POPULARITY
Many people don't realize chocolate is a fermented food. Before we can make chocolate from cacao, that cacao has to undergo a fermentation process. This process is usually spontaneous, meaning the microbiotic cultures that carry out the fermentation are not manually added to the fermentation substrate but instead occur naturally. That doesn't mean it's a hands off process. A great deal of knowledge and expertise both traditional and technical is required to yield the best results.In this episode we take a deep dive into cacao fermentation with Sarah Bharath. Sarah works with cacao farmers in Trinidad & Tobago on behalf of Meridian Cacao, assisting them in improving their farming and post-harvest processes. Sarah is both a passionate advocate for cacao farmers and an inquisitive researcher whose curiosity drives her enthusiasm for always learning more about this fascinating crop. Today we talk all about the cacao fermentation process, how the variables of that process impact the flavors of chocolate, and how climate change is forcing farmers and scientists to constantly adapt to new realities.It's interesting to note is that some of the same microorganisms we see in the beer world are also involved in fermenting cacao, such as Saccharomyces Cerevisiae (ale yeast), Lactobacillus (often used when brewing sour beer styles), and Acetobacter (which subtly influences the fermentation of Flanders sour ales). Additionally, the fermentation itself is spontaneous, similar to the fermentation of Lambic and other wild ale styles.You can sign up for the Slow Pour email newsletter here. Follow Bean to Barstool on social media!InstagramTwitterFacebookPinterestTikTokSign up for host David Nilsen's newsletter to get regular updates!
Supplementing a Saccharomyces cerevisiae fermentation product modulates innate immune function and ameliorates bovine respiratory syncytial virus infection in neonatal calves Link: https://pubmed.ncbi.nlm.nih.gov/32780814/ Ultimate Message: We do have an ability to modulate immune responses to make them less damaging within the respiratory tract of our calves and potentially beyond that if you start to look outside of this study. Big 3 Take Aways: Number one, there are differences between prebiotics, probiotics, and postbiotics. Is one necessarily better than the other? Do you need one more than the other? Not necessarily, but the ability of the postbiotics to be more concentrated versus diluted in what you'll see as the prebiotic and the probiotic potentially has a bigger impact than those other two factors and is worth considering when you're considering your source or your dollar investment for your clients. Number two, innate training. We can train the immune system to respond in a less destructive way, to just respond in a more phagocytic way versus more of kind of that nuclear bomb or uncontrolled damage type of way. That's very interesting that we have the ability to do that. Number three, we have the ability to control inflammation. And that again, ties into the response we get. We have less free oxygen oxidative species going out there, less oxidative bursts occurring, less overall damage and destruction to the overall airways. Abstract: The objectives of this study were to determine the effects of oral supplementation with Saccharomyces cerevisiae fermentation products on immune function and bovine respiratory syncytial virus (BRSV) infection in preweaned dairy calves. Twenty-four Holstein × Angus, 1- to 2-d-old calves (38.46 ± 0.91 kg initial body weight [BW]) were assigned two treatment groups: control or SCFP treated, milk replacer with 1 g/d SCFP (SmartCare) and calf starter top-dressed with 5 g/d SCFP (NutriTek). The study consisted of one 31-d period. On days 19 to 21 of the supplementation period, calves were challenged via aerosol inoculation with BRSV strain 375. Calves were monitored twice daily for clinical signs, including rectal temperature, cough, nasal and ocular discharge, respiration effort, and lung auscultation. Calves were euthanized on day 10 postinfection (days 29 to 31 of the supplementation period) to evaluate gross lung pathology and pathogen load. Supplementation with SCFP did not affect BW (P = 0.762) or average daily gain (P = 0.750), percentages of circulating white blood cells (P < 0.05), phagocytic (P = 0.427 for neutrophils and P = 0.460 for monocytes) or respiratory burst (P = 0.119 for neutrophils and P = 0.414 for monocytes) activity by circulating leukocytes either before or following BRSV infection, or serum cortisol concentrations (P = 0.321) after BRSV infection. Calves receiving SCFP had reduced clinical disease scores compared with control calves (P = 0.030), reduced airway neutrophil recruitment (P < 0.002), reduced lung pathology (P = 0.031), and a reduced incidence of secondary bacterial infection. Calves receiving SCFP shed reduced virus compared with control calves (P = 0.049) and tended toward lower viral loads in the lungs (P = 0.051). Immune cells from the peripheral blood of SCFP-treated calves produced increased (P < 0.05) quantities of interleukin (IL)-6 and tumor necrosis factor-alpha in response to toll-like receptor stimulation, while cells from the bronchoalveolar lavage (BAL) of SCFP-treated calves secreted less (P < 0.05) proinflammatory cytokines in response to the same stimuli. Treatment with SCFP had no effect on virus-specific T cell responses in the blood but resulted in reduced (P = 0.045) virus-specific IL-17 secretion by T cells in the BAL. Supplementing with SCFP modulates both systemic and mucosal immune responses and may improve the outcome of an acute respiratory viral infection in preweaned dairy calves.
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.03.31.535026v1?rss=1 Authors: Deolal, P., Ramalingam, K., Das, B., Mishra, K. Abstract: When yeast cells are exposed to nutrient-limiting conditions, they undergo transcriptional and translational reprogramming that results in the remodeling of metabolite utilization and organelle architecture. Organelle membranes and contacts also undergo structural and functional alterations. In the budding yeast Saccharomyces cerevisiae, regulated expression of Uip4 is shown to be a critical effector of nuclear shape and function, particularly during the stationary phase. In this work, we demonstrate that the absence of UIP4 affects the morphology of multiple other organelles including mitochondria, endoplasmic reticulum, vacuole and the distribution of lipid droplets. The results show that modulating carbon source, nitrogen availability and cellular energy state impact Uip4 expression. This expression of Uip4 is controlled by the transcription factor Msn2, downstream of Sch9 signaling pathway. Cells lacking Uip4 have poor survival in the stationary phase of the growth cycle. These cellular changes are concomitant with dysregulation of the global lipidome profile and aberrant organelle interaction. We propose that the dynamic and regulated expression of Uip4 is required to maintain lipid homeostasis and organelle architecture which is ultimately required to survive in nutrient-limiting conditions such as stationary phase. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.01.13.523977v1?rss=1 Authors: Vande Zande, P., Wittkopp, P. J. Abstract: Genetic networks are surprisingly robust to perturbations caused by new mutations. This robustness is conferred in part by compensation for loss of a gene's activity by genes with overlapping functions, such as paralogs. Compensation occurs passively when the normal activity of one paralog can compensate for the loss of the other, or actively when a change in one paralog's expression, localization, or activity is required to compensate for loss of the other. The mechanisms of active compensation remain poorly understood in most cases. Here we investigate active compensation for the loss or reduction in expression of the Saccharomyces cerevisiae gene TDH3 by its paralogs TDH1 and TDH2. TDH1 and TDH2 are upregulated in a dose-dependent manner in response to reductions in TDH3 by a mechanism requiring the shared transcriptional regulators Gcr1p and Rap1p. Other glycolytic genes regulated by Rap1p and Gcr1p show changes in expression similar to TDH2, suggesting that the active compensation by TDH3 paralogs is part of a broader homeostatic response mediated by shared transcriptional regulators. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Beer is a beverage derived from the fermentation of grain by yeast. Hops impart their specific flavor and aroma notes. Together these ingredients produce a vast array of flavors and aromas that have become extremely popular in modern beer circles. Like any industrial workhorse organism, brewing yeast is significantly different from its wild antecedents. It has been bred to perform in fermentation, while creating metabolites that touch the senses of the consumer. Berkeley Yeast is taking the genetic improvement of yeast one step farther. Using modern biotechnology, their yeast strains are designed to create novel flavor and exciting aromas. Their efforts define a faster way to control the chemistry of fermentation, producing better products for consumers.
