POPULARITY
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
In der vorliegenden Doktorarbeit wurden systematisch Methoden zur Manipulation der Dynamik von Exzitonen in Halbleiterstrukturen experimentell studiert. Als Substrat diente eine Al0,3Ga0,7As/GaAs-Heterostruktur mit zwei gekoppelten GaAs-Quantentöpfen. In diesen Systemen können mittels optischer Anregung räumlich indirekte Exzitonen erzeugt werden, die bei experimentell gut zugänglichen Temperaturen von 4 Kelvin lange Lebensdauern von über 10 Mikrosekunden aufweisen. Mittels geeigneter Gatterstrukturen auf den Probenoberflächen konnten maßgeschneiderte laterale Potentiallandschaften für Exzitonen in der Ebene der Quantentöpfe erzeugt und elektrisch abgestimmt werden. In zeitlich variierenden, wellblechförmigen Potentiallandschaften wurden oszillatorische Driftbewegungen über Entfernungen von 4 Mikrometern induziert. Statische Gradientenpotentiale für Exzitonen mit elektrisch manipulierbarer Steigung ermöglichten die Erzeugung und Beobachtung exzitonischer Driftbewegungen über makroskopische Entfernungen von über 100 Mikrometern. Flugzeitmessungen in derartigen Gradientenpotentialen ergaben bei einer Temperatur von 3,7 K exzitonische Driftgeschwindigkeiten von bis zu 2000 m/s. Die exzitonische Mobilität in den Proben wurde als Funktion der Temperatur experimentell bestimmt. Für Temperaturen T unter 10 K wurde eine außerordentlich hohe Mobilität von 10000 cm2/eVs bzw. eine Stoßzeit von 15 ps gemessen, die einer Diffusionskonstante von 30 cm2/s entspricht. Oberhalb einer Temperatur T von 10 K wurde eine zu T^(−6) proportionale Abnahme der Mobilität beobachtet. Ein weiterer Schwerpunkt der Arbeit bestand in der Definition elektrostatischer Fallen für Exzitonen, die dazu genutzt werden können, Bose-Einstein-Kondensation von Exzitonen nachzuweisen. Es wurden linienförmige Fallen realisiert, die im Randbereich lateral mikrostrukturierter SiO2-Schichten auf Halbleiteroberflächen entstehen. Energieauflösende Photolumineszenz-Messungen haben ergeben, daß die Fallen in transversaler Richtung mittels harmonischer Einschlußpotentiale beschrieben werden können. Es wurden Federkonstanten von bis zu 11 keV/cm2, entsprechend einer Quantisierungsenergie von bis zu 5,5 μeV, experimentell beobachtet. Beide Werte übertreffen bisherige Resultate um einen Faktor von 200. Die transversale Ausdehnung und die energetische Tiefe der Fallen liegen im Bereich von etwa 10 Mikrometern bzw. 0,8 Mikroelektronenvolt. Innerhalb der Fallen findet longitudinaler exzitonischer Transport über makroskopische Entfernungen bis in den Millimeterbereich statt. Die Fallen, deren Potentialminima stets etwa 6 Mikrometer außerhalb der Begrenzung der SiO2-Bereiche verlaufen, können bezüglich ihrer exzitonischen Speicherwirkung elektrisch geschaltet werden. Die Ursache der Entstehung der Fallen sowie deren elektrisches Schaltverhalten wurden anhand eines elektrostatischen Modells erklärt.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
In der vorliegenden Arbeit wird die erstmalige Erzeugung eines Bose-Einstein-Kondensats in einer Mikrochip-Falle beschrieben; dies ist eine Magnetfalle für Neutralatome, die mithilfe stromführender Leiterbahnen auf einem Chipsubstrat gebildet wird. Die Eigenschaften dieser Chipfallen, speziell die hohen Magnetfeldgradienten und -krümmungen, haben es ermöglicht, die Bose-Einstein-Kondensation in weniger als einer Sekunde Verdampfungskühlzeit zu erreichen, was rund eine Größenordnung schneller als in bisher verwendeten Magnetfallen ist und ein Faktor drei schneller als auf dem bisher schnellsten Weg in einer optischen Dipolfalle. Damit verbunden sind die Ansprüche an den experimentellen Aufbau, insbesondere das Vakuumsystem und den Laseraufbau, deutlich gesunken. Weiterhin wird der zerstörungsfreie Transport des Bose-Einstein-Kondensats entlang der Chipoberfläche über makroskopische Distanzen demonstriert wie auch erstmalig die Aufspaltung eines Kondensates in zwei getrennte Kondensate mit rein magnetischen Mitteln. Diese Resultate, nämlich kohärente Materie in einem integrierten atomoptischen System manipulieren zu können, lassen hoffen, daß in naher Zukunft Anwendungen wie Atominterferometrie, Untersuchungen zu niederdimensionalen Quantengasen und Quanteninformationsverarbeitung "on-chip" verwirklicht werden können.