Podcasts about aktinzytoskelett

  • 3PODCASTS
  • 4EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Jun 11, 2015LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about aktinzytoskelett

Latest podcast episodes about aktinzytoskelett

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 18/19
Untersuchung der putativen Interaktion der Hyaluronansynthase mit dem Aktinzytoskelett in humanen mesenchymalen Stammzellen

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 18/19

Play Episode Listen Later Jun 11, 2015


Hintergrund: Hyaluronan (HA) ist ein wichtiger Bestandteil von vielen Geweben und Flüssigkeiten des Körpers. HA beeinflusst die Makro- und Mikroumgebung und kann direkt über Rezeptoren wie CD44 (cluster of differentiation 44) und RHAMM (receptor for HA mediated motility) mit den Zellen wechselwirken. Dadurch hat HA Einfluss auf die Aktivierung, Migration und Proliferation von Zellen sowie auf den Umbau der extrazellulären Matrix. HA kann das Verhalten der Osteoblasten, Osteozyten und Osteoklasten beeinflussen und ist somit ein wichtiger Faktor sowohl für die gesunde Knochenhomöostase als auch für die Frakturheilung. Hyaluronansynthasen (HAS) sind komplexe Membranproteine, die für die Synthese von HA verantwortlich sind. Bei Säugetieren sind drei Isoformen bekannt: HAS1, HAS2 und HAS3. Sie zeigen eine hohe Homologie in ihrer Sequenz und Struktur, unterscheiden sich aber in Stabilität, Syntheserate und Länge des HA. Der genaue Regulierungsmechanismus der HAS ist noch nicht bekannt. Bisher wurde über eine Regulation durch externe Signalmoleküle, Ubiquitinierung oder Phosphorylierung berichtet. In der vorliegenden Arbeit wurde ein Modellsystem zur Untersuchung der Regulation der Aktivität der HAS aufgebaut. Mit diesem sollte die Interaktion der HAS mit dem Aktinzytoskelett als möglicher Regulationsmechanismus untersucht werden. Methoden: Zu diesem Zweck wurden drei Zelllinien hergestellt. Zum einen hTERT immortalisierte hMSCs (human mesenchymal stem cells), die sogenannten SCP1, welche jeweils eine der HAS-Isoformen, fusioniert mit einem eGFP-Tag, stabil exprimieren. Des Weiteren SCP1, die Lifeact-mRFPruby exprimieren, welches F-Aktin fluoreszenzmarkiert. Schließlich doppeltransduzierte hMSCs, welche sowohl HAS-eGFP als auch Lifeact-mRFPruby exprimieren. Als Gentransfersystem wurden Lentiviren eingesetzt. Zuerst wurden die Zellen hinsichtlich der stabilen und funktionellen Expression ihres Transgens anhand verschiedener Methoden untersucht. Mittels Immunfluoreszenzmikroskopie wurde eine Kolokalisation von Aktin und HAS dargestellt. In fluoreszenzmikroskopischen