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2022.11.15.516693v1?rss=1 Authors: Mochizuki, T., Tanigawa, T., Shindo, S., Suematsu, M., Oguchi, Y., Mioka, T., Kato, Y., Fujiyama, M., Hatano, E., Yamaguchi, M., Chibana, H., Abe, F. Abstract: The fungal cell wall is the first barrier against diverse external stresses, such as high hydrostatic pressure. This study explores the roles of osmoregulation and the cell wall integrity (CWI) pathway in response to the high pressure in the yeast Saccharomyces cerevisiae. We demonstrate the roles of the transmembrane mechanosensor Wsc1 and aquaglyceroporin Fps1 in an underlying protective mechanism to avoid cellular rupture under high pressure. The promotion of water influx into cells at 25 MPa, as evident by an increase in cell volume and a loss of the plasma membrane eisosome structure, promotes the activation of Wsc1, an activator of the CWI pathway. The downstream mitogen-activated protein kinase Slt2 was hyperphosphorylated at 25 MPa. Glycerol efflux increases via Fps1 phosphorylation, which is initiated by downstream components of the CWI pathway, and contributes to the reduction in intracellular osmolarity under high pressure. Herein, the elucidation of a cellular pathway that is used as a protective mechanism against high pressure could potentially be translated to mammalian cells and could help to understand cellular mechanosensation and adaptation. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2022.11.09.515899v1?rss=1 Authors: Shamsuzzaman, M., Rahman, N., Gregory, B., Bommakanti, A., Zengel, J. M., Bruno, V., Lindahl, L. Abstract: Many mutations in genes for ribosomal proteins and assembly factors cause cell stress and altered cell fate resulting in congenital diseases, collectively called ribosomopathies. Even though all such mutations depress the cell's protein synthesis capacity, they generate many different phenotypes, suggesting that the diseases are not due simply to insufficient protein synthesis capacity. To learn more, we have investigated how the global transcriptome in Saccharomyces cerevisiae responds to reduced protein synthesis generated in two different ways: abolishing the assembly of new ribosomes or inhibiting ribosomal function. Our results show that the mechanism by which protein synthesis is obstructed affects the ribosomal protein transcriptome differentially: ribosomal protein mRNA abundance increases during the abolition of ribosome formation but decreases during the inhibition of ribosome function. Interestingly, the ratio between mRNAs from some, but not all, paralogous genes encoding slightly different versions of a given r-protein change differently during the two types of stress, suggesting that specific ribosomal protein paralogues may contribute to the stress response. Unexpectedly, the abundance of transcripts for ribosome assembly factors and translation factors remains relatively unaffected by the stresses. On the other hand, the state of the translation apparatus does affect cell physiology: mRNA levels for some other proteins not directly related to the translation apparatus also change differentially, though not coordinately with the r-protein genes, in response to the stresses. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2022.11.04.515212v1?rss=1 Authors: Panessa, G. M., Pires, M. R., Pires, R. R., Jekabson, R., Tsuchida, E. T., de Souza-Pinto, N. C., da Cunha, F. M., Cussiol, J. R. R. Abstract: Inositol is a six-carbon sugar that functions as a precursor for signaling molecules such as phosphoinositides and inositol polyphosphates, which are involved in the regulation of important biological processes such as energy metabolism, environmental stress response, phosphate signaling, among others. Given its role in a myriad of signaling pathways, regulation of inositol synthesis is essential for cellular homeostasis. In budding yeast, transcription of genes involved in inositol metabolism is regulated by the transcriptional repressor Opi1, which repress transcription of genes containing cis-acting inositol-sensitive upstream activation sequences (UASINO). Upon genotoxic stress, cells activate the DNA Damage Response (DDR) to coordinate DNA repair and cell cycle progression. It has been proposed that inositol containing molecules might act as modulators of the DDR, but evidences are still scarce. Herein, we report that opi1 cells fail to downregulate the inositol phosphate pathway leading to sensitivity to genotoxins and replication defects. Moreover, cells lacking Opi1 show decreased gamma-H2A levels which might indicate that Opi1 contributes to the activation of the DDR kinases Mec1/Tel1 (ATR/ATM in mammals). Importantly, we show that deletion of the inositol pyrophosphate kinase Kcs1 (IP6K1/2/3 in mammals), which leads to inhibition of inositol pyrophosphate synthesis, rescues the MMS sensitivity and replication defects of opi1 cells. Further, overexpression of Kcs1 recapitulates the MMS sensitivity of cells lacking Opi1. Therefore, we propose that cells must downregulate inositol pyrophosphate synthesis during replication stress in order to trigger an effective DNA Damage Response. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
The Yeast Feast Episode: From Brewers Yeast to Sourdough Nothing Has Quite Domesticated Us Like Saccharomyces Cerevisiae. Jon and Tess, Ph.D. discuss everything Saccharomyces cerevisiae from the history to the uses and back again. If you think this little microbe hasn't impacted your life positively I guarantee you are wrong. Saccharomyces cerevisiae is incredible! Honestly, we could have talked about it for days and still not covered all the ways it changed YOUR life. But we'd like to share just a few ways this microbe has made countless microbe moments that transcends space, time, and culture!
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.10.12.336495v1?rss=1 Authors: Ahmed, T., Nisler, C. R., Fluck, E. C., Sotomayor, M. M., Moiseenkova-Bell, V. Y. Abstract: Transient Receptor Potential (TRP) channels have evolved in eukaryotes to control various cellular functions in response to a wide variety of chemical and physical stimuli. This large and diverse family of channels emerged in fungi as mechanosensitive osmoregulators. The Saccharomyces cerevisiae vacuolar TRP yeast 1 (TRPY1) is the most studied TRP channel from fungi, but the molecular details of channel modulation remain elusive so far. Here, we describe the full-length cryo-electron microscopy structure of TRPY1 at 3.1 A resolution. The structure reveals a distinctive architecture for TRPY1 among all eukaryotic TRP channels with an evolutionarily conserved and archetypical transmembrane domain, but distinct structural folds for the cytosolic N- and C-termini. We identified the inhibitory phosphatidylinositol 3-phosphate (PI(3)P) lipid binding site, which sheds light into the lipid modulation of TRPY1 in the vacuolar membrane. The structure also exhibited two Ca2+-binding sites: one in the cytosolic side, implicated in channel activation, and the other in the vacuolar lumen side, involved in channel inhibition. These findings, together with data from molecular dynamics simulations, provide structural insights into the basis of TRPY1 channel modulation by lipids and calcium. Copy rights belong to original authors. Visit the link for more info
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.09.05.284281v1?rss=1 Authors: van der Feltz, C., Nikolai, B., Schneider, C., Paulson, J. C., Fu, X., Hoskins, A. A. Abstract: Genetic, biochemical, and structural studies have elucidated the molecular basis for spliceosome catalysis. Splicing is RNA catalyzed and the essential snRNA and protein factors are well-conserved. However, little is known about how non-essential components of the spliceosome contribute to the reaction and modulate the activities of the fundamental core machinery. Ecm2 is a non-essential yeast splicing factor that is a member of the Prp19-related complex of proteins. Cryo-electron microscopy (cryo-EM) structures have revealed that Ecm2 binds the U6 snRNA and is entangled with Cwc2, another non-essential factor that promotes a catalytically active conformation of the spliceosome. These structures also indicate that Ecm2 and the U2 snRNA likely form a transient interaction during 5' splice site (SS) cleavage. We have characterized genetic interactions between ECM2 and alleles of splicing factors that alter the catalytic steps in splicing. In addition, we have studied how loss of ECM2 impacts splicing of pre-mRNAs containing non-consensus or competing SS. Our results show that ECM2 functions during the catalytic stages of splicing. It facilitates the formation and stabilization of the 1st-step catalytic site, promotes 2nd-step catalysis, and permits alternate 5' SS usage. We propose that Cwc2 and Ecm2 can each fine-tune the spliceosome active site in unique ways. Their interaction network may act as a conduit through which splicing of certain pre-mRNAs, such as those containing weak or alternate splice sites, can be regulated. Copy rights belong to original authors. Visit the link for more info
