POPULARITY
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 15/19
In der deutschen Bevölkerung leidet, bezogen auf den BMI (Body-Mass-Index), etwa jeder zweite an Übergewicht. Innerhalb dieser Gruppe müssen dabei über 25 % als krankhaft adipös eingestuft werden. Trotz der weiten Verbreitung, ist zurzeit weder eine erfolgreiche medikamentöse Therapie der Adipositas verfügbar, noch sind die grundlegenden Mechanismen der Gewichtsregulation vollständig verstanden. Der MC4R (Melanocortin-4-Rezeptor) und sein Ligand α-MSH (melanocyte-stimulating hormone) stellen einen entscheidenden Punkt bei der Energieregulation des Körpers dar und sind damit eine vielversprechende pharmakologische Zielstruktur zur Behandlung von Adipositas. Trotz der enormen Bedeutung dieses Rezeptors ist bemerkenswert wenig über die MC4R-induzierten Signalwege bekannt. Ziel dieser Arbeit war es, α MSH-induzierte anorexigene Signal¬wege in murinen hypothalamischen Zellen (GT1 7), die den MC4R endogen exprimieren, zu identifizieren und zu charakterisieren. In dieser Arbeit konnte mit hochspezifischen Antikörpern gezeigt werden, dass nach 20 h Serumentzug die Stimulation von GT1-7 Zellen mit α MSH die cAMP-abhängige PKA (Proteinkinase A) aktiviert und somit zu einer ERK-1/2 (extracellular signal-regulated kinase-1/2) Phosphorylierung führt. Die aktivierte ERK-1/2 inhibiert anschließend die konstitutiv aktive AMPK-Kinase LKB1 (liver kinase B1), was in einer verminderten Phosphorylierung der nach¬geschalteten AMPK (AMP-activated protein kinase) an Threonin 172 resultiert. Damit ergibt sich eine lineare α-MSH-induzierte Signalkaskade, bei der die AMPK Dephosphorylierung von PKA, ERK-1/2 und LKB1 abhängig ist. Die Durchführung von Versuchen nach mehrstündigem Serumentzug ist zwar etabliert, führt aber zu Veränderungen in der Zelle, die sich unter anderem auf Proliferation und Morphologie auswirken. Da unklar ist, welche Versuchs¬bedingungen dem physiologischen Zustand eines Neurons entsprechen, wurde die α MSH-induzierte Signalkaskade zusätzlich unter serumhaltigen Bedingungen untersucht. Dabei führt die Stimulation mit α-MSH immer noch zu einer Aktivierung der ERK-1/2 und auch zu einer Dephosphorylierung der AMPK, letzteres allerdings unabhängig von PKA und ERK-1/2. Des Weiteren wird die AMPK nicht mehr exklusiv durch LKB1 reguliert, sondern die AMPK-Kinase TAK1 (TGF-β-activated kinase-1) spielt ebenfalls eine Rolle. Erste Hinweise aus einem Kinase-Aktivitäts-Array deuten daraufhin, dass diese Unterschiede in einer distinkten ERK-1/2 Aktivierung, über Rap-1 unter serumfreien oder über K-Ras unter serumhaltigen Bedingungen, begründet sein könnten. Diese Dissertation soll zu einem besseren Verständnis von anorexigenen Signal-wegen im Hypothalamus beitragen und könnte bei der Generierung neuer Anti Adipositas Medikamente hilfreich sein.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 08/19
Die akute Pankreatitis beginnt in den exokrinen Azinuszellen des Pankreas und wird durch verschiedene, bisher nicht vollständig geklärte, intrazelluläre Vorgänge ausgelöst. Das Hormon Cholezystokinin stimuliert Signaltransduktionskaskaden, welche über eine Reorganisation des Aktinzytoskeletts zu einer akuten Organentzündung führen. In dieser Arbeit wurde untersucht, ob ein über das Enzym RhoA vermittelter intrazellulärer Signalweg zu Aktin-bindenden Proteinen im Pankreas diese Reaktion hervorruft und durch Cholezystokinin reguliert