Timelapse-Aufnahmen wurden die Bewegungsmuster der HAS beobachtet. Ergebnisse: Mittels RT-PCR, Western Blot und Fluoreszenzmikroskopie wurde nachgewiesen, dass die Zelllinien SCP1-HAS1-eGFP D6, SCP1-HAS2-eGFP und SCP1-HAS3-eGFP E6 alle ihr jeweiliges HAS-eGFP-Gen stabil exprimieren. Die Funktionalität der HAS-eGFP wurde mit einem HA-spezifischen ELISA und mit einem selbst etablierten Aktivitätsassay untersucht, welcher das HA durch den biotinylierten HA-Bindekomplex (bHABC) färbt. Im ELISA zeigten alle Zelllinien eine statistisch signifikant höhere Hyaluronanproduktion als die Negativkontrolle. Die HAS3-überexprimierende Zelllinie erzielte von allen die höchste HA-Konzentration. In der Färbung mit bHABC war deutlich zu erkennen, dass diejenigen Zelllinien, in denen eine der HAS-eGFP-Isoformen überexprimiert wurde, eine stärkere Braunfärbung zeigten als Zellen der Negativkontrolle. Für den Nachweis, dass die HAS-eGFP in der Membran lokalisiert sind, wurden Immunfluoreszenzfärbungen gegen den Oberflächenmarker CD44 durchgeführt. Die fluoreszenzmikroskopischen Aufnahmen zeigten an Stellen, die durch die CD44-Färbung eindeutig als Membran zu erkennen sind, ebenfalls ein Signal für die HAS-eGFP. Dies bedeutet, dass die drei Isoformen der HAS-eGFP dort in der Zellmembran integriert vorlagen. Um eine Kolokalisation der HAS-eGFP mit dem Aktinzytoskelett darstellen zu können, erfolgte außerdem eine Färbung des Aktins mit Phalloidin. Bei allen Zelllinien konnte an ausgewählten Stellen eine solche Kolokalisation gesehen werden. Die hMSC-Lifeact-mRFPruby-Zellen wurden lebendig und fixiert im Fluoreszenzmikroskop betrachtet. Sie lieferten eine gute Darstellung des Zytoskeletts mit Stressfasern im Zellkörper und Aktinfilamenten im Zellcortex. Auffallend war, dass in den lebenden Zellen kurze Aktinfilamente zu sehen waren, die sich bei den fixierten Zellen nicht beobachten ließen. Um eine Interaktion zwischen den HAS-eGFP und dem Aktinzytoskelett in lebenden Zellen untersuchen zu können, wurden von den doppeltransduzierten hMSCs Timelapse-Aufnahmen angefertigt. Darin stellten sich die grün fluoreszierenden HAS-eGFP als globuläre Strukturen dar, die entlang der Aktinfilamente angeordnet waren und sich auch entlang dieser bewegten. Schlussfolgerung: Mit diesen Zellen wurde ein Modellsystem geschaffen, mit welchem eine Regulation der HAS über die Interaktion mit dem Zytoskelett untersucht werden kann. Genaueres Wissen über diesen Mechanismus kann für zukünftige Therapieansätze bei Frakturen und bei Knochenerkrankungen, wie z.B. der Osteoporose, richtungsweisend werden.