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.08.12.247643v1?rss=1 Authors: Shashkova, S., Nyström, T., Leake, M. C., Wollman, A. J. Abstract: Most cells adapt to their environment by switching combinations of genes on and off through a complex interplay of transcription factor proteins (TFs). The mechanisms by which TFs respond to signals, move into the nucleus and find specific binding sites in target genes is still largely unknown. Single-molecule fluorescence microscopes, which can image single TFs in live cells, have begun to elucidate the problem. Here, we show that different environmental signals, in this case carbon sources, yield a unique single-molecule fluorescence pattern of foci of a key metabolic regulating transcription factor, Mig1, in the nucleus of the budding yeast, Saccharomyces cerevisiae. This pattern serves as a 'barcode' of the gene regulatory state of the cells which can be correlated with cell growth characteristics and other biological function. Copy rights belong to original authors. Visit the link for more info
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.08.10.245191v1?rss=1 Authors: Berg, M. D., Zhu, Y., Isaacson, J., Genereaux, J., Loll-Krippleber, R., Brown, G. W., Brandl, C. J. Abstract: Non-proteinogenic amino acids, such as the proline analog L-azetidine-2-carboxylic acid (AZC), are detrimental to cells because they are mis-incorporated into proteins and lead to proteotoxic stress. Our goal was to identify genes that show chemical-genetic interactions with AZC in Saccharomyces cerevisiae and thus also potentially define the pathways cells use to cope with amino acid mis-incorporation. Screening the yeast deletion and temperature sensitive collections, we found 72 alleles with negative synthetic interactions with AZC treatment and 12 alleles that suppress AZC toxicity. Many of the genes with negative synthetic interactions are involved in protein quality control pathways through the proteasome. Genes involved in actin cytoskeleton organization and endocytosis also had negative synthetic interactions with AZC. Related to this, the number of actin patches per cell increases upon AZC treatment. Many of the same cellular processes were identified to have interactions with proteotoxic stress caused by two other amino acid analogs, canavanine and thialysine, or a mistranslating tRNA variant that mis-incorporates serine at proline codons. Alleles that suppressed AZC-induced toxicity functioned through the amino acid sensing TOR pathway or controlled amino acid permeases required for AZC uptake. Copy rights belong to original authors. Visit the link for more info
In Episode Two, “Access to the Biological Specimens,” Zahava and Zei head out for a day at the beach, and James investigates the local wildlife. Mandry comes downstairs for a visit; we find out who can bake, who can braid, and what those black seas look like up close. Calendars are invented; wildlife encountered; Saccharomyces Cerevisiae rehydrated. The transcript is available.Content Note: this episode is free from sensitive content other than some mild swearing, still mainly but not entirely James.The showrunner and lead writer for this project is Evan Tess Murray. The sound designer, audio engineer, and composer is Trace Callahan. Sounds and music are her original creations, sometimes with the assistance of others who remain Nameless. This episode guest starred the North Atlantic as the black ocean of the Nameless Planet.This is a collaborative ensemble project. Many of the character decisions are made by the actors as part of the story and script development process. Please check out the links below for more of their work:Presenting the Nameless CrewTrevor Bean creates and voices MandryTrace Callahan creates and voices KolianAlexander Endymion Hernández Díaz creates and voices CyrusAlexander Doddy creates and voices JamesSawyer Greene creates and voices QuillAnjali Kunapaneni creates and voices DeviDominic Mendez creates and voices ÁngelCaroline Mincks creates and voices ZahavaEvan Tess Murray creates and voices ZeiThey're also just a ton of fun to hang out with. Our corner of the internet is very friendly, and you're welcome to come say hello. We'd also love you to join the Ground Crew by supporting us on Patreon, if you can.The promo at the end of this episode is for Diary of a Space Archivist, a delightful show about space, family, and chocolate by Becky Stirrup. This story is being told by people in various parts of the world. Every episode, we'll give a bit of space in the shownotes to an effort by indigenous people that could use some support. Inspired by Endymion's connection to the Guanches, we decided to ask you to support Native Land, a community mapping project to help us all understand the people who have gone before us. Our podcast art was created by Katy Schifferer. Check out her work!A great deal of this episode was written and edited at Candy’s, an LGBTQ+ community space in Portland, Maine. Check them out at http://candyslovesyou.space. We tell a story about another world, but we're not giving up on this one. Support the show (http://patreon.com/needsaname)
Episode 59 We have a Patreon page now, at www.patreon.com/Thisisnotacceptable Our social media pages: Twitter.com/tacceptable Instagram.com/Thisisnotacceptable 2:25 — Steve’s Jealousy 8:00 — Brendan’s Jealousy 15:09 — All my cop friends are low riders 20:48 — I swear I’m not drunk 30:09 — Blood flood basement
Curtis Swearingen from the 2019 Hiram College tells us about the genome of the most heavily studied eukaryote on Earth - the maker of bread and beer and wine, the unicellular yeast Saccharomyces cerevisiae.
Vegan, Rohkost, Superfoods, Detox, Ernährung, Gesundheit, Spiritualität, Hippocrates, GermanyGoesRaw
Lt. Dr. Brian Clement kommt ein Vitamin B12 Mangel bei Fleischessern und Vegetarien noch häufiger vor als bei Veganern oder Rohköstlern. Der Grund liegt darin, dass Vitamin B 12 eine Bakterienart aus dem Boden ist. Durch das Sammeln von Wildkräutern nehmen insbesondere Rohköstler diese gesunde Form der Bodenbakterien über die Wildpflanzen auf. Da die meisten Menschen in der zivilisierten Welt jedoch nicht mehr so naturnah leben, empfiehlt das Hippocrates Health Insititut generell für alle Ernährungsrichtungen die tägliche Supplementierung von Vitamin B12, wobei Dr. Clement NICHT Methylcobalamin empfiehlt, sondern Vitamin B12 aus dem speziellen Hefeextrakt „Saccharomyces Cerevisiae“. Methyl-, Cyano- oder jede andere Form von künstlichem Cobalamin wird von Dr. Brian Clement nicht empfohlen, da es sich dabei lt. Clement nicht um ein lebendiges Vitamin B12 handelt. Ausführliche Infos zu Vitamin B12 und Methylcobalamin sind zu finden unter: https://hippocratesinst.de/rohkost-produkte/vitamin-b12-rohkost/ inkl. Produktempfehlungen für natürliches Vitamin B 12 und natürliche Bezugsquellen für gutes Vitamin B 12 / *empfohlen von Dr. Brian Clement. Auch der Rohkostarzt Dr. Bauer (Klinik St. Moritz) konnte jahrzehntelang an seinen Patienten durch die Verabreichung eines bestimmten Hefepräparates beobachten, dass Hefeextrakt aus "Saccharomyces Cerevisiae" eine gute Quelle für Vitamin B12 ist. Ergänzende Infos: Die Top 8 Detoxmethoden
If someone offered you a "bag of nooch," or a "sprinkle of hippie dust," would you take it? If you’re a pizza-loving vegan, you probably would! This episode of Fresh Pickings explores the world of nutritional yeast (and reveals its various street names). Nutritional yeast is the deactivated (or dead) form of Saccharomyces Cerevisiae – the mother of all yeast strains. Dave Arnold of Cooking Issues joins Kat to teach her more about the science behind "brewer's yeast" – how it's grown, cultured (deactivated) to create nutritional yeast, and then packaged for our consumption. If you've ever tried nutritional yeast before, you know that it packs a umami punch. For that reason, it's particularly popular among vegetarians and vegans as a way to add a savory seasoning to dishes. Kat welcomes back VLGL (Vegan Low Glycemic Load) blogger, Elizabeth Taylor, to share her recipe for a Chickpea Flour Omelette with Chipotle-Grilled Tomato.
Whether it’s a lager or ale, sour or bitter, dark or light, most beer has one thing in common: yeast. KQED Science visits a commercial yeast laboratory and a local brewery to reveal how this key ingredient is a major player in both science history and beer production.