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Thema der vorliegenden Arbeit ist die Bose-Einstein-Kondensation stark verdünnter atomarer Gase. Nach einer Einführung in die Theorie solcher schwach wechselwirkender Quantengase und einer Zusammenfassung wesentlicher experimenteller Ergebnisse aus dem Gebiet der Bose-Einstein-Kondensation wird zunächst die Physik ultrakalter, in Atomfallen gefangener Fermigase diskutiert. Dieses Gebiet hat sich in den letzten Jahren parallel zu dem der kondensierten Bosegase stark entwickelt und bietet vielversprechende Möglichkeiten, Modelle wie die BCS-Theorie erstmals in fast idealen Fermigasen zu untersuchen. Es werden Ergebnisse zu den thermodynamischen Eigenschaften solcher Gase vorgestellt, die vor allem für mesoskopische Teilchenzahlen (unter 1000) relevant sind. Dabei wird insbesondere auf Schaleneffekte bei der Dichteverteilung in einer Atomfalle und bei der Wärmekapazität eingegangen. Im zweiten Teil der Arbeit wird die Physik von Atomlasern diskutiert. Als "Atomlaser" bezeichnet man Systeme, die in der Lage sind, kohärente Materiewellen aus Atomen zu erzeugen. Die einem Bose-Einstein-Kondensat inhärente Kohärenz wird in Experimenten genutzt, um mittels eines kohärent arbeitenden Auskoppelmechanismus solche Atomstrahlen herzustellen. Die zugehörige Physik wird durch die so genannte Gross-Pitaevskii-Gleichung beschrieben, einer Art nichtlinearen Schrödingergleichung für die Wellenfunktionen der beteiligten Hyperfeinzustände des Bose-Einstein-Kondensats aus 87Rb-Atomen. In der vorliegenden Arbeit wurden unter anderem die Auskoppelstärke mittels analytischer und vor allem numerischer Methoden untersucht. Darüber hinaus konnten Aussagen über das zeitliche Verhalten von Atomlasern gewonnen, die mit zwei Radiofrequenzen betrieben werden. In diesem Fall wird der Atomstrahl aus zwei interferierenden Materiewellen verschiedener Energie gebildet, sodass kohärente, atomare Pulse mit makroskopischen Dimensionen auftreten. Im letzten Abschnitt wird mit der Spurafluidität ein weiterer, sehr interessanter Aspekt von kondensierten Bosegasen behandelt. Nach einer Einführung in die Bestimmung quantenstatistischer Eigenschaften von Vielteilchensystemem mithilfe von Pfadintegral-Monte-Carlo-Verfahren wird der suprafluide Anteil eines kondensierten Bosegases mit verschiedenen Approximationen berechnet. Dazu wird neben den Pfadintegralen eine auf so genannten Permutationszykeln beruhende Methode eingesetzt, mit der man die Zustandssumme von Bosonen im kanonischen Ensemble und damit auch viele andere Größen ausrechnen kann. Auf diese Weise konnte der suprafluide Anteil eines idealen Bosegases im kanonischen Ensemble erstmals vollständig quantenmechanisch exakt ermittelt werden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Interferierende Laserstrahlen können ein periodisches Potential für Atome induzieren, das es erlaubt, ultrakalte Neutralatome in geordneten Strukturen zu fangen. Diese Ensemble lichtgebundener Atome werden als optische Gitter bezeichnet. Liegt die Frequenz der verwendeten Lichtfelder sehr weit unterhalbder nächstgelegenen atomaren Resonanz, so entstehen quasi-statische Mikrofallen. Sie eignen sich durch ihre nahezu vollkommene Dissipationsfreiheit aufgrund der zu vernachlässigenden spontanen Photonenstreuung sehr gut zur Speicherung und Manipulation von kalten Atomen. In dieser Arbeit wird über Experimente zur kontrollierten Manipulation derartiger lichtgebundener Atome berichtet. Mit dem Licht eines CO2-Lasers der Wellenlänge 10.6 µm wird eine intensive Stehwelle erzeugt, in der kalte Rubidiumatome in mesoskopischen Dipolfallen mit einem Gitterabstand von 5.3 µm und bei Lebensdauern von über drei Sekunden gespeichert werden. Im ersten Teil der Arbeit werden die Eigenschaften der gespeicherten Atome charakterisiert. Es zeigt sich, daß die atomare Temperatur empfindlich von der Fallenlaserintensität abhängt. Für niedrige Intensitäten werden atomare Temperaturen von 21 µK bei Dichten oberhalb 1013 Atome/cm3 beobachtet. Unter alleinigen Verwendung der Laserkühlung wird damit eine atomare Phasenraumdichte von 1/300 erreicht, was nur drei Größenordnungen unterhalbdes Übergangs zur Bose-Einstein-Kondensation liegt. Bei höheren Intensitäten des Fallenlasers steigt die Temperatur im Gitter auf 140 µK an, welches in etwa der Doppler-Temperatur des Rubidiumatoms entspricht. Dies wird auf die große differentielle Lichtverschiebung der Atomzustände