Podcasts about mikrometer

  • 15PODCASTS
  • 17EPISODES
  • 28mAVG DURATION
  • ?INFREQUENT EPISODES
  • Mar 19, 2024LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about mikrometer

Latest podcast episodes about mikrometer

Aktuelle Wirtschaftsnews aus dem Radio mit Michael Weyland

Die aktuellen Wirtschaftsnachrichten mit Michael Weyland   Thema heute:    Dyson Staubsauger jetzt von TÜV SÜD zertifiziert   Gleich zwei Produkte von Dyson bekommen das TÜV SÜD-Prüfzeichen für Gebrauchstauglichkeit und Dauertest: Sowohl der Dyson V15™ Detect Absolute als auch der Gen5detect™ Absolute haben die anspruchsvollen Kriterien der Prüfstelle erfüllt. Die Kunden sind schon lange von den Produkten des Unternehmens begeistert. Nun belegt auch das Prüfzeichen des unabhängigen Prüfunternehmens, dass die ausgezeichneten Dyson Produkte und deren Akku und Ladegerät auch nach ausgiebigen Tests dem Anspruch nach Praxistauglichkeit, Sicherheit, hoher Qualität und Ausdauer gerecht werden. Für Kunden weltweit bietet eine TÜV SÜD-Zertifizierung bei der Kaufentscheidung einen wichtigen Hinweis auf Produktsicherheit und Zuverlässigkeit. TÜV SÜD hat die beiden Staubsauger und deren Akkus und Ladegeräte auf Qualität und Ausdauer geprüft.   Kombination zahlreicher Tech-Features Der Gen5detect™ Absolute ist der bislang fortschrittlichste kabellose Staubsauger von Dyson. Der innovative 10-zellige Akku liefert mit bis zu 70 Minuten die bislang längste Laufzeit bei einem kabellosen Dyson Staubsauger.  Gleichzeitig wird die Akkulebensdauer dank des Standby-Modus und der modernen Akkutechnologie maximiert. Der Auto-Modus – einer von insgesamt drei Saug-Modi – passt die Saugkraft automatisch an die Bodenart an, um die Akkulaufzeit zu optimieren. Der Boost-Modus eignet sich für intensivere Reinigungsaufgaben und kleine Flächen, während der Eco-Modus auf längeres Reinigen auf allen Bodenarten ausgelegt ist. Automatische Anpassung der Saugkraft Der kabellose V15™ Detect Absolute hat eine Laufzeit bis zu 60 Minuten für die besonders gründliche Reinigung an jeder Stelle.  Der Akku lässt sich auf Knopfdruck herausnehmen und einfach austauschen. Der Ein-/Aus-Schalter ist besonders akkuschonend, um auch längere Einsätze zu meistern.  Das LCD-Display zeigt unter anderem Infos zu Akkulebensdauer, Restlaufzeit, Wartungsmeldungen sowie dem aktuellen Saugmodus an. Ein piezoelektrischer Sensor berechnet kontinuierlich die Anzahl und Größe der aufgesaugten Staubpartikel – und erhöht die Saugkraft bei Bedarf automatisch. Das vollständig versiegelte, fünfstufige Filtrationssystem entfernt Staub und schließt 99,99 Prozent der bis zu 0,3 Mikrometer kleinen Partikel ein. Ein präzise ausgerichteter Lichtstrahl macht auf Hartböden Staub sichtbar, der ansonsten mit bloßem Auge nur schwer zu erkennen ist. Diesen Beitrag können Sie nachhören oder downloaden unter:

Soilcast
SC048 Größenskalen in Böden

Soilcast

Play Episode Listen Later Aug 23, 2023 11:23


Ob groß, ob klein, wir zoomen rein!

Der AWS-Podcast auf Deutsch
51 - Wie man mit Machine Learning einen laufenen Prozess optimieren kann um nachhaltiger zu werden! Ein Interview mit Maik Ewald von Klöckner Pentaplast

Der AWS-Podcast auf Deutsch

Play Episode Listen Later Jun 21, 2023 27:27


In der aktuellen Folge des AWS Cloud Horizonte Podcasts ist Klöckner Pentaplast Group Director IT Infrastructure, Maik Ewald zu Gast bei Heinrich Nikonow von AWS in seinem Homeoffice in Heidelberg. Klöckner Pentaplast gehört weltweit zu den drei größten Herstellern von bedruckten und veredelten Kunststofffolien für Pharma-, medizinische Geräte-, Nahrungsmittel-, Elektronik- und allgemeinen Tiefziehverpackungen und ist Marktführer in Europa sowie den USA. Gemeinsam sprechen sie über ein faszinierendes KI-Pilotprojekt, welches die Produktionsanlagen optimiert und so unnötigen Kunststoffabfall reduziert. Klöckner Pentaplast stellt Kunststofffolien her, bei deren Produktion jeder Mikrometer zählt, um die Fehlerquote zu reduzieren und nachhaltiger zu werden. In nur 3 Monaten ist es Klöckner Pentaplast, unterstützt von Syntax und AWS, gelungen, Nachhaltigkeit im Unternehmen voranzutreiben, ohne neue Hardware einzusetzen. Durch die Nutzung von Live-Daten und KI wurde der laufende Herstellungsprozess optimiert. Mit Hilfe von Machine Learning und mathematischen Modellen konnten wegweisende Ergebnisse erzielt werden, die im Mikrometer den unterschied macht. Diese Podcastfolge bietet faszinierende Einblicke in die Möglichkeiten, Nachhaltigkeit in Unternehmen voranzutreiben und dabei technologische Lösungen wie KI und die Cloud effektiv zu nutzen. Hört unbedingt rein und erfahrt mehr über dieses wegweisende Pilotprojekt!

ETDPODCAST
Nr. 3052 Tricks bei Plastiktüten-Verbot: Lemke ermahnt Supermärkte

ETDPODCAST

Play Episode Listen Later Jun 17, 2022


Plastiktüten bis zu einer Wanddicke von 49 Mikrometern sind seit Jahresbeginn verboten. Doch eine Umfrage zeigt, einige Händler tricksen. Dabei geht es oft nur um einen Mikrometer. Web: https://www.epochtimes.de Probeabo der Epoch Times Wochenzeitung: https://bit.ly/EpochProbeabo Twitter: https://twitter.com/EpochTimesDE YouTube: https://www.youtube.com/channel/UC81ACRSbWNgmnVSK6M1p_Ug Telegram: https://t.me/epochtimesde Gettr: https://gettr.com/user/epochtimesde Facebook: https://www.facebook.com/EpochTimesWelt/ Unseren Podcast finden Sie unter anderem auch hier: iTunes: https://podcasts.apple.com/at/podcast/etdpodcast/id1496589910 Spotify: https://open.spotify.com/show/277zmVduHgYooQyFIxPH97 Unterstützen Sie unabhängigen Journalismus: Per Paypal: http://bit.ly/SpendenEpochTimesDeutsch Per Banküberweisung (Epoch Times Europe GmbH, IBAN: DE 2110 0700 2405 2550 5400, BIC/SWIFT: DEUTDEDBBER, Verwendungszweck: Spenden) Vielen Dank! (c) 2022 Epoch Times

NATURLIGVIS - en podcast om naturvidenskab
100 TRILLIONER TARMBAKTERIER: Hvad sker der i din krop, når du drikker en sodavand? (10:10)