werden kann. Die Ergebnisse der vorliegenden Arbeit bringen den Nachweis der Existenz der im Folgenden beschriebenen Signaltransduktionskaskade in exokrinen Azinuszellen: RhoA führt über eine Aktivierung von ROCK II zu einer Phosphorylierung der Zieluntereinheit MYPT1 der Myosinphosphatase und somit zu einer Hemmung des Gesamtenzyms. Dadurch transloziert die sowohl in der Zytosol- als auch in der Zytoskelettfraktion vorkommende, unphosphorylierte Form MYPT1 vollständig ins Zytosol. Die Myosinphosphatase führt zu einer Dephosphorylierung der MLC von Myosin. Die fast vollständig in der Zytoskelettfraktion exprimierte phosphorylierte Form pMLC transloziert im dephosphorylierten Zustand ins Zytosol. Durch die Interaktion mit MYPT1 kann MLC zu einer Aktinmyosinkontraktion und somit zu einer Reorganisation des Aktinzytoskeletts führen. Über alternative Signalwege bewirkt RhoA eine Aktivierung von mDia, welches mittels Profilin zu einer Aktinpolymerisation führt. Über ROCK II wird eine Aktivierung der LIMK durch RhoA vermittelt. Dadurch wird Cofilin vermehrt phosphoryliert, wodurch die Depolymerisation der Aktinfilamente gehemmt wird. Durch eine dosis- und zeitabhängige Stimulation mit physiologischen und supraphysiologischen Dosierungen Cholezystokinin wird der Signalweg über RhoA gehemmt. Dadurch kann eine Kontraktion des Aktinzytoskeletts stattfinden und es zu einer Fusion von Vesikeln und zu einer Inhibierung des regulären Sekretionsmechanismus der Pankreaszellen kommen. Da die Hemmung von Aktin-modulierenden Proteinen eine bedeutende Rolle bei der Organfunktion und Entwicklung der akuten Pankreatitis spielt, trägt diese Arbeit dazu bei, sowohl die physiologischen als auch die pathophysiologischen Vorgänge innerhalb der Azinuszellen näher zu charakterisieren. Dies könnte zu einem besseren Verständnis der dieser Erkrankung zugrundeliegenden Mechanismen führen und somit einen therapeutischen Ansatz bei der akuten Pankreatitis darstellen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
In der akuten myeloischen Leukämie (AML) sind zwei Cluster aktivierender Mutationen im ´FMS-like tyrosine kinase-3´ (FLT3)-Gen bekannt: FLT3-´internal tandem duplications´ (FLT3-ITD) in der juxtamembranösen (JM)-Domäne in 20 - 25 % der Patienten und FLT3-Punktmutationen in der Tyrosinkinasedomäne (FLT3-TKD) in 7 – 10 % der Patienten. In dieser Studie haben wir eine neue Klasse aktivierender Punktmutationen (PM) charakterisiert, die in einem 16-Aminosäuren-Abschnitt der JM-Domäne von FLT3 (FLT3-JM-PM) lokalisiert sind. Die Expression von vier FLT3-JM-PM in IL-3-abhängigen Ba/F3-Zellen führte zu wachstumsfaktor-unabhängigem Wachstum, Hyperproliferation in Gegenwart von FL und Resistenz gegenüber apoptotischem Zelltod. FLT3-JM-PM-Rezeptoren waren autophosphoryliert und zeigten verglichen mit FLT3-WT-Rezeptoren eine höhere konstitutive Dimerisierungsrate. Als einen molekularen Mechanismus konnten wir die Aktivierung von STAT5 und eine erhöhte Expression von Bcl-x(L) in allen FLT3-JM-PM-exprimierenden Zellen im Vergleich zu FLT3-WT-Zellen zeigen. Der FLT3-Inhibitor PKC412 inhibierte das wachstumsfaktor-unabhängige Wachstum der FLT3-JM-PM-Zellen. Verglichen mit FLT3-ITD- und FLT3-TKD-Zellen, zeigten die FLT3-JM-PM-Zellen ein schwächeres Transformationspotential, verbunden mit geringerer Autophosphorylierung des Rezeptors und dessen nachgeordneten Ziel-Protein STAT5. Die Kartierung der FLT3-JM-PM auf die