Whether it’s a lager or ale, sour or bitter, dark or light, most beer has one thing in common: yeast. KQED Science visits a commercial yeast laboratory and a local brewery to reveal how this key ingredient is a major player in both science history and beer production.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 04/06
DYNAMIC TRANSCRIPTOME ANALYSIS MEASURES RATES OF MRNA SYNTHESIS AND DECAY IN YEAST To obtain rates of mRNA synthesis and decay in yeast, we established dynamic transcriptome analysis (DTA). DTA combines non-perturbing metabolic RNA labeling with dynamic kinetic modeling. DTA reveals that most mRNA synthesis rates are around several transcripts per cell and cell cycle, and most mRNA half-lives range around a median of 11 min. DTA can monitor the cellular response to osmotic stress with higher sensitivity and temporal resolution than standard transcriptomics. In contrast to monotonically increasing total mRNA levels, DTA reveals three phases of the stress response. During the initial shock phase, mRNA synthesis and decay rates decrease globally, resulting in mRNA storage. During the subsequent induction phase, both rates increase for a subset of genes, resulting in production and rapid removal of stress-responsive mRNAs. During the recovery phase, decay rates are largely restored, whereas synthesis rates remain altered, apparently enabling growth at high salt concentration. Stress-induced changes in mRNA synthesis rates are predicted from gene occupancy with RNA polymerase II. Thus, DTA realistically monitors the dynamics in mRNA metabolism that underlie gene regulatory systems.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 04/06
Mon, 6 Feb 2012 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/14152/ https://edoc.ub.uni-muenchen.de/14152/1/Huels_Daniela.pdf Hüls, Daniela ddc:540, ddc:500, Fakultät für
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
Tue, 26 Jul 2011 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/13996/ https://edoc.ub.uni-muenchen.de/13996/1/Wippo_Christian.pdf Wippo, Christian ddc:570, ddc:500, Fakul
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 03/06
Transcription of protein coding genes by RNA polymerase II (RNAPII) is an essential step in gene expression. Transcription elongation is a highly dynamic and discontinuous process that includes frequent pausing of RNAPII, backtracking, and arrest both in vitro and in vivo. Consequently, a multitude of transcription elongation factors are needed for efficient transcription elongation. When transcription elongation factors fail to “restart” RNAPII the persistently stalled RNAPII complex prevents transcription and thus has to be recognized and removed to free the gene for subsequent polymerases. Similarly, DNA damage causes stalling of RNAPII. In this case, the DNA damage is either repaired by Transcription-Coupled Repair (TCR) or RNAPII is degraded as a “last resort” mechanism by the ubiquitin proteasome system. In contrast to RNAPII degradation caused by DNA damage, the cellular pathway for removal of transcriptionally stalled RNAPII complexes has remained largely obscure. However, it was speculated that transcriptionally stalled RNAPII complexes are degraded by the same pathway as RNAPII stalled due to DNA damage. Here, it is shown that the pathway for degradation of transcriptionally stalled RNAPII is distinct from the DNA damage-dependent pathway, providing the first evidence that the cell distinguishes between RNAPII complexes stalled for different reasons. The novel cellular pathway for transcriptional stalling-dependent degradation of RNAPII is termed TRADE. Specifically, in the TRADE pathway a different yet overlapping set of enzymes is responsible for poly- and de-ubiquitylation of transcriptionally stalled RNAPII. Moreover, the catalytic 20S proteasome is recruited to transcribed genes indicating that Rpb1 of transcriptionally stalled RNAPII complexes is degraded at the site of transcription. Importantly, nucleotide starvation and temperature stress which might mimic natural conditions of transcription elongation impairment also lead to RNAPII degradation. Finally, this study provides the first evidence that the mechanism for the controlled degradation of the transcriptionally stalled RNA polymerase complex might also exist for transcription by RNAPI and RNAPIII. Taken together, the TRADE pathway elucidated in this study ensures continued transcription.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
The protein and lipid composition of eukaryotic plasma membranes is highly dynamic and regulated according to need. Despite its great plasticity, the plasma membrane retains some organizational features, such as its lateral organization into distinct domains. In the yeast, Saccharomyces cerevisiae, large immobile protein clusters, termed eisosomes, are important for plasma membrane organization. Eisosomes help to sort proteins into discrete domains, function in endocytosis and are implicated in cellular signaling. The major eisosome components Pil1 and Lsp1 were first identified as in vitro targets of the sphingolipid long chain base-regulated Pkhkinases. However, it is not known if eisosomes are targets of Pkh-mediated sphingolipid signaling in vivo. In this thesis, I show that Pkh-kinases regulate eisosome formation in response to alterations of complex sphingolipid levels in the plasma membrane. I found that Pkh-kinase-dependent phosphorylation of Pil1 controls the assembly state of eisosomes. The combination of different unbiased, global analysis methods, such as proteomics and high content screening enabled me to identify Nce102 as a negative regulator of Pkh-kinases. Nce102 relocalizes between MCC domains, overlaying eisosomes, and the remainder of the plasma membrane in response to alterations in sphingolipid levels. Together with its regulatory function on Pkh-kinases that localize at eisosomes, this relocalization suggests that it is part of a sphingolipid sensor. Furthermore, I identified Rom2, a Rho1 GTPase exchange factor, as a novel regulator of sphingolipid metabolism. My data reveal several new insights into regulation of sphingolipid metabolism and plasma membrane organization. I provide a model how a homeostatic feedback loop may control sphingolipid levels. This likely will help in understanding how cells adjust processes, such as eisosome driven domain organization, endocytosis and actin organization to altered conditions. Furthermore, I anticipate that the datasets created in this thesis will serve as a resource for future studies on plasma membrane function.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
Tue, 20 Jul 2010 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/11878/ https://edoc.ub.uni-muenchen.de/11878/1/Lantermann_Alexandra.pdf Lantermann, Alexandra
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 03/06
Tue, 6 Apr 2010 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/11423/ https://edoc.ub.uni-muenchen.de/11423/1/Yu_Haochen.pdf Yu, Haochen ddc:540, ddc:500, Fakultät für Chemie und Pharmazie
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 03/06
Wed, 8 Jul 2009 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/11091/ https://edoc.ub.uni-muenchen.de/11091/1/Mueller_Marisa.pdf Müller, Marisa ddc:540, ddc:500, Fakultät für Chemie und Pha
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 03/06