NATURLIGVIS - en podcast om naturvidenskab

Play Episode Play 60 sec Highlight Listen Later Apr 24, 2022 19:22


Egentlig er det lidt snyd med den titel. For også i denne 10. og allersidste podcast om, hvad sker der i din krop, når du drikker en sodavand, viser det sig, at der faktisk sker en hel del! Men at du har mindst 100 trillioner lortebakterier i din tyktarm, er bare så vanvittigt, at de løb med titlen. For øvrigt har hele dit tarmsystem sit eget nervesystem. Mens epithelcellerne på tarmens inderside konstant udskiftes. Eller faktisk er de en kopi af en kopi af en kopi. Og når de ikke kan mere, begår de selvmord, dvs. programmeret celledød.Du kan også høre om babys sterile tarmkanal. Og som bonusinfo til dig, der faktisk læser shownotes, kan jeg da lige fortælle, at babys første afføring kaldes mekonium. Den er mørkegrøn og består af slim, galde, hår og afstødte slimhinde- og hudceller, som fosteret har slugt med fostervandet. Mens selve farven skyldes et stort indhold af galdefarvestoffer. Jeg fortæller også de mere end 20 forskellige hormoner, din krop laver hele tiden. Det er bl.a. insulin, glukagon og adrenalin. Dem jeg fortalt bl.a. om i ET RET SØDT MOLEKYLE  plus i ENERGI TIL 100 BILLIONER CELLER. Du kan også høre om din lever, der ligger godt beskyttet under de nederste ribben foran på kroppen. Til sidst handler det om størrelser. Her kan du f.eks. høre om ægcellen, som er ca. 0,2 millimeter, dvs. en femtedel af én millimeter. Og i linket ovenfor kan du både læse mere om og se billeder af den. Og til allersidst handler det om relative størrelser. Så hvis f.eks. et monosakkarid molekyle har samme størrelse som en bladlus, dvs. én millimeter, ja så vil et mitokondrie til sammenligning være på hele 90 cm. Men også meget mere om det i denne sidste podcast om, hvad sker der i din krop, når du drikker en sodavand?Podcasten er produceret sammen med Videnskabsår22.dk og Niels Bohr Instituttet på KU af socialøkonomiske Polykrom Media i samarbejde med Marie Breyen og især Anja C. Andersen.Den er finansieret af midler fra VILLUM FONDEN, Novo Nordisk Fonden, Bitten & Mads Clausens Fond  samt Poul Due Jensens Fond. Mens det er H. K. H. Kronprinsen, der er protektor for hele Videnskabsår22.dk.

Modellansatz
Tiefdruckbenetzung

Modellansatz

Play Episode Listen Later Dec 24, 2021 49:21


Gudrun spricht in dieser Folge mit Pauline Brumm von der TU Darmstadt über Benetzung im Tiefdruck. Sie ist wissenschaftliche Mitarbeiterin am Institut für Druckmaschinen und Druckverfahren und promoviert im SFB 1194 zur Mechanischen Zwangsbenetzung von Oberflächen durch gravierte Tiefdruckzylinder im Teilprojekt C01. Es handelt sich um eine Weiterführung des Gesprächs mit Dr. Mathis Fricke im Modellansatz-Podcast Folge 242 über Dynamische Benetzung. Herr Fricke hatte über die Arbeit im SFB 1194 aus Sicht der Mathematik berichtet, Frau Brumm liefert in dieser Folge nun einen Beitrag aus Sicht der Anwendung. Sie hat Maschinenbau im Bachelor und Master an der TU Darmstadt studiert und sich auf Drucktechnik spezialisiert. Drucken wird seit hunderten von Jahren praktiziert und angewendet, jedoch gibt es bisher noch keine umfassende Modellbildung für viele Druckprozesse. Das bedeutet, dass ein Großteil des Wissens empirisch geprägt ist. Firmen stützen sich auf die Erfahrung von gelernten Drucktechnikern, jedoch ist diese Erfahrung nur selten öffentlich zugänglich und es gibt wenige Forschungsinstitute weltweit zum Thema Drucktechnik. Um innovative Anwendungen zu entwickeln, zum Beispiel aus dem Bereich der gedruckten Elektronik, bedarf es jedoch einer detaillierten Modellvorstellung des Druckprozesses, um klassische Druckverfahren aus dem grafischen Druck (Zeitungsdruck, Verpackungsdruck etc.) für den sogenannten „funktionalen Druck“ nutzbar zu machen. Die Schwierigkeit liegt darin, dass an den funktionalen Druck ganz andere Anforderungen gestellt werden, zum Beispiel müssen die gedruckten, häufig ultradünnen Schichten geschlossen, fehlerfrei und von konstanter Schichtdicke sein. Ein häufiger Druckfehler ist das sogenannte „Viscous Fingering“, eine hochdynamische Grenzflächeninstabilität bei der Fluidübertragung, die sich in Form von faszinierenden, verästelten, fingerartigen Strukturen in der gedruckten Schicht bemerkbar macht. Sie sehen so ähnlich aus wie die Arme eines Flussdeltas aus Vogelperspektive oder die Wurzeln von Bäumen. In ihrer Forschung untersucht Frau Brumm diese verästelten Strukturen im Tiefdruck, um sie besser zu verstehen und um den Druckfehler in Zukunft zu verhindern oder für spezielle Anwendungen nutzbar zu machen. Beim Tiefdruck wird die Farbe über gravierte Näpfchen in einem Druckzylinder übertragen. Die Näpfchen liegen vertieft und sind nur wenige zehn Mikrometer groß. Beim Kontakt mit dem zu bedruckenden Substrat (Papier, Folie, Glas…) wird die Druckfarbe unter hohem Druck und hoher Geschwindigkeit aus den Näpfchen herausgesaugt. Es kommt zur Zwangsbenetzung des Substrats. Mit Stokes-Gleichungen kann man Parametermodelle herleiten, welche das Skalierungsverhalten der verästelten, gedruckten Strukturen beschreiben. Zum Beispiel skaliert der dominante Abstand der gedruckten Strukturen mit der Druckgeschwindigkeit hoch minus ein Halb laut Sauer et al. (2015), welches dem 60 Jahre alten Skalengesetz von Saffman und Taylor (1958) entspricht. Mit Experimenten können diese Modelle bestätigt oder widerlegt werden. Die Planung von Experimenten geschieht zielgerichtet. Im Vorfeld muss überlegt werden, welche Parameter im Experiment variiert werden sollen und wie viele Messpunkte benötigt werden, um statistisch abgesicherte Aussagen treffen zu können. Meistens ist die Herausforderung, die Vielzahl der Parameterkombinationen auf ein Minimum zu reduzieren und dennoch die gewünschten Aussagen treffen zu können. Die gedruckten Proben werden hochauflösend mit einem Flachbettscanner digitalisiert und danach werden Bildverarbeitungsmethoden in den ingenieurstypischen Programmiersprachen Matlab oder Python angewendet. Beispielsweise wird eine Fast Fourier Transformation (FFT) benutzt, um den dominanten Abstand der gedruckten Strukturen zu ermitteln. Die Automatisierung des Experiments und vor allem der anschließenden Auswertung ist ein weiterer wichtiger Punkt. Um zehntausende von gedruckten Mustern zu analysieren, wurde ein hochautomatisierter computergestützter Workflow entwickelt. Seit kurzem wird von Frau Brumm auch Künstliche Intelligenz, genauer gesagt Deep Learning, zur Klassifizierung der gedruckten Muster verwendet. Dies ist notwendig, um die Skalierbarkeit hin zu industriellen Prozessen zu ermöglichen, indem umfangreiche Versuchsreihen an industriellen Maschinen durchgeführt und automatisiert ausgewertet werden. Diese werden anschließend mit kleineren Versuchsreihen an speziell entwickelten Labormaschinen verglichen, bei denen teilweise auch Modellfluide anstelle von realen Druckfarben verwendet werden. Bei Laborexperimenten werden in Teilprojekt C01 im SFB 1194 auch Hochgeschwindigkeitsvideos der hochdynamischen Grenzflächeninstabilität aufgenommen, die noch tiefere Einblicke in die Strömungsdynamik bieten und die industriellen Experimente ergänzen und erklären sollen. Der Maschinenbau ist sehr breit gefächert und das Studium muss dementsprechend auch breite Kenntnisse vermitteln. Beispielsweise werden umfangreiche Methoden aus der Mathematik gelehrt, damit ein/e Maschinenbau-Absolvent/in für die diversen Anwendungsaufgaben gerüstet ist. In der modernen Forschung ist die Fähigkeit zur interdisziplinären Zusammenarbeit und zur Wissenschaftskommunikation sehr entscheidend. Maschinenbauer/innen im SFB 1194 arbeiten beispielsweise mit Mathematikern/innen, Physikern/innen und Informatikern/innen zusammen, um eine größere Forschungsfrage zu beantworten. In dieser Podcast-Folge wird auch an junge Frauen appelliert, ein MINT-Studium auszuprobieren, um mehr Diversität im Studium, Forschung und Industrie zu erreichen, um am Ende noch innovativere Lösungen zu schaffen, die der Welt einen Nutzen bringen. Literatur und weiterführende Informationen Pauline Brumm, Tim Eike Weber, Hans Martin Sauer, and Edgar Dörsam: Ink splitting in gravure printing: localization of the transition from dots to fingers. J. Print Media Technol. Res. Vol. 10 No. 2 (2021), 81-93 Pauline Brumm, Hans Martin Sauer, and Edgar Dörsam: Scaling Behavior of Pattern Formation in the Flexographic Ink Splitting Process. Colloids and Interfaces, Vol. 3 No. 1 (2019), 37 Hans Martin Sauer; Dominik Daume, and Edgar Dörsam: Lubrication theory of ink hydrodynamics in the flexographic printing nip. Journal of Print and Media Technology Research, Vol. 4 No. 3 (2015), 163-172 Julian Schäfer, Ilia V. Roisman, Hans Martin Sauer, and Edgar Dörsam: Millisecond fluid pattern formation in the nip of a gravure printing machine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 575 (2019), 222-229 Philip Geoffrey Saffman, and Geoffrey Ingram Taylor: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences Vol. 245 No. 1242 (1958), 312-329 Podcasts M. Fricke, G. Thäter: Dynamische Benetzung, Gespräch im Modellansatz Podcast, Folge 242, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2021. M. Haragus, G. Thäter: Pattern Formation, Conversation im Modellansatz Podcast, Episode 227, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2019. S. Winter: Fraktale Geometrie, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 120, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. S. Lerch, G. Thaeter: Machine Learning, Gespräch im Modellansatz Podcast, Folge 232, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020.