mit matrix arbeit bei migration regulation signal expression zum verhalten hintergrund ergebnisse stellen methoden darin schlie struktur aktivit strukturen bestandteil zweck dadurch faktor zuerst stabilit bisher oberfl aufnahmen darstellung interaktion untersuchung umbau zellen proliferation makro aktivierung beis mechanismus nachweis osteoporose synthese stammzellen schlussfolgerung therapieans sequenz rezeptoren auffallend bewegungsmuster membran geweben frakturen western blot zellmembran zelllinien aktin phosphorylierung ddc:600 cd44 signalmolek isoformen die funktionalit zelllinie homologie modellsystem zytoskeletts zytoskelett membranproteine transgens hmscs immunfluoreszenzf osteoblasten htert frakturheilung f aktin negativkontrolle osteoklasten kolokalisation aktinfilamente zellk lentiviren mittels rt pcr aktinzytoskelett
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
She4p,ein Regulator der Myosinfunktion in Saccharomyces cerevisiae

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Oct 22, 2004


Myosine sind molekulare Motoren, die an einer Vielzahl von zellulären Prozessen wie Bewegung, Zellteilung oder Polarität beteiligt sind. Ihr Grundaufbau gliedert sich in Motordomäne, Hals- und Schwanzdomäne. Der Motor interagiert ATP-abhängig mit dem Aktinzytoskelett und ist die krafterzeugende Komponente. Vergleicht man die verschiedenen Myosine miteinander, zeigt der Kopfbereich die höchste Konservierung. An den Motor schliesst sich der Halsbereich an, der die Bindestellen für regulatorische Untereinheiten wie z.B. Calmodulin beinhaltet. Der Schwanzbereich dient zum einem der Interaktion mit der transportierten Fracht und zum anderen der Dimerisierung oder Organisation in Filamente. In der Hefe Saccharomyces cerevisiae findet man fünf Myosine aus drei verschiedenen Klassen. Myo1p ist das einzige Klasse II Myosinund gehört zu den muskelähnlichen Myosinen, die sich in Filamenten organisieren. Myo2p und Myo4p gehören zu den Klasse V Myosinen und vermitteln Prozesse wie Vesikel-Transport, mRNALokalisation und Vererbung von Organellen und Endoplasmatischen Retikulum. Es wird vermutet, dass sie Dimere bilden, die als prozessive Motoren, also eigenständig, durch die Zelle wandern und so ihre Fracht an den Ort ihrer Bestimmung bringen. Myo3p und Myo5p sind in ihrer Funktion redundant und vermitteln als Klasse I Myosine die Endozytose, sowie die Integrität und Polarität des kortikalen Aktinzytoskeletts. Sie liegen als Monomere vor und interagieren über spezifische Domänen in ihren Schwanzbereich mit einer Vielzahl von Proteinen wie z.B. Verprolin oder Komponenten des Arp2/3-Komplexes. Die rekombinante Expression von Myosinen stellt sich als sehr problematisch dar, da sich die Motordomäne nicht spontan in eine funktionelle Konformation falten kann. Verschiedene Publikationen deuten daraufhin, dass für die Faltung dieser Multidomänenstruktur die UCS-Proteine notwendig sind. UCS leitet sich von den Namen der zuerst identifizierten Mitglieder ab (UNC-45 aus C. elegans, Cro1p aus P. anserina und She4p aus S. cerevisiae), welche lediglich die C-terminale UCS-Domäne gemeinsam haben. Für UNC-45 konnte bereits gezeigt werden, das es über die UCS-Domäne mit der Motordomäne von Muskelmyosin interagiert und als Chaperon dessen thermale Aggregation verhindert. Ausserdem interagiert UNC-45 über eine N-terminale TPR-Domäne mit Hsp90 und über den zentralen Bereich mit Hsp70. Im Rahmen meiner Arbeit wurde der Einfluss von She4p auf die Funktion der Myosine untersucht. Es wurde gezeigt, dass She4p über die UCS-Domäne mit der Motordomäne von Klasse I und Klasse V Myosinen interagiertund somit die Lokalisation von Myo3p, Myo4p und Myo5p ermöglicht. Mit Hilfe eines Aktin Pelleting Assays konnte gezeigt werden, dass die Misslokalisation der Klasse I Myosine im she4! Hintergrund durch einen Defekt in der Aktinbindedomäne im Motorbereich verursacht wird. Die Spezifität von She4p für verschiedene Myosinklassen spiegelt sich in der zellulären Verteilung des Proteins wieder. Das UCS-Protein wird Myo2p-abhängig in die Knospenspitze transportiert, um dort die Interaktion zwischen Klasse I Myosinen und dem Aktinzytoskelett zu vermitteln. Im Gegensatz dazu benötigt Myo4p lediglich funktionelles She4p innerhalb der Zelle, da dieses Myosin durch Mutter- und Tochterzelle wandert und somit seinen Regulator überall benötigt. Die Tatsache, ob She4p wie UNC-45 als Chaperon an der Faltung der Motordomäne beteiligt ist, ist weiterhin unklar. Es konnte jedoch in einem Pulldown Experiment und einer Immunpräzipitation eine Interaktion zwischen She4p und Hsp90 festgestellt werden. Es ist daher durchaus möglich, dass She4p als Kochaperon das Hsp90 System zum Myosin rekrutiert, damit die Motordomäne in eine funktionelle Konformation gefaltet wird. Neben der zytoplasmatischen Funktion von She4p scheint es noch eine nukleäre zu geben, da im Pulldown Experiment zahlreiche Proteine gefunden wurden, die Teil des Processosomes der kleinen ribosomalen Untereinheit sind und im Nucleolus lokalisieren. Die Funktion von She4p in diesem Prozess ist noch unbekannt.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 02/19
Beeinflussung des Aktinzytoskeletts durch die Yersinia-Moduline YopE und YopT