mRNA localization is a widespread mechanism in most eukaryotic cells to spatially restrict protein synthesis. During cell propagation of the budding yeast S. cerevisiae, mRNA localization is the basis for an asymmetric, stem-cell like division process. At least 24 transcripts are known to be localized to the yeast bud tip and the common core machinery mediating this mRNA translocation pathway consists of three components: the type V motor protein Myo4p, its adaptor She3p and the mRNA binding protein She2p. Recently, Myo4p and She3p were identified as essential factors of another bud-directed transport process, the inheritance of cortical endoplasmic reticulum (ER). In addition, live cell imaging revealed a co-localization and co-migration of localizing mRNPs with ER tubules that move to the yeast bud, implying for the first time that there might be a common transport of mRNAs and ER membranes. Within the scope of this study it was demonstrated that mutants defective in ER segregation are simultaneously impaired in mRNA localization indicating that there is indeed a connection between the two processes. Additionally, the RNA binding protein She2p associates with ER membranes in different sucellular fractionation assays and it does so independently of polysomes (thus, ongoing translation), mRNA and the Myo4p/She3p complex. During in vitro binding assays, recombinant She2p binds to flotation purified ER microsomes and protease treated membranes suggesting that She2p is not tethered to ER via a protein factor. Finally, She2p was found to have an inherent membrane binding activity since it directly associated with synthetic lipid vesicles in flotation assays. She2p attaches to liposomes also in presence of its RNA ligand excluding the possibility of an unspecific binding via its basic mRNA binding moiety. In summary, these data indicate that mRNA trafficking and ER inheritance are coordinated processes in S. cerevisiae and that She2p is the factor that tethers localizing mRNPs to the ER membranes. Consistent with this observation there is a growing number of examples from higher eukaryotes for a connection between membrane and mRNA transport. This in turn suggests that it is not a yeast specific phenomenon but rather might be a common theme throughout all kinds of eukaryotic species.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Gene expression encompasses a multitude of different steps, starting with transcription in the nucleus, co-transcriptional processing and packaging of the mRNA into a mature mRNP, export of the mRNP through the nuclear pore and finally the translation of the message in the cytoplasm. The central coordinator for coupling of the nuclear events is the differentially phosphorylated C-terminal domain (CTD) of RNA polymerase II (RNAP II). The phosphorylation pattern of the CTD not only dictates the progression through the transcription cycle but also the recruitment of mRNA processing machineries. Coupling of transcription to mRNA export is achieved by the TREX complex, which consists in the yeast S. cerevisiae of the heterotetrameric THO complex important for transcription elongation, the SR-like proteins Gbp2 and Hrb1, and Tex1 and the mRNA export factors Sub2 and Yra1. By direct interaction with Yra1, the mRNA export receptor Mex67-Mtr2 is then recruited to the mRNP and transports the mRNP through the nuclear pore complex to the cytoplasm. In a genetic screen for factors that are crucial for TREX complex function in the living cell, Ctk1, a cyclin dependent kinase (CDK) that phosphorylates the C-terminal domain (CTD) of RNAP II during transcription elongation, was identified (Hurt et al. 2004). Surprisingly, besides the TREX components Gbp2 and Hrb1, Ctk1 co-purified ribosomal proteins and translation factors. Using sucrose density centrifugation, it could be shown that Ctk1 indeed associates with translating ribosomes in vivo, suggesting a novel function of this protein in translation. This assumption was confirmed by in vitro translation assays: loss of Ctk1 function leads to a reduction in translational activity. More specifically, Ctk1 is important for efficient translation elongation and contributes to the accurate decoding of the message. Cells depleted for Ctk1 are more sensitive towards drugs that impair translational accuracy and show an increase in the frequency of miscoding in vivo. The function of Ctk1 during decoding of the message is most likely direct, as in extracts of cells depleted for Ctk1 the defect in correct decoding of the message can be restored to wild type levels by addition of purified CTDK-I complex. An explanation for the molecular mechanism of Ctk1’s function is provided by the identification of Rps2 as a novel substrate of Ctk1. Rps2 is a protein of the small ribosomal subunit, located at the mRNA entry tunnel and known to be essential for translational accuracy. Importantly, Rps2 is phosphorylated on serine 238 by Ctk1, and cells containing an rps2-S238A mutation show an increased sensitivity towards drugs that affect translational accuracy and an increase in miscoding as determined by in vitro translation extracts. The role of Ctk1 in translation is probably conserved as CDK9, the mammalian homologue of Ctk1, also associates with polysomes. Since Ctk1 interacts with the TREX complex, which functions at the interface of transcription and mRNA export, Ctk1 might bind to the mRNP during transcription and accompany the mRNP to the ribosomes, where Ctk1 enhances efficient and accurate translation of the mRNA. This study could be an example of a novel layer of control in gene expression: the composition of the mRNP determines its translational fate, including efficiency and accuracy of translation.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Die Existenz eines Zytoskeletts galt lange als charakteristisches Merkmal eukaryotischer Zellen. Obwohl sich mit der Entdeckung der eubakteriellen Zytoskelettproteine MreB, ParM, FtsZ und CreS ein Paradigmenwechsel vollzog, lagen bislang keine Erkenntnisse über das Vorkommen von Zytoskelettproteinen in Archaeae vor. Der erste Teil der Arbeit beschreibt die strukturelle und biochemische Charakterisierung des Aktinhomologen Ta0583 aus dem Archaeon Thermoplasma acidophilum. Die Kristallstruktur von Ta0583 wurde mit der Methode der SAD-Phasierung bei einer Auflösung von 2,1 Å gelöst. Ta0583 gehört zur Aktin/Hsp70 Superfamilie und besteht aus zwei Domänen, die jeweils das Aktin/Hsp70 Kernelement enthalten. Obwohl Aktin und das archaeale Ta0583 kaum Sequenzidentität aufweisen, besteht eine deutliche strukturelle Homologie. Die Struktur von Ta0583 kombiniert strukturelle Eigenheiten sowohl von Aktin, als auch von den eubakteriellen Aktinhomologen MreB und ParM. So konnte beispielsweise die strukturelle Ähnlichkeit der Nukleotidbindungsstellen von Ta0583 und MreB in vitro durch den Effekt des MreB-Inhibitors S-(3,4-Dichlorobenzyl)-isothioharnstoff (A22) nachgewiesen werden, der die ATPase Aktivität von Ta0583 kompetitiv hemmt. Im Kristallgitter sind die Ta0583 Monomere in Filament-ähnlichen Reihen angeordnet, in denen ähnliche longitudinale Gitterabstände wie in den Protofilamenten von MreB, Aktin und ParM vorliegen. In vitro bildet Ta0583 kristalline Schichten, die ähnliche Gitterabstände wie die quasi-Filamente im Kristall aufweisen. Die Bereitwilligkeit von Ta0583 zur Kristallisation und zur Bildung kristalliner Schichten könnte eine intrinsische Neigung des Proteins zur Bildung von filamentartigen Strukturen andeuten. Das Vorkommen eines Aktin-Homologen im Archaeon T. acidophilum gibt erste Hinweise auf das Vorkommen möglicher Zytoskelettstrukturen neben Eukaryoten und Eubakterien auch in der dritten Domäne des Lebens, den Archaeae. Der zweite Teil der Arbeit befasst sich mit der strukturellen und biochemischen Charakterisierung des in S. cerevisiae essentiellen Stoffwechselenzyms Ugp1p, der UDP-Glukose Pyrophosphorylase (UGPase). Die UGPase katalysiert die Synthese von UDP-Glukose, einem zentralen Glykosyldonor im Stoffwechsel aller Organismen. In S. cerevisiae ist die UGPase ein Oktamer aus identischen