Wissenschaftsmagazin
Wie Schiffe klimaneutral werden sollen

Wissenschaftsmagazin

Play Episode Listen Later Feb 27, 2021 28:00


Und: Bei immer mehr schwierigen Operationen üben die Ärzte vorher, z.B. mit einem Simulator für Hirnoperationen.  * Rund 3% der Treibhausgase weltweit werden von Schiffen ausgestossen, Tendenz steigend. Fracht- und Passagierschiffe werden deshalb mittelfristig auch ihre CO2 Emissionen reduzieren müssen, wenn die Klimaneutralität erreicht werden soll. Es stellen sich ähnliche Probleme wie bei Lastwagen und Flugzeugen: Batterien sind (noch) zu schwer – deshalb stehen zur Zeit klimaneutrale Treibstoffe wie etwa Ammoniak im Vordergrund, nebst kleinen Verbesserungen, etwa an den Schiffsrümpfen um weniger Widerstand im Wasser zu haben. * Bei Eingriffen ins Gehirn zählt jeder Mikrometer. Spezialisten des Inselspitals und der Universität Bern haben deshalb einen Simulator entwickelt, an dem die Ärztinnen und Ärzte konkrete Operationen planen und üben können.  * Gleich ist Brutsaison: Doch was bringen Nistkästen den Vögeln eigentlich?

Automobilkurznachrichten von Michael Weyland
Autonews vom 16. September 2020

Automobilkurznachrichten von Michael Weyland

Play Episode Listen Later Sep 16, 2020


Thema heute:    Volvo Luftqualitätssystem für saubere Luft im Innenraum Foto: Volvo Car Germany GmbH In einem neuen Volvo können die Insassen befreit durchatmen: Der schwedische Premium-Automobilhersteller bietet in seinen größeren Modellreihen auf Basis der skalierbaren Produkt-Architektur (SPA) ein erweitertes CleanZone Luftqualitätssystem an, das die Luft reinigt und so für ein sauberes und gesundes Klima im Innenraum sorgt. Das für die Volvo 60er und 90er Baureihen optional erhältliche System filtert Feinstaub nach dem strengen Luftqualitätsstandard PM2,5.  Dank eines Filters auf Kunstfaserbasis und Ionisierung werden bis zu 95 Prozent der mikroskopisch kleinen Feinstaubpartikel der Partikelgröße PM2,5 aus der Luft herausgefiltert, bevor sie in die Fahrgastzelle gelangen. Deren aerodynamischer Durchmesser ist kleiner als 2,5 Mikrometer und deshalb besonders gefährlich. Foto: Volvo Car Germany GmbH In vielen Städten und Metropolregionen weltweit liegt die Feinstaubbelastung über den von der Weltgesundheitsorganisation empfohlenen Werten, weshalb es umso wichtiger ist, die Auswirkungen dieser Feinstaubbelastung zu minimieren. In China, wo PM2,5-Messungen und damit verbundene Informationsdienste gut etabliert sind, können Volvo Fahrer die Luftqualität in der Kabine mit der außerhalb des Fahrzeugs vergleichen. Negative Folgen für die Gesundheit werden minimiert Das erweiterte CleanZone Luftqualitätssystem optimiert die Luftqualität und minimiert die durch Luftverschmutzung und Feinstaubpartikel bedingten Folgen auf die Gesundheit. Ein Partikelsensor überwacht dabei permanent die einströmende Luft auf gesundheitsschädliche Substanzen. Wird ein besonders hoher Anteil gemessen, werden die Lüftungsdüsen des Fahrzeugs automatisch geschlossen. Foto: Volvo Car Germany GmbH Über die Volvo on Call App soll der Nutzer in Zukunft nicht nur den aktuellen PM2,5-Wert im Interieur abfragen können, sondern auch die Innenraumluft reinigen lassen – bequem vor Fahrtantritt vom Frühstücks- oder Schreibtisch aus. Luftreinigung ein Teil eines ganzheitlichen Ansatzes Die Luftreinigung ist dabei allerdings nur ein Teil der Volvo Bestrebungen. Der schwedische Premium-Automobilhersteller arbeitet schon seit längerem daran, die Emissionen organischer Substanzen aus dem Fahrzeuginneren zu entfernen und die Menge allergieauslösender Materialien im Innenraum immer weiter zu verringern. Auch für Zulieferer gelten deshalb strenge Richtlinien, um die Entstehung und Emission von Gerüchen zu minimieren, die von den im Innenraum verwendeten Teilen und Materialien herrühren. Das Unternehmen arbeitet auch eng mit einer Vielzahl von Universitäten und anderen Instituten zusammen, die sich in Projekten der Materialverwendung widmen. Diesen Beitrag können Sie nachhören oder downloaden unter:

kaifiedler.de - Zellbiologie · Genetik · Gentechnik
Mitochondrien: Kraft- und Netzwerke der Zelle

kaifiedler.de - Zellbiologie · Genetik · Gentechnik

Play Episode Listen Later Feb 2, 2020 24:17


Mitochondrien sind wenige Mikrometer große Zellbestandteile, die insbesondere als Kraftwerke der Zelle bekannt sind. Ihre Fähigkeit die Energie der Zelle zu produzieren, ist jedoch bei weitem nicht ihre einzige und im Grunde auch nicht ihre wichtigste Aufgabe. In dieser Episode geht es um Mitochondrien als Energieproduzenten, abgewandelte Mitochondrien ohne eigene DNA und die überlebenswichtige Aufgabe von Mitochondrien bei der Herstellung von Eisen-Schwefel-Clustern. Außerdem wird die Rolle des mitochondrial Netzwerks für die Zelle erklärt.

SunPod - Solarkocher und Elektrofahrzeuge
220 SunPod-Interview: Sedi Byskov - Polymer Fresnel Lenses

SunPod - Solarkocher und Elektrofahrzeuge

Play Episode Listen Later Mar 3, 2018 13:54


Heute veröffentlichen wir ein weiteres Interview, das ich auf der CONSOLFOOD 2018 in Faro aufgenommen habe. Sedi Byskov ist eine auf Nanotechnologie spezialisierte Physikerin aus Dänemark, die uns eine faszinierende neue Technik zum Bau von Solarkochern vorstellt, nämlich eine nur rund 100 Mikrometer dünne Folie, die aufgrund ihrer Feinstruktur wie eine Fresnellinse wirkt. Die Firma Heliac, für die Sedi arbeitet, verkauft diese Sammellinsen zu einem Bruchteil des Preises, den man bisher für vergleichbare Fresnellinsen bezahlen musste. Dadurch wird solare Wärme auf einmal für viel mehr Menschen als bisher verfügbar, und ich erwarte, dass wir in den nächsten Jahren viele neue Solarkocher sehen werden, die diese preiswerte Hightechfolie einsetzen. Sedi Byskov stellt uns heute dieses Produkt vor.