Kristallstruktur des FLT3-Proteins zeigte, dass diese Punktmutationen wahrscheinlich die Stabilität der autoinhibitorischen JM-Domäne reduzieren. Dies liefert eine strukturelle Erklärung für das transformierende Potential dieser neuen Klasse aktivierender Mutationen von FLT3. Die defekte Negativ-Regulation aktivierter Rezeptortyrosinkinasen (RTKs) ist ein bekannter Mechanismus der Onkogenese. Die RTK FLT3 wird in frühen myeloischen und lymphoiden Progenitorzellen exprimiert und ist an der Pathogenese der AML beteiligt. Das ´Casitas B-lineage lymphoma´ (CBL)-Protein ist in der Evolution stark konserviert und übernimmt wichtige Funktionen in der Negativ-Regulation der Signalübertragung verschiedener Zelloberflächenrezeptoren. Zwei CBL-Deletionsmutanten, die in vitro Fibroblasten transformieren, wurden aus murinen Retroviren isoliert, die Vorläufer-B-Zelllymphome induzieren. In dieser Arbeit konnte gezeigt werden, dass CBL nach FL-Stimulierung von FLT3-WT-exprimierenden Ba/F3-Zellen phosphoryliert wird und damit in die FLT3-nachgeordnete Signaltransduktion involviert ist. Die Koexpression der CBL-Deletionsmutanten CBL-70Z oder v-CBL mit FLT3 führt zur Transformation von Ba/F3-Zellen. Das transformierende Potential wird durch den FLT3-Rezeptor vermittelt, da die selektiven FLT3-PTK-Inhibitoren SU5614 und PKC412 die Proliferation der FLT3-WT/CBL-mutanten-Zellen vollständig aufheben. Die Aktivierung des PI3K/mTOR/AKT-Signalweges, jedoch nicht der SRC-Kinasen und MAPK, trägt wesentlich zum hyperproliferierenden Phänotyp der FLT3-WT/CBL-mutanten Zellen nach Ligandenstimulierung bei. Die Koexpression von CBL-70Z oder v-CBL mit FLT3 führt zur konstitutiven Aktivierung der FLT3-Rezeptoren sowie STAT5 und AKT. Nach FL-Stimulierung konnten wir eine Hyperaktivierung von STAT5 und AKT in FLT3-WT/CBL-70Z und FLT3-WT/v-CBL-Zellen beobachten. An der Interaktion von CBL und FLT3 sind die TKB-Domäne des CBL-Proteins und die JM-Tyrosine Y589 und Y599 des FLT3-Rezeptors beteiligt. Die Internalisierung der FLT3-Rezeptoren wird durch die Koexpression von CBL-70Z nicht verändert. Allerdings ist CBL an der Ubiquitinierung und Degradierung von Rezeptoren beteiligt und wir konnten zeigen, dass CBL-WT die Dephosphorylierung und Degradierung des FLT3-Rezeptors fördert. Es wurde vorgeschlagen, dass die CBL-Deletionsmutanten in dominant-negativer Weise agieren und die negativ-regulatorische Funktion von CBL-WT blockieren. Wir haben eine CBL-Deletionsmutante in den AML Zelllinie MOLM-13 und MOLM-14 identifiziert. Dieser CBL-Mutante fehlt Exon 8, das für Teile der Linker- und RING-Finger-Domäne kodiert, und erinnert an CBL-70Z. Die Entdeckung einer möglicherweise transformierenden CBL-Mutante in AML-Zellen unterstützt die Hypothese, dass CBL zum malignen Phänotyp der AML beiträgt. Zusammenfassend haben wir gezeigt, dass die strukturelle oder funktionelle Inaktivierung negativ-regulatorischer Mechanismen das transformierende Potential von FLT3 aktivieren kann: 1. Der Verlust der Autoinhibition durch Punktmutationen, die die geordnete Konformation der autoinhibitorischen JM-Domäne stören. 2. Die funktionelle Inaktivierung eines negativ-regulatorischen Proteins durch ´loss-of-function´-Mutationen. Diese Daten unterstreichen die zentrale Rolle von FLT3 in der Leukämogenese und als ein Zielprotein für therapeutische Ansätze.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19