Untereinheiten. Obwohl oktamere UGPasen schon in den 1960iger Jahren erstmals charakterisiert wurden, blieb die strukturelle Basis für die Assoziation der Monomere im Komplex bis heute unaufgeklärt. In dieser Arbeit wurde die Struktur von Ugp1p durch Molecular Replacement mit der Struktur einer monomeren UGPase aus A. thaliana bei einer Auflösung von 3,1 Å gelöst. Das Ugp1p Monomer besteht aus drei Domänen, einer N-terminalen Domäne, einer katalytischen SGC-Kerndomäne und einer C-terminalen Oligomerisierungsdomäne mit -Helix Motiv. Anhand der Struktur von Ugp1p konnten mehrere Aminosäurereste identifiziert werden, die die Wechselwirkungen zwischen den Untereinheiten im Oktamer vermitteln. Diese vorwiegend hydrophoben Reste sind in den UGPasen von Tieren und Pilzen konserviert, in den UGPasen der Pflanzen jedoch durch polare und geladene Reste ersetzt. Aufgrund der Konservierung der Reste im Bereich der Oligomerisierungs-Schnittstelle ist davon auszugehen, dass alle UGPasen aus Metazoen und Pilzen Ugp1p-ähnliche Oktamere bilden, pflanzliche UGPasen dagegen anders aufgebaut sind. Während die Aktivität pflanzlicher UGPasen über Assoziation und Dissoziation reguliert zu sein scheint (Martz et al., 2002), sind UGPasen aus Metazoen und Pilzen nicht über Oligomerisierung reguliert. So bildet Ugp1p ausschliesslich stabile Oktamere. In Ugp1p scheint vielmehr das flexible N-terminale Segment, das auch an Ser11 phosphoryliert gefunden wurde (Rutter et al., 2002), die Regulation der Enzymaktivität zu vermitteln. Die Struktur von Ugp1p bildet die Grundlage für gezielte Mutagenesestudien an allen UGPasen aus Metazoen und Pilzen.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Im ersten Teil dieser Arbeit, der sich mit der Untersuchung der Bindung zytosolischer Chaperone am ribosomalen Polypeptid-Austrittstunnel beschäftigt, wurde die ribosomale Untereinheit Rpl25p, die in unmittelbarer Nähe des Polypeptid-Austrittstunnels liegt, als Bindestelle für zytosolische Chaperone, wie den naszente Ketten-assoziierten Komplex (NAC) identifiziert. Auch das Hsp70-Chaperon, Ssb1/2p, wurde in Assoziation mit Rpl25p gefunden. Diese Bindung wurde jedoch nicht näher untersucht. Bei der Etablierung einer Methode zur effizienten Anreicherung von Ribosomen aus Zellextrakten, mittels Präzipitation über einen Epitop-tag an einer ribosomalen Untereinheit, wurde beobachtet, dass ein 3HA-Epitop an Rpl25p, im Gegensatz zu einem 6HA-Epitop an der selben Stelle und an einer anderen ribosomalen Untereinheit, Rpl4ap, im entsprechenden Hefestamm Wachstums- und Translationsdefekte hervorruft. Co-Präzipitationsversuche ergaben, dass sowohl die Assoziation des generellen Hsp70-Chaperons Ssb1/2p, als auch von NAC mit Ribosomen im RPL25-3HA-Hintergrund stark reduziert ist und lieferten damit eine mögliche Erklärung für die beobachteten Defekte. Durch Two-Hybrid-Interaktionen und Co-Präzipitationsexperimente mit immobilisiertem MBP-Rpl25p und Zellextrakten, bzw. gereinigten Chaperonen, konnte gezeigt werden, dass der naszente Ketten-assoziierte Komplex NAC spezifisch, über den N-Terminus der -Untereinheit Egd1p, an Rpl25p bindet. Untersuchungen bezüglich der physiologischen Bedeutung der, nur in der Hefe vorhandenen, alternativen -Untereinheit Btt1p, zeigten, sowohl im Two-Hybrid, als auch in Bindeexperimenten mit Zellextrakten oder gereinigtem Btt1p, dass auch Btt1p direkt mit Rpl25p interagiert. Die starke Sequenzhomologie der N-Termini der -Untereinheiten, führte zu dem Schluss, dass auch Btt1p über seinen N-Terminus an Rpl25p bindet. Egd1p ist jedoch die vorwiegend im Komplex vorliegende -Untereinheit. In Abwesenheit von Egd1p wird die Expression von Btt1p stark erhöht, um das Fehlen dieser Untereinheit zu kompensieren. Sequenzhomologien zwischen Rpl25p und seinem Homolog Rl23p aus E. coli sollten als Ausganspunkt für die Identifizierung der Bindestelle zytosolischer Chaperone, wie NAC und Ssb1/2p an Rpl25p dienen. Versuche, Rpl25p funktionell durch Rl23p zu komplementieren, zeigten jedoch, dass weder Rl23p, noch ein chimäres Protein, in dem ein 50 Aminosäuren langer N terminaler Anhang aus Rpl25p an das E. coli-Protein fusioniert wurde, die Funktion von Rpl25p in der Hefe übernehmen können. Alternativ wurde ein konserviertes Aminosäuremotiv von Rpl25p mutiert, das im E. coli-Protein als Bindestelle für das Chaperon Triggerfaktor dient und dessen Veränderung die Bindung von Triggerfaktor an Rl23p stark reduziert. Die Veränderung dieses Motivs in Rpl25p bedingte zwar eine Reduktion der Bindung von Egd1p an Rpl25p, hatte jedoch keinen Effekt auf die Assoziation von Ssb1/2p mit Rpl25p. Daraus wurde gefolgert, dass nicht dieses Motiv allein für die Bindung zytosolischer Chaperone an Rpl25p verantwortlich ist. Dieser Befund führte außerdem zu der Spekulation, dass die Bindung von Egd1p und Ssb1/2p an Ribosomen durch verschiedene Bindestellen an Rpl25p vermittelt sein könnte. Im zweiten Teil der Arbeit, sollte der Beitrag, den einzelne Untereinheiten des Gim-Komplexes, GimC, zur Interaktion mit den Hauptsubstraten Aktin, α- und -Tubulin leisten untersucht werden. Dazu wurden für jede Untereinheit Verkürzungsmutanten hergestellt, denen die C- und N-terminalen hydrophoben Bereiche fehlen, die diese Wechselwirkung wahrscheinlich vermitteln. Im Gegensatz zu den zuvor untersuchten Deletionsmutanten, beeinträchtigen diese den Komplexaufbau nicht und erlauben daher direkte Rückschlüsse auf die Funktion der jeweiligen veränderten Untereinheit. Die Mutanten wurden zunächst einzeln bezüglich ihrer Sensitivität gegenüber LatrunculinA und Benomyl, Chemikalien, die das Aktin-, bzw. Tubulin-System der Zellen beeinflussen, in vivo charakterisiert. Des Weiteren wurde die Kinetik der Aktinfaltung bei ausgesuchten Mutanten (gim2NTCT, gim5NTCT) gemessen. Diese in vivo Experimente gaben erste Hinweise darauf, dass nicht alle GimC-Untereinheiten für die Bindung jedes Substrats gleich wichtig sind, sondern, in Abhängigkeit vom Substrat, unterschiedliche Rollen spielen. Zum Beispiel scheint die Interaktion mit den Tubulinen vor allem von Gim5p abhängig zu sein, während die anderen Untereinheiten dazu einen geringen (Gim1p, Gim2p, Gim3p) oder gar keinen (Gim4p, Gim6p) Beitrag leisten. Auch bei der Interaktion mit Aktin spielt Gim5p, neben Gim2p, eine tragende Rolle. In diesem Fall führt auch die Verkürzung von Gim3p oder Gim4p zu leichten Defekten, wogegen eine Veränderung von Gim1p oder Gim6p keine Auswirkungen hat. Um diese Ergebnisse durch weiterführende Experimente in vitro validieren zu können, wurde eine Strategie entwickelt, die es erlaubt, den Gim-Komplex und verschiedene Mischformen davon effizient in der Hefe zu exprimieren und daraus zu reinigen. Zu diesem Zweck wurde ein Plasmidsortiment geschaffen, das die starke Überproduktion des Wildtyp-Komplexes und von Mutanten, mit einer, oder bis zu sechs verkürzten Untereinheiten, unter Kontrolle des Kupfer-Promotors ermöglicht. Zur Reinigung dieser Komplexe aus der Hefe wurde ein bestehendes Protokoll abgewandelt und optimiert. Die Substrate, Aktin, α- und -Tubulin, wurden nach heterologer Expression in E. coli in Form von inclusion bodies gewonnen. Mit Hilfe dieser gereinigten Komponenten wurden der Wildtyp-Komplex und ausgewählte Mutanten, bei denen die α-Untereinheiten Gim2p oder Gim5p alleine oder Gim2p und Gim5p zusammen verkürzt waren, bezüglich ihrer Fähigkeit getestet, die Aggregation denaturierten Aktins in vitro zu verhindern. Es zeigte sich, dass die Verkürzung der Gim2p-Untereinheit die Aktinbindung nur wenig beeinträchtigt, wogegen eine Veränderung der Gim5p-Untereinheit eine starke Reduktion gegenüber dem Wildtyp bewirkt. Die entsprechende Doppelmutante ist schließlich nicht mehr in der Lage, die Aggregation denaturierten Aktins zu verhindern. Dieses Ergebnis konnte durch Translationsexperimente bestätigt werden, bei denen die verschiedenen Gim-Komplexe bezüglich ihrer Fähigkeit getestet wurden, de novo synthetisiertes Aktin in Lösung zu halten. Auch hier hatte die Veränderung von Gim2p nur einen geringen Effekt, während eine Verkürzung von Gim5p zu einer drastischen Anreicherung des neu-synthetisierten Aktins in der unlöslichen Proteinfraktion führte. In diesen Experimenten wurde erstmals auch der Beitrag dieser Untereinheiten zur Interaktion von GimC mit α-Tubulin untersucht. Hier zeigte sich, dass alleine die Verkürzung der Gim5p-Untereinheit ausreicht, um die Wechselwirkung von GimC mit diesem Substrat komplett zu verhindern.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