Modellansatz
Akkumulatoren

Modellansatz

Play Episode Listen Later Feb 2, 2017 53:56


Markus Maier hat 2016 in der Arbeitsgruppe des Instituts für Angewandte und Numerische Mathematik am KIT promoviert, in der auch Gudrun arbeitet. Sein Thema war The Mathematical Analysis of a Micro Scale Model for Lithium-Ion Batteries. Wie der Name der Arbeit suggeriert, betrachtet er Modelle für Lithium-Ionen-Akkumulatoren (die englische Übersetzung ist für uns Deutsche etwas irreführend Batteries), die auf mikroskopischer Ebene die Stromabgabe über die elektrochemischen Eigenschaften vorhersagen können. Ausgangspunkt des Themas war der Wunsch Degradationsmechanismen - also die Alterung der Akkus - besser zu verstehen. Das Thema Strom speichern ist sehr wichtig und wird in Zukunft noch wichtiger werden. Simulationen sind hier nötig, da jedwedes Messen auf der Mikroskala unmöglich ist - es geht um Objekte von der Größe einiger Mikrometer. Das Ausweichen auf die besser durch Messungen begleitbare makroskopische Ebene im Modell ist nicht möglich, weil man nur auf der Ebene der Ionen die Abläufe nachbilden kann, die zur Alterung führen. Ein Beispiel für so einen Prozess ist, dass die Lithium Ionen nach der Wanderung durch das Elektrolyt in der Kathode auf Platzproblem treffen, die dazu führen können, dass die Katode beschädigt wird, wenn sich die Ionen den nötigen Platz verschaffen. Diese Beschädigungen führen zu Reduzierung der Kapazität. Leider ist die modellhafte Auflösung der ganzen Mikrostruktur einer Batterie numerisch noch unmöglich - weshalb die Untersuchung der Arbeit im Moment nur lokale Ergebnisse enthält. Die kristalline Struktur in der Kathode kann es auch ermöglichen, dass sich eine zweite Phase bildet, in der sich mehr Lithium-Partikel anlagern als ursprünglich Platz in der Kathode ist. Das führt auf ein 2-Phasen-Problem mit einem Phasenübergang. Der Rand zwischen den Phasen ist dann Teil der gesuchten Lösung des Problems. Dieser Teil ist im Moment noch nicht im Modell enthalten. Schließlich hat sich Markus darauf konzentriert, ein Kompromiss-Modell der Ingenieure zu untersuchen, das im Wesentlichen auf Erhaltungseigenschaften beruht. Es hat die Form eines Systems von zwei gekoppelten partiellen Differentialgleichungen für das elektrische Potential und die Lithium-Ionen-Verteilung, welche in den zwei aneinander grenzenden Gebieten gelten. Am Grenzübergang zwischen Elekrolyt und Lithium-Partikeln gilt eine nichtlinearen Gleichung. Die erste Frage ist: Wie sichert man die Existenz und Eindeutigkeit der Lösung? Die Struktur des Beweises erweist sich als hilfreich für das anschließend gewählte numerische Verfahren. Es nutzt die Monotonie des elektrischen Potentials aus. Die Argumente gelten allerdings nur für ein klein genug gewähltes Zeitintervall, weil ein konstanter Strom als Entaldungs-Randbedingung gewählt wurde (nur für kurze Zeiten realistisch). Für Modelle, die Degradation simulieren können, wären andere Randbedingungen nötig wie beispielsweise ein konstanter Widerstand. Ein Masterstudent hat mit dem Open Source Finite-Elemente-Solver deal.II das vorgeschlagene Verfahren im Rahmen seiner Abschlussarbeit programmiert und nachgewiesen, dass es funktioniert und die Resultate überzeugen können. Literatur und weiterführende Informationen A. Latz & J. Zausch: Thermodynamic consistent transport theory of Li-ion batteries, Journal of Power Sources 196 3296--3302, 2011. T. Seger: Elliptic-Parabolic Systems with Applications to Lithium-Ion Battery Models, Doktorarbeit Universität Konstanz, 2013. M. Kespe & H. Nirschl: Numerical simulation of lithium-ion battery performance considering electrode microstructure, International Journal of Energy Research 39 2062-2074, 2015. J.-M. Tarascon & M. Armand: Issues and challenges facing rechargeable lithium batteries, Nature 414 359-367, 2001. Podcasts A. Jossen: Batterien, Gespräch mit Markus Völter im Omega Tau Podcast, Folge 222, 2016. J. Holthaus: Batterien für morgen und übermorgen, KIT.Audio Podcast, Folge 2, 2016. D. Breitenbach, U. Gebhardt, S. Gaedtke: Elektrochemie, Laser, Radio, Proton Podcast, Folge 15, 2016.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 18/19

In der vorliegenden Arbeit wurden die Grundlagen für die Zwei-Photonen-Endomikroskopie untersucht. Die Herausforderung liegt in der Miniaturisierung der Technik der Zwei-Photonen-Mikroskopie, um auch endoskopisch in vivo hochauflösende Bilder von Gewebestrukturen und Zellen zu erhalten. Im Gegensatz zur Gewebeentnahme bei einer Biopsie ist dieses optische Verfahren minimal-invasiv. Damit ist eine Vorab Untersuchung des Gewebes möglich, die die Diagnostik unteranderem von bösartigen Gewebestrukturen präzisieren könnte. Die konfokale Endoskopie bietet bereits mit einem vergleichbaren Verfahren die Möglichkeit einer optischen Biopsie an der Oberfläche, z.B. an verschiedenen Schleimhäuten. Aufgrund der Gewebestreuung ist die Eindringtiefe des Lichts dabei aber auf wenige Mikrometer begrenzt. Diese Einschränkung könnte durch die bereits in der Zwei-Photonen-Mikroskopie gezeigte größere optische Eindringtiefe durch die Zwei-Photonen-Endomikroskopie verbessert werden. In dieser Arbeit wurde ein Femtosekundenlaser durch Glasfasern geleitet und am distalen Ende mit Hilfe einer Mikrooptik fokussiert. Dazu wurde ein Aufbau basierend auf Faserbündeln gewählt. Die einzelnen Faserkerne des Glasfaserbündels wurden mit einem Galvanometer-Scanner abgerastert und die dazugehörige detektierte Fluoreszenz punktweise zu einem Bild zusammengesetzt. Zur Kompensation der zeitlichen Verbreiterung der Pulse wurde ein Gitterkompressor aufgebaut. Mit diesem Aufbau wurden Zwei-Photonen-Fluoreszenz Aufnahmen von fluoreszenzstarken Proben durch ein Faserbündel ermöglicht. Diese Arbeit zeigt die Machbarkeit der Zwei-Photonen-Endoskopie und zeigt Möglichkeiten zur Optimierung, um zukünftig auch einen klinischen Einsatz zu ermöglichen. Mit der verwendeten Mikrooptik wurde eine zelluläre Auflösung von (3,5 ± 0,3) μm lateral und (5,3 ± 0,1) μm axial erreicht. Durch die Verwendung eines Referenzsystem aus Mikroskopobjektiven im Austausch der Mikrooptik konnte gezeigt werden, dass vor allem die laterale Auflösung noch verbessert werden konnte. Entscheidend ist hierfür eine hohe distale numerische Apertur. Der zukünftige Einsatz von verbesserten Mikrooptiken kann somit die Auflösung noch erhöhen. Aktuelle Forschungsergebnisse legen nahe, dass diese zukünftig auch kommerziell erhältlich sein könnten. Zusätzlich wurde eine variable Fokussiereinheit auf Basis eines Drahts aus einer Formgedächtnislegierung (Nitinol) realisiert. Damit konnte der Abstand zwischen Mikrooptik und Gewebeoberfläche verstellt werden. Durch Applikation eines maximalen Stromes bis zu 385mA kontrahiert der Nitinoldraht um ca. 1,8%. Ab dem minimalen Aktivierungsstrom von 330 mA konnte ein linearer Zusammenhang zwischen der Stromstärke und der Verschiebung beobachtet werden. Eine Änderung der Stromstärke in Schritten von 16–12 mA. ermöglicht eine Verschiebung von 20–10 μm. Eine Herausforderung ist die Erzeugung und Detektion der Fluoreszenzsignale aus dem Gewebe zur Erzeugung von aussagekräftigen Zwei-Photonen-Bildern. Die Leistungsverluste der Laserenergie im Anregungsweg und die Verluste des Fluoreszenzsignals im Detektionsweg müssen hierfür möglichst gering gehalten werden. Die größten Verluste im Anregungsweg gibt es durch den Gitterkompressor, durch die Fasereinkopplung und durch die Mikrooptik. Trotzdem ist die hier erreichte Gesamttransmission von 18% (λ0 = 800 nm) ohne Gitterkompressor vergleichbar mit der erster Zwei-Photonen-Mikroskope. Durch Optimierung einzelner Komponenten, vor allem des Gitterkompressors und der Mikrooptik, ist zukünftig eine bessere Transmission möglich. Die Erzeugung von Zwei-Photonen-Fluoreszenzsignalen wird auch durch die Pulsverbreiterung innerhalb des Faserbündels verringert. Sowohl lineare als auch nichtlineare Effekte verbreitern spektral und zeitlich die Pulse. Die Untersuchung dieser Effekte konnte zeigen, dass mit Hilfe eines Gitterkompressors die zeitliche Pulsdauer am Faserausgang bis auf ca. 10 fs wiederhergestellt werden konnte und damit die Zwei-Photonen-Fluoreszenzanregung verbessert werden konnte. Trotzdem konnten bereits bei den hier verwendeten Leistungen (5–65 mW) auch nichtlineare Effekte beobachtet werden. Dazu kommt, dass bei höheren Laserintensitäten keine Transmission mehr möglich ist und die Eigenfluoreszenz der einzelnen Fasern des Faserbündels die Fluoreszenzsignale aus dem Gewebe überlagert. Zur Beseitigung der hier gezeigten Limitierungen durch die Mikrooptik und durch das Faserbündel sind weitere Optimierungen nötig um den Einsatz eines Zwei-Photonen-Endoskops in vivo zu ermöglichen. Durch den nichtlinearen Zusammenhang zwischen der Photonenintensität und der Fluoreszenzanregung sind diese Limitierungen gravierender als bei einer normalen Fluoreszenzanregung. Eine Reduzierung der Spitzenintensitäten der Laserpulse bei einem gleichzeitigen Erhöhen der Laserrepetitionsrate könnte zukünftig die nichtlinearen Effekte reduzieren und die effektive Laserleistung am Faserausgang erhöhen.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Gradient Field Transduction of Nanomechanical Resonators

