesen werden. Mittels Nucleofection wurden deshalb verschiedene LIM-Kinase-Konstrukte transfiziert und überexprimiert. Dabei bestätigten sich die Ergebnisse der Antikörperfärbungen, keines der Konstrukte war in Podosomen zu finden. Alle Konstrukte mit Kinase-Aktivität führten zum raschen Krampfen und Ablösen der Zellen, wobei die Adhäsionsfläche bis zuletzt mit Podosomen bedeckt war. Im Gegensatz zu den Befunden aus der Transfektion war durch Mikroinjektion der konstitutiv aktiven Kinase-Domäne von LIMK1 eine deutliche Reduktion der Podosomen-Bildung zu erzielen. Hier können konzentrationsabhängige Effekte eine Rolle spielen. Als Gegenspieler der LIM-Kinasen wurden die Phosphatasen PP1 und PP2A beschrieben. Eine spezifische Lokalisation von PP2A an Podosomen war jedoch nicht nachzuweisen, zudem hatte eine Inhibition der beiden Phosphatasen keinen Effekt auf die Podosomenbildung oder den Podosomenabbau. Dies spricht gegen eine Beteiligung von PP1 oder PP2A an der Podosomenregulation. LIM-Kinasen selbst können durch Effektoren der Rho-GTPasen Rho, Rac und Cdc42 reguliert werden. So aktiviert der Rho-Effektor ROCK LIMK1 und LIMK2. Der ROCK-Inhibitor Y?27632 führte zu einer Störung der Podosomen-Verteilung, auch die Podosomen-Neubildung wurde stark inhibiert. Dies spricht für eine Beteiligung von ROCK an der Podosomenregulation. Auch Rac und Cdc42 können durch die gemeinsamen Effektoren der PAK-Familie eine Aktivierung von LIMK1 bewirken, dabei sind PAK1 und PAK4 die am besten untersuchten Isoformen. Die Transfektion verschiedener PAK1- und PAK4-Konstrukte führte jeweils zu einer Reduktion der Podosomen-Anzahl, unabhängig von der Kinase-Aktivität des Konstruktes. Die Kinase-inaktive PAK4-Mutante führte zu einer Reduktion des F-Aktin mit kleinen Podosomen, während die konstitutiv-aktive PAK4-Mutante große Podosomen mit vermehrtem F-Aktin bewirkte. Weitere Arbeiten zur Untersuchung vor allem von PAK4 in unserer Arbeitsgruppe konnten diese Ergebnisse bestätigen und quantifizieren sowie weitere Interaktionspartner nachweisen. Eine weitere Regulationsmöglichkeit von Cofilin ist die Bindung des second messengers PIP2, welcher unter anderem durch Isoformen der Phospholipase C (PLC) hydrolysiert werden kann. Die Mikroinjektion zweier Peptide, die laut Literatur zu einer PIP2-Inhibition bzw. einer Steigerung des PIP2-Abbaus führen, hatte keinen Einfluss auf Podosomen. Durch Transfektion der PH-Domäne von PLCd1, welche als PIP2-Sensor eingesetzt werden kann, konnte jedoch eine teilweise Lokalisation von PIP2 an Podosomen gefunden werden. Mit spezifischen Antikörpern konnte zudem eine Lokalisation von PLCb1 im Aktin-reichen Podosomenkern und von PLCb2 in der podosomalen Ringstruktur nachgewiesen werden, PLCb3 zeigte keine spezifische Lokalisation. Auch ein PLCb2-Konstrukt reicherte sich nach Transfektion in der podosomalen Ringstruktur an. Der PLC-Inhibitor U-73122 führte zu einem kompletten Verschwinden der Podosomen mit nachfolgender Ablösung der Zellen. Aufgrund dieses Befundes und der spezifischen Lokalisation ist von einer Beteiligung der PLCb1 und PLCb2 in der Podosomen-Regulation auszugehen. Im Rahmen der vorliegenden Arbeit konnten somit wichtige Effektoren der podosomalen Aktinregulation identifiziert werden: Cofilin als direkter Interaktionspartner von Aktin, LIMK1 als Cofilin-Regulator sowie ROCK und PAK als upstream-Regulatoren in der Signalkaskade. Darüber hinaus scheinen PLCb1 und PLCb2, möglicherweise über PIP2, ebenfalls an der Podosomen-Regulation beteiligt zu sein. Dies legt die Grundlage für weitere Untersuchungen über die molekularen Mechanismen der podosomalen Aktinregulation.