In der vorliegenden Arbeit wurde die Tyrosinphosphatase hVH-5 nach Genveränderungen untersucht. Als Mitglied der Familie der dual-spezifischen Phosphatasen ist hVH-5 (homologue of vaccinia virus H1 phosphatase gene clone 5) an der Signaltransduktion der Zelle durch Dephosphorylierung von stress-aktivierter Proteinkinase (SAPK) und p38 beteiligt. Aufgrund seiner Rolle als potentielles Tumorsuppressorgen können Genveränderungen oder Fehlregulationen von hVH-5 zur Entstehung von Tumoren beitragen. Wie bereits bekannt ist, zählt die Lokalisation dieses Gens auf Chromosom 11p15.5 zu häufig beobachteten Loss Of Heterozygosity (LOH)-Regionen bei Krebserkrankungen, u.a auch bei Brustkrebs. Im Rahmen dieser Arbeit wurde eine Expressionsanalyse der hVH-5 Phosphatase in Normalgewebe und Brustkrebszelllinien durchgeführt. Es konnte gezeigt werden, dass hVH-5 nicht nur, wie schon bekannt, in humanem Gehirn, Herz und Skelettmuskel transkribiert wird, sondern eine Trankription darüber hinaus auch noch in 10 weiteren humanen Geweben sowie in allen untersuchten Brustkrebszelllinien nachgewiesen werden konnte. Um ein zeitsparendes und effektives Mutationsscreening zu ermöglichen, wurde eine neue Methode, Conformation Sensitive Gel Electrophoresis (CSGE), etabliert. Dadurch konnte bereits im ersten Exon dieser Phosphatase eine Heteroduplexbildung als Hinweis auf eine Genveränderung sichtbar gemacht werden. Mittels Sequenzierungs- sowie Restriktions-Fragment-Längen-Polymorphismus-Analyse konnte die exakte Nukleotidsequenz bestimmt werden. Es wurde festgestellt, dass es sich hierbei um eine bisher unbekannte Gensequenz eines prozessierten Pseudogens der hVH-5 Phosphatase handelt. Prozessierte Pseudogene sind dadurch definiert, dass sie typischerweise durch einen Verlust des Promotors transkriptionell inaktiv sind. Eine Datenbankrecherche (Sanger Center) ermöglichte die Lokalisation des Pseudogens auf Chromosom 10q22.2. Phylogenetische Analysen führten zu dem Ergebnis, dass das Gen vor ca. 6,8 Mio. Jahren entstanden sein müsste. Es konnte gezeigt werden, dass das in dieser Arbeit beschriebene Pseudogen von hVH-5 (ψhVH-5) entgegen der Definition eines Pseudogens in gesunden menschlichen Geweben transkribiert wird. Diese Tatsache deutet auf eine evtl. funktionelle Bedeutung dieses Gens hin. Weiterhin konnte ein möglicher Zusammenhang zwischen der Transkription des Pseudogens und der Entstehung von Brustkrebs nicht ausgeschlossen werden, da dieses in drei von 14 untersuchten Brustkrebszelllinien nicht transkribiert wird. Aus der Übersetzung der Nukleinsäuresequenz von ψhVH-5 in Aminosäuren resultierte ein Peptid von 8.8 kDa, welches sich stark vom hVH-5 Wildtyp unterscheidet und keinerlei funktionelle Domänen aufweist. Es konnte weder ein Nachweis des transient überexprimierten Proteins noch eines in vivo translatierten Proteins erbracht werden. Die Akkumulation der zahlreichen Mutationen im Pseudogen verglichen mit dem Wildtyp deutet stark darauf hin, dass dieses Gen in der Evolutionsgeschichte aufgrund fehlender funktioneller Bedeutung zumindest zeitweise keinem Selektionsdruck unterlag oder aber sich zu einem selbständigen Gen mit noch unbekannter Funktion weiterentwickelte. In der vorliegenden Arbeit konnten Hinweise dafür gebracht werden, dass ψhVH-5 sich möglicherweise derart entwickelt hat, um durch andere Regulationsmechanismen, beispielsweise solche, die für nicht-kodierende RNAs bekannt sind, mit dem Wildtypgen der hVH-5 Phosphatase zu interagieren.