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05

Play Episode Listen Later Oct 21, 2010


Das Forschungsgebiet nanomechanischer Systeme betrachtet die Bewegung von Strukturen, deren Länge in mindestens einer Richtung deutlich unter einem Mikrometer liegt. Meist werden dabei Auslenkungen untersucht, die in der Nähe einer mechanischen Resonanz angetrieben werden. Das wissenschaftliche Interesse an solchen Strukturen hat mehrere Gründe: aufgrund der kleinen Masse und oftmals geringen Dämpfung (d.h. hohe Güte) reagieren solche nanomechanischen Systeme sehr empfindlich auf Änderungen ihrer Umgebung oder ihrer eigenen Eigenschaften wie etwa ihrer Masse. Die große Vielfalt der nanomechanischen Systeme erlaubt die Kopplung an verschiedenste physikalische Größen wie (Umgebungs-)Druck, Licht, elektrische/magnitische Felder. Dies ermöglicht, die Wechselwirkung selbst zu untersuchen oder entsprechende Änderungen empfindlich zu detektieren. Im Rahmen der vorliegenden Arbeit wurde die Resonator Bewegung von doppelseitig eingespannten Balken untersucht; diese wurden mit konventioneller Mikrofabrikation aus verspanntem Silizium-Nitrid gefertigt. Die große Zugspannung in den Balken führt zu einer hohen mechanischen Stabilität und ebenso zu hohen mechanischen Güten. Ein Teil der Arbeit befasste sich mit der Entwicklung neuer Detektions- und Antriebsmechanismen. Unter Ausnutzung der Polarisierbarkeit des Resonators wurde ein lokaler Antrieb realisiert, der sich durch besondere Einfachkeit auszeichnet. Ebenso wurden Fortschritte in der optischen Detektion erzielt. Ein Photodetektor konnte innerhalb einer optischen Wellenlänge Abstand zum Resonator plaziert werden; dies ermöglicht die lokale Detektion seiner Bewegung. Hochempfindliche Messungen nutzen oft optische Resonanzen; bisherige Umsetzungen basieren auf Reflexionen und sind daher auf Objekte beschränkt, die größer als die verwendete Wellenlänge sind. In einer Zusammenarbeit mit Prof. Kippenberge konnte diese Beschränkung umgangen werden, indem geführtes Licht in einem Mikro-Toroiden verwendet wurde. Weiter wurde in der Arbeit die resonante Bewegung selbst untersucht. Im Bereich hoher Amplituden zeigt die rücktreibende Kraft nichtlineares Verhalten. Das sich dadurch ergebende bistabile Verhalten des Resonators wurde mit Hilfe von kurzen, resonanten Pulsen untersucht; schnelles Schalten wurde erreicht. Die mechanische Dämpfung der Siliziumnitrid Resonatoren wurde untersucht. Die hohen Güten von Systemen unter Zugspannung konnte erklärt werden durch die sich ergebende erhöhte gespeicherte elastische Energie; im Gegensatz zu einem veränderten Dämpfungsverhalten.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Dynamik von Exzitonen in elektrostatisch definierten Potentiallandschaften

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05

Play Episode Listen Later Dec 13, 2006


In der vorliegenden Doktorarbeit wurden systematisch Methoden zur Manipulation der Dynamik von Exzitonen in Halbleiterstrukturen experimentell studiert. Als Substrat diente eine Al0,3Ga0,7As/GaAs-Heterostruktur mit zwei gekoppelten GaAs-Quantentöpfen. In diesen Systemen können mittels optischer Anregung räumlich indirekte Exzitonen erzeugt werden, die bei experimentell gut zugänglichen Temperaturen von 4 Kelvin lange Lebensdauern von über 10 Mikrosekunden aufweisen. Mittels geeigneter Gatterstrukturen auf den Probenoberflächen konnten maßgeschneiderte laterale Potentiallandschaften für Exzitonen in der Ebene der Quantentöpfe erzeugt und elektrisch abgestimmt werden. In zeitlich variierenden, wellblechförmigen Potentiallandschaften wurden oszillatorische Driftbewegungen über Entfernungen von 4 Mikrometern induziert. Statische Gradientenpotentiale für Exzitonen mit elektrisch manipulierbarer Steigung ermöglichten die Erzeugung und Beobachtung exzitonischer Driftbewegungen über makroskopische Entfernungen von über 100 Mikrometern. Flugzeitmessungen in derartigen Gradientenpotentialen ergaben bei einer Temperatur von 3,7 K exzitonische Driftgeschwindigkeiten von bis zu 2000 m/s. Die exzitonische Mobilität in den Proben wurde als Funktion der Temperatur experimentell bestimmt. Für Temperaturen T unter 10 K wurde eine außerordentlich hohe Mobilität von 10000 cm2/eVs bzw. eine Stoßzeit von 15 ps gemessen, die einer Diffusionskonstante von 30 cm2/s entspricht. Oberhalb einer Temperatur T von 10 K wurde eine zu T^(−6) proportionale Abnahme der Mobilität beobachtet. Ein weiterer Schwerpunkt der Arbeit bestand in der Definition elektrostatischer Fallen für Exzitonen, die dazu genutzt werden können, Bose-Einstein-Kondensation von Exzitonen nachzuweisen. Es wurden linienförmige Fallen realisiert, die im Randbereich lateral mikrostrukturierter SiO2-Schichten auf Halbleiteroberflächen entstehen. Energieauflösende Photolumineszenz-Messungen haben ergeben, daß die Fallen in transversaler Richtung mittels harmonischer Einschlußpotentiale beschrieben werden können. Es wurden Federkonstanten von bis zu 11 keV/cm2, entsprechend einer Quantisierungsenergie von bis zu 5,5 μeV, experimentell beobachtet. Beide Werte übertreffen bisherige Resultate um einen Faktor von 200. Die transversale Ausdehnung und die energetische Tiefe der Fallen liegen im Bereich von etwa 10 Mikrometern bzw. 0,8 Mikroelektronenvolt. Innerhalb der Fallen findet longitudinaler exzitonischer Transport über makroskopische Entfernungen bis in den Millimeterbereich statt. Die Fallen, deren Potentialminima stets etwa 6 Mikrometer außerhalb der Begrenzung der SiO2-Bereiche verlaufen, können bezüglich ihrer exzitonischen Speicherwirkung elektrisch geschaltet werden. Die Ursache der Entstehung der Fallen sowie deren elektrisches Schaltverhalten wurden anhand eines elektrostatischen Modells erklärt.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Fluoreszenz-Korrelations-Spektroskopie in Polymerlösungen