The PHO5 and PHO8 genes in yeast provide typical examples for the role of chromatin in promoter regulation. Both genes are regulated by the same transcriptional activator, Pho4, which initiates nucleosome remodeling and transcriptional activation. In spite of this co-regulation, there are important differences in gene activity and in the way promoter chromatin undergoes chromatin remodeling. First, PHO5 belongs to one of the most strongly induced genes in yeast being 10-fold more active than the PHO8 gene (Oshima, 1997; Barbaric et al., 1992). Second, chromatin remodeling at the PHO5 promoter affects four nucleosomes (Almer et al., 1986), whereas only two nucleosomes are afffected at the PHO8 promoter (Barbaric et al., 1992). Third, neither the histone acetyl transferase Gcn5 nor chromatin remodeling complex Swi/Snf seem to be critically required for chromatin remodeling at the PHO5 promoter (Barbaric et al., 2001; Reinke and Hörz, 2003; Dhasarathy and Kladde, 2005; Neef and Kladde, 2003). At the PHO8 promoter, on the other hand, absence of Swi/Snf results in the complete loss of chromatin remodeling under inducing conditions. Furthermore, Gcn5 is required for full remodeling and transcriptional activation at this promoter (Gregory et al., 1999). Ever since these differences were recognized there have been speculations about the underlying reasons. This work shows that these discrepancies are not a direct consequence of the position or strength of the UASp elements driving the activation of transcription. Instead, these differences result from different stabilities of the two promoter chromatin structures. The basis for these results was the development of a competitive yeast in vitro assembly technique in which differences in nucleosome stability between promoter regions could be directly compared. This technique originated from a yeast in vitro chromatin assembly system that generated the characteristic PHO5 promoter chromatin structre (Korber and Hörz, 2004). As shown here, this system also assembles the native PHO8 promoter nucleosome pattern. Using the competitive assembly system it was shown that the PHO8 promoter has greater nucleosome positioning power, and that the properly positioned nucleosomes are more stable than at the PHO5 promoter. This provided for the first time evidence for the correlation of inherently more stable chromatin with stricter co-factor requirements. Remarkably, the positioning information for the in vitro assembly of the native PHO5 and PHO8 promoter chromatin patterns was specific to the yeast extract. Salt gradient dialysis or Drosophila embryo extract assemblies did not support the proper nucleosome positioning. However, nucleosomes in chromatin generated in these systems could be shifted to their in vivo-like positions by the addition of yeast extract. This indicates that the nucleosome positioning mechanisms in vitro are uncoupled from the nucleosome loading machinery. The nucleosome positioning at the PHO5 and PHO8 promoters was energy dependent suggesting a role of chromatin remodeling machines in generation of the repressed promoter chromatin structure. In spite of this, the chromatin remodeling machines Swi/Snf, Isw1, Isw2 and Chd1 were dispensable nucleosome positioning at both promoters.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19
Thu, 26 Jan 2006 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/4814/ https://edoc.ub.uni-muenchen.de/4814/1/Vilsmaier_Florian.pdf
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19
Thu, 8 Dec 2005 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/4720/ https://edoc.ub.uni-muenchen.de/4720/1/Kriegl_Lydia.pdf Kriegl, Lydia ddc:6
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 03/19
Mitochondrien sind sehr dynamische Organellen, die sich fortwährend teilen und miteinander fusionieren. Fusion und Teilung spielen eine wichtige Rolle für den Aufbau der mitochondrialen Struktur und den Erhalt mitochondrialer Funktionen. Darüber hinaus sind diese Prozesse bedeutsam bei der zellulären Alterung, Apoptose und Zelldifferenzierung. Die ersten molekularen Komponenten der Fusions- und Teilungsmaschinerie wurden in den letzten Jahren in der Bäckerhefe S. cerevisiae als Modellorganismus identifiziert. Ziel der vorliegenden Arbeit war die Identifizierung neuer Komponenten und deren funktionelle Charakterisierung in Hefe.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Die Innenmembran von Mitochondrien besitzt zwei Translokasen für den Import von Proteinen. Der TIM23-Komplex vermittelt die Translokation über und in die Innenmembran, der TIM22-Komplex inseriert Proteine mit mehreren hydrophoben Segmenten in die Innenmembran. Im Rahmen dieser Arbeit sollten Komponenten dieser Translokationsmaschinerien in N. crassa und S. cerevisiae identifiziert und charakterisiert werden. In N. crassa waren zu Beginn der Arbeit im Vergleich zu S. cerevisiae nur wenige Komponenten der TIM-Translokasen bekannt. In der vorliegenden Arbeit wurden die Proteine Tim22, Tim54 und Tim44 in N. crassa identifiziert. Dies wurde entweder durch die Verwendung degenerierter Primer in PCR-Reaktionen mit cDNA aus N. crassa oder durch Durchmustern von Datenbanken erreicht. Die identifizierten Proteine des TIM22-Komplexes wurden bezüglich ihrer Lokalisation und Topologie untersucht. Es handelt sich bei Tim22 um ein Membranprotein der inneren mitochondrialen Membran mit vier Transmembranhelices, das sowohl den N- als auch den C-Terminus in den Intermembranraum exponiert. Tim54 ist ebenso in der inneren mitochondrialen Membran lokalisiert und besitzt nur eine Transmembranhelix. Der größte Teil des Proteins liegt im Intermembranraum, nur wenige Aminosäurereste befinden sich in der mitochondrialen Matrix. Ferner wurde der TIM22-Komplex von N. crassa charakterisiert. Dazu zählten die Untersuchungen der beteiligten Komponenten, der Komplexgröße und der Stabilität des Komplexes. In N. crassa besteht der TIM22-Komplex aus den Komponenten Tim22, Tim54, Tim9 und Tim10, die einen etwa 350 kDa großen Komplex bilden. Für spätere funktionelle Untersuchungen wurde der TIM22-Komplex bzw. Tim22 alleine gereinigt. Beides wurde in Lipidvesikel rekonstituiert. Dieses Verfahren bietet die Grundlage für Untersuchungen in einem definierten experimentellen System, wie Proteine der Carrier-Familie in Lipidmembranen inseriert werden. In S. cerevisiae wurde mit Tim16 eine neue Komponente des mitochondrialen Importmotors des TIM23-Komplexes identifiziert. Dies konnte durch Koreinigung mit einer weiteren Komponente des Importmotors, Tim14, erreicht werden. Die strukturelle Vorhersage für Tim16 ähnelt stark der des J-Proteins Tim14. Tim16 fehlt allerdings das für die Funktion von J-Proteinen essentielle HPD-Motiv. Tim16 ist in der mitochondrialen Matrix lokalisiert und peripher mit der inneren mitochondrialen Membran assoziiert. Durch Depletion von Tim16 wird der Import von Substraten in Mitochondrien beeinträchtigt, die vom mitochondrialen Importmotor abhängig sind. Durch Koimmunopräzipitationen und Quervernetzungsexperimente wurde Tim16 als neue Komponente des mitochondrialen Importmotors der TIM23-Translokase definiert. Funktionell spielt Tim16 eine große Rolle für die Integrität des Importmotors. Die genaue Struktur des Importmotors, seine Regulation und dessen Dynamik im Zuge der Translokation von Präproteinen muss in zukünftigen Experimenten geklärt werden.