durch den Fallenlaser zurückgeführt, die die Effizienz der Subdoppler-Kühlmechanismen verringert. Durch das Erreichen hoher Vibrationsfrequenzen sowohl in radialer als auch in axialer Richtung wird erstmals ein dissipationsfreies, eindimensionales Gitter realisiert, indem der Lamb-Dicke-Bereich in allen drei Raumrichtungen erreicht wird. Dies ist die Grundlage für ein angestrebtes Kühlen der Atome in den Grundzustand des Gitters mit Hilfe des Raman-Seitenband-Verfahrens. Im Rahmen der Arbeit gelingt es weiterhin, Atome in einzelnen Gitterplätzen mit einem Abstand von 5.3 µm in einer Fluoreszenzabbildung optisch aufzulösen. Dies bedeutet den direkten Nachweis der Lokalisierung der in einer Stehwelle gebundenen Atome, so daß lokale Aspekte dieses optischen Gitters untersucht werden können. Gleichzeitig erlaubt ein konfokales Mikroskop, Atome in einzelnen Gitterplätzen mit Hilfe fokussierter, resonanter Lichtpulse selektiv anzusprechen. Dies eröffnet im Prinzip die Möglichkeit der Präparation und des Auslesens von Zuständen einzelner Atome, wie sie für eine Realisierung quantenlogischer Experimente in optischen Gittern erforderlich ist. In weiteren Experimenten werden gepulste Raman-Übergänge an kalten Rubidiumatomen untersucht, die in der CO2-Laser Dipolfalle gefangen sind. Dabei können Mehrphotonen-Übergänge zwischen zwei Zeeman-Grundzustandsniveaus beobachtet werden, sofern die Differenzfrequenz der beiden Raman-Laserstrahlen einer Subharmonischen der Frequenz des Zweiphotonenübergangs entspricht. Man kann diese Resonanzen als Mehrphotonen-Ramanübergänge interpretieren, bei denen n Photonenpaare beteiligt sind. Dabei zeigte sich sowohl experimentell als auch theoretisch, daß die Linienbreiten der höheren Subharmonischen deutlich unterhalbder durch die RamanpulsAlänge gegebenen Fourier-Breite liegen. Man findet weiter, daß das genaue Skalieren der Linienbreiten mit der beteiligten Photonenzahl von der verwendeten Form der Pulseinhüllenden abhängt.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
In der vorliegenden Arbeit wird über die erstmalige kontinuierliche Auskopplung von Atomen aus einem atomaren Bose-Einstein-Kondensat berichtet. Es wurde so eine kohärente Strahlquelle für Materiewellen entwickelt, die aufgrund ihrer Analogie zu der Erzeugung von Licht in einem Laser als Atomlaser bezeichnet wird. In einer neu entwickelten magnetischen Ioffe-Falle mit einem äußerst stabilen Fallenpotential wurden dazu Bose-Einstein- Kondensate aus 87Rb Atomen erzeugt. Mit Hilfe von kontinuierlich eingestrahlten Radiofrequenzwellen konnte das gefangene kohärente Materiefeld eines Bose-Einstein-Kondensats lokal an die frei propagierenden Eigenzustände des Gravitationspotentials angekoppelt werden. Es wurde außerdem gezeigt, daß mit Hilfe dieser Meßmethode eine räumliche Spektroskopie und Manipulation der Kondensatwellenfunktion auf einer µm-Skala möglich ist. Mit dem Atomlaser wurden fundamentale Kohärenzeigenschaften eines Bose-Gases am Phasenübergang zur Bose-Einstein-Kondensation untersucht. Aus zwei Raumbereichen des gefangenen atomaren Gases wurden dazuMateriewellen ausgekoppelt und zur Überlagerung gebracht. Sind die von den beiden Raumbereichen ausgesandten Materiewellen phasenkohärent, so ergibt sich ein Materiewellen-Interferenzmuster. Aus dem Kontrast des Interferenzsignals konnten die Kohärenzeigenschaften des gefangenen Gases quantitativ bestimmt werden. Die Meßmethode läßt sich dabei in einer weitgehenden Analogie zu der räumlichen Kohärenzmessung von Licht in einem Doppelspalt-Experiment verstehen. In der Mitte des letzten Jahrhunderts wurde in der Theorie erkannt, daß die fundamentale Eigenschaft makroskopischer Quantenphänomene wie z. B. der Suprafluidität oder der Supraleitung eine langreichweitige Phasenkohärenz in den zugrundeliegenden Quantenfeldern ist. Nahezu 50 Jahre nach dieser Erkenntnis wurden die dramatischen Änderungen in den Kohärenzeigenschaften eines makroskopischen Quantensystems am Phasenübergang hier erstmals in einem Experiment quantitativ nachgewiesen. Für die zukünftige Anwendbarkeit des Atomlasers sind kohärenzerhaltende atomoptische Elemente wichtige Grundbausteine. Im letzten Teil der Arbeit werden neuere Messungen vorgestellt, bei denen mit Hilfe von Hyperfein-Raman-Übergängen in einem magnetischen Fallenpotential ein Spiegel, ein Strahlteiler und ein Resonator für den Atomlaser entwickelt wurden.