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05

Play Episode Listen Later Oct 19, 2004


Die Dynamik von Makromolekülen spielt bei Transportprozessen in weicher Materie eine wichtige Rolle. Fluoreszenz-Korrelations-Spektroskopie (FCS) kann die Dynamik spezifisch fluoreszenzmarkierter Moleküle in Lösung verfolgen. Das Prinzip der Methode basiert auf der Analyse von Intensitätsfluktuationen innerhalb eines Volumens in der Größenordnung eines Femtoliters (1 fl = 1 Kubikmikrometer). In dieser Arbeit wurde mit FCS die Dynamik von DNA, Aktin und Hyaluronsäure untersucht. Die Schwerpunktsdiffusion in Lösung, die intramolekulare Kettendynamik und das Verhalten von Polymerlösungen im Scherfluss wurden studiert. Die Möglichkeit für Messungen der Dynamik an Grenzflächen wurde geschaffen. Die Autokorrelation fluoreszenzmarkierter DNA in Lösung zeigt auf verschiedenen Zeitskalen charakteristische Abfälle, die ihre Ursache in unterschiedlichen dynamischen Prozessen haben. Mit den in dieser Arbeit entwickelten Modellfunktionen für die Autokorrelation lassen sich die charakteristischen Größen der verschiedenen Prozesse durch Anpassung an die experimentellen Daten gewinnen. Bei kurzen Zeiten im Mikrosekundenbereich fällt die Korrelationsfunktion auf Grund photochemischer Prozesse der Fluoreszenzfarbstoffe exponentiell ab. Im Bereich von 10-100 Mikrosekunden zeigen die Daten einen weiteren Abfall, der stark von der Anzahl der Farbstoffe auf der Polymerkette abhängt. Die On-Off-Kinetik eines Ensembles von Fluorophoren wurde in ein Modell für die Korrelationsfunktion umgesetzt. Intensitätsfluktuationen im Bereich von 1 - 100 Millisekunden stammen von der Diffusion und den internen Relaxationsmoden der Polymerketten. Ein Modell für die Korrelationsfunktion der Schwerpunktsdiffusion für Polymerketten mit kontinuierlicher Farbstoffverteilung entlang der Kontur wurde entwickelt und mit experimentellen Daten von DNA-Fragmenten unterschiedlicher Länge (1019 bp bis 7250 bp) bestätigt. Ausgehend von den dynamischen Strukturfaktoren der Modelle von Rouse, Zimm und semiflexibler Ketten in Lösung wurden Korrelationsfunktionen für interne Relaxationen berechnet und an Messdaten mit Lambda-DNA (48502 bp) angepasst. Über den Abstand der Farbstoffe entlang der Polymerkontur werden Moden selektiert, deren Relaxationsdynamik sich in die Autokorrelationsfunktion überträgt. Bei Abständen, die viel größer als die Persistenzlänge der DNA sind, liefert das angepasste Modell die erwarteten Werte für die Zimm-Dynamik. Aktinfilamente mit Längen im Bereich von 100 Nanometern bis 50 Mikrometer wurden als Modellsysteme semiflexibler Polymere untersucht. Für Filamentlängen, die kleiner als das Beobachtungsvolumen sind, ist die Korrelationsfunktion bestimmt durch die Schwerpunktsdiffusion. Für längere Filamente dominieren die Biegemoden. Charakteristisch für diese Form der internen Relaxation ist das zeitliche Skalenverhalten mit dem Exponenten 3/4. Theoretische Korrelationsfunktionen, die in Zusammenarbeit mit Roland Winkler vom Forschungszentrum Jülich entstanden sind, zeigen eine sehr gute Übereinstimmung mit den experimentellen Daten. Erstmals wurden Korrelationsfunktionen einzelner Aktinfilamente im halbverdünnten Bereich gemessen. Die charakteristische Abfallzeit der Korrelationsfunktion als Maß für die Dynamik der Biegemoden sinkt mit steigender Aktinkonzentration. Für Aktinkonzentrationen von 0,01 mg/ml bis 1 mg/ml folgt die Abfallzeit einem Skalengesetz tau ~ c^(-0,48 +- 0,03). Neben der Diffusion wurde in dieser Arbeit die Dynamik in Strömungen untersucht. Zur Verfolgung von gerichteten Transportprozessen wurden zwei Foki mit einem lateralen Abstand von 5 Mikrometern erzeugt. Durch eine Kreuzkorrelation der beiden getrennten Intensitätssignale lässt sich die Zeit bestimmen, die die Teilchen zum Durchlaufen des Abstandes der beiden Foki benötigen. Mit dieser mikroskopischen "Lichtschranke" wurden Flussgeschwindigkeiten in einem 100 Mikrometer hohen Kanal mit mikrometergenauer Ortsauflösung gemessen. Die Scherverdünnung einer Hyaluronsäurelösung konnte anhand des Geschwindigkeitsprofils nachgewiesen und eine kritische Scherrate von 285 +- 30 s^(-1) bei einer Polymerkonzentration von 2,5 mg/ml bestimmt werden.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Einzelmolekülspektroskopie von organischen Farbstoffmolekülen in porösen Festkörpern und Tieftemperaturspektroskopie an dem grün fluoreszierenden Protein