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 02/19

Play Episode Listen Later May 27, 2004


Pathogene Yersinien injizieren während einer Infektion über ihr TypIII-Sekretionssystem bakterielle Moduline, sogenannte Yops, in Immunzellen, um das Immunsystem zu stören. Zu Beginn dieser Arbeit war bekannt, dass die injizierten Yersinia enterocolitica-Moduline YopE und YopT das Aktinzytoskelett angreifen. Mit dem Ziel der näheren Charakterisierung der zugrunde liegenden Mechanismen wurde insbesondere der Effekt von Y. enterocolitica-YopE auf aktinregulierende Signaltransduktionswege in menschlichen Endothelzellen (HUVEC) untersucht. Zu diesem Zweck wurde ein Yersinia-Stamm hergestellt, welcher YopE als einzigen Effektor transloziert. Mit diesem Stamm infizierte ruhende HUVEC zeigten eine Veränderung des Aktinzytoskeletts ähnlich wie nach Mikroinjektion von dominant negativem N17Rac, was auf eine Inaktivierung von Rac hindeutete. Zur weiteren Untersuchung wurden in infizierten Endothelzellen durch extrazelluläre Stimuli einzelne Rho-GTPasen aktiviert und die dabei ausgebildeten Aktinstrukturen beobachtet. Dabei ergab sich keine Beeinträchtigung der Neubildung CDC42- und Rho-vermittelter Aktinstrukturen (Filopodien und Stressfasern) durch YopE, jedoch eine spezifische Hemmung Rac-induzierter Lamellipodien. Frühere Untersuchungen hatten demonstriert, dass es sich bei YopE um ein sogenanntes GAP („GTPase activating protein“) handelt, welches in vitro die Proteine Rho, Rac und CDC42 hemmt. Die Ergebnisse der vorliegenden Arbeit weisen darauf hin, dass in Endothelzellen transloziertes YopE höchst selektiv auf die Ras-ähnliche GTPase Rac wirkt, jedoch keinen Effekt auf CDC42 oder Rho ausübt. Diese Ergebnisse zeigen, dass YopE von Yersinia Rho- GTPase-abhängige Signaltransduktionswege mit einer bemerkenswerten Spezifität in primären Zielzellen beeinflussen kann. Überdies wurde die genannte Spezifität auch in primären Makrophagen nachgewiesen. Weiterhin zeigte sich im HUVEC-Infektionsversuch, dass die Hemmung der typischerweise Rho-vermittelten Aktin-Stressfasern YopT-abhängig ist. Morphologische Veränderungen von Aktinstrukturen, wie sie typischerweise bei der Unterbrechung von CDC42- oder Racvermittelten Signalen vorkommen, wurden nicht beobachtet. In Zusammenhang damit konnte gezeigt werden, dass genannter Effekt auf eine chemische Modifikation und folgliche Inaktivierung von RhoA zurückzuführen ist (Zumbihl et al., 1999). Damit unterscheiden sich YopT und YopE in ihrem Wirkmechanismus und spezifischen Zielmolekül, greifen andererseits jedoch beide direkt an Rho-GTPasen an. Sie könnten deshalb synergistisch bei der Pathogenität von Y. enterocolitica wirken. Darüber hinaus könnten YopE und YopT aufgrund ihrer Spezifität zukünftig als wertvolle Hilfsmittel zur Untersuchung zellulärer Regulationsvorgänge dienen

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 02/19
Der Einfluss von Yersinia-Effektoren auf podosomale Adhäsionsstrukturen primärer humaner MAkrophagen

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 02/19

Play Episode Listen Later Jan 22, 2004


Podosomen sind aktinreiche Strukturen des Zytoskeletts primärer humaner Makrophagen. Für Adhäsion, Polarisation und Chemotaxis sind diese Strukturen von essentieller Bedeutung. Ihr ständiger Umbau und ihre Regulation unterliegt einer fein abgestimmten Balance der Rho GTPasen Rho, Rac und Cdc42. Pathogene Yersinien spp. haben Aktinzytoskelett von Wirtszellen durch Modulation von Rho GTPasen als Angriffsobjekt gewählt. Mit ihrem plasmidkodierten Typ III Sekretions- und Translokationsapparat werden wichtige Immunfunktionen paralysiert. In dieser Arbeit wurde in primären humanen Makrophagen der Einfluss von Yersinien-Effektoren auf Podosomen untersucht. Konkret interessierte die Frage, welchen Effekt YopE auf diese Strukturen hat. Hierzu wurden in einem standardisierten Verfahren gewonnene und gereinigte Makrophagen gesunder Spender mit unterschiedlichen Mutanten der Spezies Yersinia enterocolitica für verschiedene Zeiten infiziert. Nach Färbung der Zellen mit Rhodamin-Phalloidin wurde die Anzahl der verbliebenen Zellen mit Podosomen im konfokalen Mikroskop ermittelt und statistisch ausgewertet. Es konnte erstens gezeigt werden, daß ein voll virulenter Yersinien Stamm in der Lage ist, nach einer Infektion von bereits 30 min die podosomalen Strukturen der Makrophagen vollkommen zu zerstören. Zweitens sind an diesem Effekt verschiedene Yersinien-Effektoren und zusätzlich der Typ III Sekretions- und Translokationsapparat beteiligt. Drittens reicht YopE für die Zerstörung von Podosomen alleine aus. Viertens ist die GAP-Aktivität von YopE für die Destruktion von Podosomen nicht notwendig und lässt auf GAP-unabhängige Mechanismen von YopE schliessen. Zusammenfassend lassen die Ergebnisse dieser Arbeit vermuten, daß YopE ein wichtiger aber nicht der alleinige Effektor der Yersinien bei der Paralyse von menschlichen Makrophagen und insbesondere der Zerstörung podosomaler Adhäsionsstrukturen ist.