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Jul 15, 2002


Die Anwendung der Einzelmolekülspektroskopie auf poröse Festkörper wird erstmals in dieser Arbeit beschrieben. Um diese relativ neue Methode auf die Untersuchung von Farbstoffen in porösen Festkörpern anzuwenden, wurde ein konfokales Mikroskop so umgebaut, daß es zur Detektion und Spektroskopie einzelner Moleküle einsatzfähig ist. Dafür wurden verschiedene optische Detektionssysteme aufgebaut, um alle im Fluoreszenzlicht enthaltenen Informationen zu erhalten. Mit einer Avalanche Photodiode wurde die Empfindlichkeit des Mikroskops auf die Detektion einzelner Lichtquanten gesteigert. Mit einem gepulsten Laser wurde der ZeitbereichObwohl die Einzelmolekülspektroskopie im Vordergrund der Arbeit steht, sind auch einige interessante Beobachtungen an porösen Materialien mit vielen Farbstoffmolekülen (Ensemblemessungen) durchgeführt worden. Aufgrund des hohen dreidimensionalen Auflösungsvermögen des konfokalen Mikroskopes war es möglich, auch an nur wenige Mikrometer großen Kristallen ortsaufgelöste Untersuchungen durchzuführen. Bisher war es oft nicht möglich, zwischen Oberflächeneffekten und Eigenschaften, die in der Porenstruktur hervorgerufen werden, zu unterscheiden. Untersuchungen mit vielen Farbstoffmolekülen (Ensemblemessungen) zeigten, daß auch scheinbar perfekte Kristalle im Inneren oft unregelmäßig aufgebaut sind. So wurde eine Methode entwickelt, um Defektstrukturen in Kristallen mit Fluoreszenzfarbstoff anzufärben und dreidimensional mit dem konfokalen Mikroskop darzustellen. Große kalzinierte MFI Kristalle besitzen Defektstrukturen, die sich im Inneren entlang der langen Kristallachse ausbreiten. Darüber hinaus konnte gezeigt werden, daß scheinbar homogen mit Farbstoff beladene Kristalle oft eine sehr ungleichmäßige Farbstoffverteilung besitzen. Auch Kristalle, die schon während der Synthese mit Farbstoff beladen werden, sind oft nicht gleichmäßig beladen. Dreidimensionale Fluoreszenzbilder von großen und regelmäßig aufgebauten AlPO4-5 Kristallen, die mit dem Farbstoff DCM beladen wurden, zeigten verschiedene geordnete und ungeordnete Strukturen. Durch die Analyse der Polarisation kann die Orientierung der Farbstoffmoleküle untersucht werden. Untersuchungen an verschieden großen Oxazin Farbstoffen, die während der Synthese in AlPO4-5 eingebaut wurden, zeigten, daß die Ausrichtung entlang der Porenrichtung mit steigender Molekülgröße abnimmt. Das kleine Oxazin 1 ist noch relativ gut orientiert, während das große Oxazin 750 ohne Vorzugsrichtung eingebaut wird. In verschiedenen M41S Materialien wurde die Diffusion von Farbstoff untersucht. Fluoreszenzbilder von M41S Monolithen zeigten das Eindiffundieren verschiedener Farbstoffe in den Festkörper. Über die zeitabhängige Analyse der Eindringtiefe konnten dadurch die Diffusionskonstanten ermittelt werden. Es zeigte sich, daß die Diffusion jeweils bei geladenen Molekülen, größeren Molekülen und bei kalziniertem Monolithen verlangsamt wird. Die Untersuchung des Diffusionsverhaltens in einer M41S Nadel zeigte eine etwa doppelt so schnelle Diffusion quer zur Nadel. Dies steht in Übereinstimmung zu elektronenmikroskopischen Bildern, die zeigen, daß die Nadeln aus zirkularen Poren besteht, die quer zur Nadelrichtung orientiert sind. Im Verlauf dieser Arbeit wurden erstmals einzelne Farbstoffmoleküle innerhalb von porösen Festkörpern detektiert. Im Vergleich zu Referenzproben, bei denen der Farbstoff in einer dünnen Polymerschicht eingebettet wird, ist das Signal zu Untergrund Verhältnis der Einzelmoleküluntersuchungen in den porösen Festkörpern etwas geringer. Auch an der Photostabilität der Fluoreszenzfarbstoffe konnte durch die Einlagerung in die Porenstrukturen keine Verbesserung beobachtet werden. Die Moleküle können nicht nur detektiert, sondern auch spektroskopiert werden. Dabei konnten durch die Analyse der Fluoreszenz verschiedene Parameter bestimmt werden, wie folgende Tabelle zeigt: der Detektion bis hinab in den Nanosekundenbereich erweitert. Durch den Einbau einer Lambda-Halbe Platte wurde die Polarisation des Laserlichtes beeinflußt, um die Orientierung eines einzelnen Moleküls zu bestimmen. Schließlich wurde durch den Einsatz eines Prismas und einer empfindlichen CCD-Kamera die spektrale Aufspaltung ermöglicht, um damit die Fluoreszenzspektren zu bestimmen. Mit allen Experimenten war es nicht nur möglich statische Eigenschaften der einzelnen Fluoreszenzfarbstoffe zu bestimmen, sondern auch deren dynamische Veränderungen. Eine der wichtigsten Anforderungen an organische Farbstoffmoleküle für Einzelmolekülspektroskopie ist die Photostabilität. Um geeignete Farbstoff für den Einbau in die Porenstrukturen zu erhalten, wurden die Photostabilitäten verschiedener Farbstoffe untersucht. Dazu wurden von einigen ausgewählten Farbstoffen die detektierbaren Fluoreszenzphotonen gezählt. Es stellte sich heraus, daß das Farbstoffmolekül TDI in einer dünnern PMMA Schicht eine außergewöhnlich hohe Photostabilität besitzt. Einige TDI-Molekülen emittieren sogar 10 11 Fluoreszenzphotonen bis zum irreversiblen Photobleichen. Zum anderen wurde für sehr instabile Farbstoffmoleküle eine Methode entwickelt, um durch Bleichexperimente an einem Ensemble von Molekülen mit dem konfokalen Mikroskop die Anzahl der emittierten Fluoreszenzphotonen zu ermitteln. Für den Einbau in poröse Festkörper wurden daraufhin einige Oxazinfarbstoffe und das in biologischen Untersuchungen häufig verwendete Cy5 ausgewählt. Diese Farbstoffe können im roten Spektralbereich anreget werden und besitzen mit etwa 10 7 emittierten Fluoreszenzphotonen eine relativ gute Photostabilität. Als Porenstruktur wurden besonders zwei Materialien untersucht. Die Porenstruktur AFI, die im Material AlPO4-5 vorkommt, besitzt eindimensionale Kanäle, die hexagonal wie in einer Bienenwabe angeordnet sind. Von diesem Material können auch regelmäßige Kristalle hergestellt werden, die bis zu einem Millimeter lang sind. Leider sind die Poren des AlPO4-5 mit 0,73 nm Innendurchmesser sehr eng. Alle geeigneten Fluoreszenzfarbstoffe sind etwas größer und werden daher in mehr oder weniger großen Deformationen in dem Kristall eingelagert. Größere Poren besitzen die mesoporösen M41S Materialien. In diese passen alle Farbstoffe ohne Deformation hinein. Jedoch ist die Kristallgröße der M41S Materialien auf wenige µm beschränkt. Mit der Methode der homogenen Fällung können die bisher größten hexagonal geordneten MCM-41 Kristalle hergestellt werden. Zentimeter große hexagonale M41S Festkörper (Monolithe), die durch eine Synthese mit einem Flüssigkristall hergestellt werden, verlieren, wie hier gezeigt wird, während der Synthese ihre eindimensionale Ausrichtung der Poren.Beobachtete Eigenschaft des Lichtes Information aus statischen Bestimmungen Information aus zeitabhängigen Bestimmungen Intensität immer Notwendig Raten (Singulett, Triplett, etc.) Ort Position Diffusion, Transport Polarisation Orientierung Drehung, Rotation Energie Fluoreszenzspektren spektrale Diffusion Diese verschiedenen Untersuchungsmöglichkeiten wurden aufgebaut und an einer Referenzprobe (TDI in PMMA) getestet. Für die Datenanalyse konnte zum Teil auf Methoden in der Literatur zurückgegriffen werden. Es wurde darauf geachtet, daß immer eine Fehlerabschätzung oder eine Simulation durchgeführt wurde, damit die Ergebnisse sinnvoll interpretiert werden konnten. Oft konnten schon an der Referenzprobe (TDI in PMMA) sehr interessante Ergebnisse erhalten werden. So wurden z.B. neben der extrem hohen Photostabilität zwei verschiedene Populationen der Triplettlebensdauer gemessen. Die Position eines einzelnen TDI Moleküls konnte durch die Detektion vieler Photonen auf besser als 1 nm bestimmt werden. Die Analyse von zeitabhängigen Orientierungswinkeln deutet darauf hin, daß ein TDI Molekül in PMMA noch eine sehr geringe Wackelbewegung (~1°) ausführen kann. Bei der Analyse mehrerer 10000 Fluoreszenzspektren von einem TDI Molekül konnten spontane Änderungen der Fluoreszenzwellenlänge und der Schwingungskopplung beobachtet werden. Obwohl die Messungen in den Porenstrukturen aufgrund der geringeren Photostabilität nicht so präzise Ergebnisse liefern, konnten auch hier interessante Beobachtungen gemacht werden. Durch die Analyse der Orientierungswinkel vieler individueller Farbstoffmoleküle konnte gezeigt werden, daß die einzelnen Oxazinfarbstoffe in AlPO4-5 eine gaußförmige Verteilungsfunktion bezüglich ihres Tiltwinkels zur Porenrichtung aufweisen. Die zuvor erwähnten Messungen an einem Ensemble von Molekülen können die Form der Verteilungsfunktion nicht bestimmen. Aufgrund der Kenntnis einer gaußförmige Verteilungsfunktion kann auf ein statistisches Einbauverhalten der Farbstoffmoleküle in Defektstrukturen während der Synthese geschlossen werden. Auch in einem MCM-41 Kristall, dessen große Poren jeden beliebigen Einbauwinkel des Farbstoffes Cy5 erlauben würden, wird eine bevorzugte Orientierung beobachtet. Der Orientierungswinkel zur Porenrichtung zeigt auch hier eine gaußförmige Verteilungsfunktion. Interessanterweise wird bei der frontalen Ansicht auf die hexagonale Struktur (entlang der Bienenwabenstruktur) eine bevorzugte Orientierung auf die Flächen des Sechsecks beobachtet. Eine Ensemblemessung kann unmöglich diese bevorzugte Orientierung detektieren. Neben diesem statischen Verhalten zeigen einige wenige Moleküle auch eine Änderung der Molekülorientierung. Zwei individuelle Oxazin 1 Moleküle änderten ihre Orientierung in AlPO4-5 während der Messung spontan. Im Vergleich zu den anderen Oxazin 1 Molekülen besaßen diese beiden einen ungewöhnlich großen Orientierungswinkel gegen die Porenrichtung. Vermutlich wird die Bewegung durch einen größeren Defekt der Porenstruktur ermöglicht. Ein TDI Molekül im Inneren eines M41S Monolithen zeigte sogar eine mehrfache Drehung zwischen 3 verschiedenen Orientierungen.Eine Dynamik bezüglich des Ortes zeigten einzelne TDI Moleküle im M41S Monolith. Aufgrund der starken hydrophoben Eigenschaften des TDI kann davon ausgegangen werden, daß sich der Farbstoff immer noch im Inneren der Mizelle des Flüssigkristalls befindet, aus dem der Festkörper synthetisiert wurde. Die Diffusionsbewegung kann durch eine Serie von Fluoreszenzbilden mit dem konfokalen Mikroskop direkt verfolgt werden. Entgegen der erwarteten eindimensionalen Diffusion, die die hexagonale Struktur des Monolithen eigentlich erwarten läßt, wird eine isotrope Diffusion ohne Vorzugsrichtung beobachtet (D ~ 0,04 µm 2 /s). Im reinen Flüssigkristall dagegen ist die eindimensionale Diffusion vorhanden. Vermutlich werden die eindimensionalen Poren bei der Synthese der festen Silikatwand so stark verknäult, daß auf der beobachteten Längenskala ein Festkörper ohne Vorzugsrichtung entsteht. Auch die viel langsamere Diffusion im Vergleich zum reinen Flüssigkristall (D ~ 2 µm 2 /s) kann über diese Verknäulung der Poren erklärt werden. Schließlich wurden noch Messungen durchgeführt, um simultane Änderungen der Orientierung, Fluoreszenzspektren oder Triplettraten an einem einzelnen Farbstoffmolekül zu beobachten. Besonders die gleichzeitige Detektion von Fluoreszenzspektren und der Orientierung lassen sich experimentell gut durchführen. Zur Interpretation der Ergebnisse muß hier zwischen einer starken und einer schwachen Kopplung zwischen Gast und Wirt unterschieden werden. Bei einer polaren Probe wird eine starke Wechselwirkung zwischen Gast und Wirt erwartet. Diese müßte dazu führen, daß sich Änderungen in der Orientierung auch in geänderten Fluoreszenzspektren und umgekehrt bemerkbar machen. Bei einem geladenen Molekül wie Oxazin 1 wird solch eine starke Kopplung des elektronischen Systems an die polare AlPO4-5 Umgebung erwartet. Eine starke Änderung des Fluoreszenzspektrums könnte daher von einer Umorientierung des Farbstoffes herrühren. Bei den durchgeführten gleichzeitigen Messungen konnte aber nur spektrale Diffusion (±1-20 nm), aber keine gleichzeitige signifikante Umorientierung (>3°) beobachtet werden. Eine Erklärung für dieses Verhalten könnte die Bewegung des Gegenions des Farbstoffmoleküls sein, dessen Lage einen großen Einfluß auf die Fluoreszenzeichenschaften hat. Eine Umorientierung mit gleichzeitiger Detektion der Fluoreszenzspektren konnte jedoch nicht gemessen werden. Beide Ereignisse, Umorientierungen und spektrale Änderungen, konnten an TDI im M41S Monolith detektiert werden. Dabei zeigte sich aber, daß es sich hier um zwei unabhängige Prozesse handelt. Deutliche spektrale Sprünge (> 3 nm) korrelieren nicht mit deutlichen Umorientierungen (~60°). Eine geometrische Änderung des Farbstoffmoleküls oder der näheren Umgebung scheidet daher als Ursache für die spektrale Diffusion aus. Da hier aber eine schwache Wechselwirkung zwischen dem unpolaren TDI und der unpolaren Tensidumgebung vorliegt, werden auch keine starke Änderungen der Fluoreszenzspektren während der Umorientierung erwartet. Die spektrale Diffusion wird hier vermutlich von kleinen diffundierenden Teilchen (z.B. O2 oder Ionen) verursacht, die sich unabhängig von den Farbstoffmolekül bewegen können. Die Methode der Einzelmolekülspektroskopie liefert neue Einblicke in poröse Festkörper. Besonders durch die zeitabhängigen Untersuchungen können Informationen erhalten werden, die zuvor unter dem Mittelwert verborgen blieben. Ein kleiner Teil der Arbeit beschäftigt sich mit der Tieftemperaturfluoreszenz-spektroskopie an dem grün fluoreszierendem Protein (GFP). Dafür wurden der Wildtyp und verschiedene Varianten mit Mutationen in der Umgebung des zentralen Chromophors bei 2 K untersucht. Im Vergleich zur Raumtemperatur zeigten die Spektren bei tiefen Temperaturen deutlich mehr Struktur. Dadurch konnten verschiedene Sub-Zustände in den Varianten identifiziert werden. Bei fast allen Varianten konnten durch intensive Bestrahlung langwellig absorbierende Photoprodukte erzeugt werden, die erst bei etwa 50 bis 100 K wieder zerfallen. Obwohl eine relativ starke Elektron-Phonon-Kopplung beobachtet wird, ist an einigen ausgewählten Stellen auch hochaufgelöste Tieftemperaturspektroskopie wie spektrales Lochbrennen und Fluoreszenzlinienverschmälerung möglich. Durch Temperatur-Ableitungs-Spektroskopie werden an Wildtyp-GFP die Energien und Verteilungsfunktionen der Zerfallsbarrieren der metastabilen Photoprodukte bestimmt. Schließlich wurde durch temperaturabhängige Kurzzeitspektroskopie an Wildtyp-GFP der 'Excited state proton transfer' (ESPT) charakterisiert. Für diesen wird bis etwa 50 K eine thermische Barriere nach Arrhenius mit einer Aktivierungsenergie von ~2,3 kJ/mol gefunden. Unterhalb von etwa 50 K dominiert vermutlich ein Tunnelprozeß.

Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 01/07
Altersveränderungen am Talocruralgelenk des Pferdes unter Berücksichtigung des Gelenkknorpels

Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 01/07

Play Episode Listen Later Feb 28, 1936


49 Talocruralgelenke vom Pferd (32 Paare) wurden 4 Alterklassen zugeordnet: 1, 6, 12, 12-24 Jahre. Nach makroskopischer Beurteilung wurden je 3 Scheiben (3-5mm) senkrecht zur Oberfläche geschnitten, mit 10% Formalin fixiert und in 5% Salpetersäure entkalkt. Feinschnitte von 12-20 Mikrometer wurden gefärbt mit: H.E., v.G., Sudan III, Scharlachrot, Elastinfärb. n. Weigert. Makroskopische Altersveränderungen: Die Farbe des Knorpels geht von einer milchig-bläulich-weißen in eine hellgelbe, graugelbe oder braungelbe Farbe über. Der spiegelnde Glanz und die Transparenz verlieren sich immer mehr. Die Oberfläche wird uneben, rauh, samtartig, aufgefasert. Es entstehen oberflächliche und tiefe Defekte, Usuren und Schleiffurchen. Meist findet sich der Knorpeluntergang an der Innenseite des lat. und an der Außenseite des med. Rollkammes sowie an der Innenseite der lat. und der Außenseite der med. Rinne. An der Rolle des Talus finden sich die Veränderungen meistens in den mittl. Partien, an der Schraube in der vord. Hälfte. In den vord. Abschnitten der Rolle finden wir die Folgen der zu geringen Beanspruchung in Form von Erweichung und Usuren. Die Gelenkflächen ändern ihre Form: Oft eine Vertiefung der Schraubenrinnen und eine allmähliche Gratbildung an den Rollkämmen. Der Knorpelrand zeigt eine puffige, samtartige, weiche, später zerfressene Oberfläche und oft bindegewebige Wucherungen. Histologische Altersveränderungen: Demaskierung der Fibrillen und Rissbildung im Knorpel des Gelenkflächenrandes, bindegewebige Ersatzneubildung bei Knorpelusuren, fettige Degeneration, Knorpelverkalkung, Knorpelerweichung, Knorpelnekrose und Weichselbaum'schen Lücken. Die amyloide Degeneration konnte nicht nachgewiesen werden. Hat eine erhöhte Beanspruchung des Knorpels nicht dessen Zerstörung zur Folge, dann verdichtet sich das darunter liegende Knochengewebe, während der Knorpel zellreicher wird. Wird dagegen die unverkalkte Schickt des Knorpels zerstört, dann finden wir außer der stärkeren Knochenspongiosa eine Wucherung oder mindestens Verdickung der verkalkten Zone des Knorpels. Die Synovialgruben (Knorpelgruben) können im Alter noch vollkommen erhalten sein. Großen Teils sind sie nur noch angedeutet oder fehlen, sind bindegewebig aufgefüllt oder ihre Umgebung abgetragen. Sie lassen sich immer durch das Fehlen der verkalkten Zone und den bindegewebigen Charakter des neugebildeten Knorpels nachweisen. Manchmal bildet sich eine sehr schmale verkalkte Zone. Bei im Alter voll erhaltenen Knorpelgruben hat sich die bindegewebige Auskleidung auf den benachbarten Knorpel ausgedehnt und diesen teilweise eingeschmolzen. Am Rand zeigt die verkalkte Zone oft eine Wucherung.