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Der Großteil der in eukaryontischen Zellen ablaufenden chemischen Reaktionen finden in Zellkompartimenten statt, die durch Membranen eingeschlossen werden. SNARE-Proteine sind essentielle Komponenten für die Fusion von gleichartigen (homotypischen) als auch verschiedenartigen (heterotypischen) Membranen. SNAREs sind meist über eine C-terminale Transmembran-Domäne in der „Geber“-Membran verankert. N-terminale 60-70 Aminosäuren lange Hepta-Peptide (SNARE-Motiv) können über Coiled-Coil Formierung den Kontakt mit einem SNARE an der „Empfänger“-Membran herstellen (trans-SNARE Komplex). In der vorliegenden Arbeit wurden die Plasmamembran SNAREs SNC1 und SNC2 in Saccharomyces cerevisiae auf posttranslationale Modifikation durch Ubiquitin untersucht. Dabei stellte sich heraus, dass die Ubiquitylierung an mindestens zwei Lysinen im Substrat erfolgt. Die kovalente Verknüpfung erfolgt durch die Ubiquitin-Ligase RSP5. In Mutanten, die die Sekretion von SNC1/SNC2 zur Plasmamembran inhibieren (sec17-1, sec18-1, sed5-1 und sec1-1), liegen die SNAREs in nicht-modifizierter Form vor. In den Endozytose-Mutanten end3 und end4, die für die Invagination von endozytotischen Vesikeln defekt sind, akkumuliert ubiquityliertes SNC1 an der Plasmamembran. Die Ubiquitylierungs-Reaktion muß daher an der Plasmamembran erfolgen. Eine der Ubiquitylierungsstellen, Lysin-63, befindet sich in der Coiled-Coil-Domäne der SNAREs. Der Austausch des Lysins durch ein Arginin an dieser Stelle führt dazu, dass SNC1 nicht mehr in das Lumen der Vakuole lokalisiert wird. Stattdessen verbleibt das Protein in der Membran der Vakuole. Die zweite Ubiquitylierungsstelle konnte noch nicht identifiziert werden. Das Ubiquitin Bindeprotein DDI1 interagiert mit SNC1/SNC2, und beeinflußt die Verfügbarkeit des SNAREs für den trans-SNARE Komplex. Ob DDI1 über die interne UBA (ubiquitin-associated)-Domäne mit ubiquityliertem SNC1/SNC2 interagiert, ist noch unbekannt.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
In S. cerevisiae bilden Mitochondrien ein tubuläres Netzwerk, für dessen Erhaltung ein Gleichgewicht aus Fusions- und Teilungsprozessen notwendig ist. Mgm1 ist ein Dynamin-ähnliches Protein in Mitochondrien, das an der mitochondrialen Fusion beteiligt ist. Es kommt in einer großen Isoform (l-Mgm1) von 97 kD und einer kleinen Isoform (s-Mgm1) von 84 kD vor. In der vorliegenden Arbeit sollte die Biogenese dieser beiden Isoformen und ihre Rolle in der Erhaltung der mitochondrialen Morphologie und der mitochondrialen DNA geklärt werden. Beide Isoformen konnten im Intermembranraum von Mitochondrien lokalisiert werden. Durch Immunpräzipitation und N-terminale Sequenzierung wurden die N-Termini beider Isoformen identifiziert. l-Mgm1 besitzt an seinem N-Terminus ein hydrophobes Segment. Mit diesem Segment ist es in der inneren mitochondrialen Membran verankert. s-Mgm1, dem dieses Segment fehlt, ist peripher membranassoziiert. Die Rhomboid-ähnliche Protease Pcp1 in der mitochondrialen Innenmembran ist für die Prozessierung von Mgm1 zu s-Mgm1 verantwortlich. Die Deletion von PCP1 führt zur Fragmentierung und Aggregation der Mitochondrien und zum Verlust der Respirationskompetenz und der mitochondrialen DNA. Dieser Phänotyp ist von dem der Deletion von MGM1 nicht zu unterscheiden. Der Phänotyp der Deletion von PCP1 ist eine direkte Konsequenz der fehlenden Mgm1–Prozessierung und des Fehlens von s-Mgm1. Darüber hinaus ist die Bildung beider Isoformen in ungefähr gleicher Menge für die volle Funktionalität von Mgm1 erforderlich. Für die koordinierte Bildung beider Isoformen ist eine konservierte Abfolge von zwei hydrophoben Segmenten am N-Terminus von Mgm1 erforderlich. Das weiter C-terminal gelegene hydrophobe Segment enthält die Spaltstelle für Pcp1. Die Hydrophobizität des N-terminalen Segments determiniert hingegen das Mengenverhältnis beider Isoformen. Dabei führt verringerte Hydrophobizität zur vermehrten Bildung von s-Mgm1, während erhöhte Hydrophobizität die Bildung von s-Mgm1 fast vollständig verhindert. Die intermediäre Hydrophobizität der Wildtyp-Sequenz ist kritisch für die koordinierte Bildung beider Isoformen im Verhältnis von ungefähr 1:1. Die Bildung von s-Mgm1 hängt weiterhin von einem funktionalen Importmotor und einer hinreichend hohen ATP–Konzentration in der mitochondrialen Matrix ab. l-Mgm1 kann dagegen ATP-unabhängig und unabhängig vom Importmotor gebildet werden. Diese Daten führten zum Modell der alternativen Topogenese von Mgm1. Demnach dient das erste hydrophobe Segment als Stopp-Transfer-Signal im TIM17/TIM23-Translokationskomplex. Laterale Insertion dieses Segments in die mitochondriale Innenmembran führt zur Bildung von l-Mgm1. Die Überwindung dieses Translokationsarrests führt zum weiteren Import bis das zweite hydrophobe Segment mit der Spaltstelle die Innenmembran erreicht. Dort entsteht durch Pcp1-Spaltung s-Mgm1. Der weitere Import und damit die Pcp1-Prozessierung sind abhängig von ATP und einem funktionalen Importmotor. Die Bildung von l-Mgm1 und s-Mgm1 sind kompetierende Prozesse. Störungen in diesem kompetitiven Gleichgewicht (veränderte Hydrophobizität des ersten hydrophoben Segments, nicht funktionaler Importmotor, niedrige ATP–Konzentration in der Matrix) führen zu Verschiebungen im Verhältnis beider Mgm1-Isoformen und zur Fragmentierung und Aggregation der Mitochondrien. Daher stellt der Mechanismus der alternativen Topogenese eine Möglichkeit dar, wie der bioenergetische Zustand der Mitochondrien auf molekularer Ebene an die mitochondriale Struktur gekoppelt sein könnte. Auf diese Weise könnte in Mitochondrien, deren bioenergetischer Status z.B. aufgrund von Mutationen in der mitochondrialen DNA, wie sie durch oxidativen Stress entstehen, gestört ist, die Bildung von s-Mgm1 verringert sein. Möglicherweise führt das dazu, dass die betroffenen Mitochondrien nicht mehr effizient fusionieren und so aus dem mitochondrialen Netzwerk ausgeschlossen werden. Der Mechanismus der alternativen Topogenese würde in diesem Fall gegen geschädigte mitochondriale DNA selektionieren und so deren Vererbung unterbinden.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Myosine sind molekulare Motoren, die an einer Vielzahl von zellulären Prozessen wie Bewegung, Zellteilung oder Polarität beteiligt sind. Ihr Grundaufbau gliedert sich in Motordomäne, Hals- und Schwanzdomäne. Der Motor interagiert ATP-abhängig mit dem Aktinzytoskelett und ist die krafterzeugende Komponente. Vergleicht man die verschiedenen Myosine miteinander, zeigt der Kopfbereich die höchste Konservierung. An den Motor schliesst sich der Halsbereich an, der die Bindestellen für regulatorische Untereinheiten wie z.B. Calmodulin beinhaltet. Der Schwanzbereich dient zum einem der Interaktion mit der transportierten Fracht und zum anderen der Dimerisierung oder Organisation in Filamente. In der Hefe Saccharomyces cerevisiae findet man fünf Myosine aus drei verschiedenen Klassen. Myo1p ist das einzige Klasse II Myosinund gehört zu den muskelähnlichen Myosinen, die sich in Filamenten organisieren. Myo2p und Myo4p gehören zu den Klasse V Myosinen und vermitteln Prozesse wie Vesikel-Transport, mRNALokalisation und Vererbung von Organellen und Endoplasmatischen Retikulum. Es wird vermutet, dass sie Dimere bilden, die als prozessive Motoren, also eigenständig, durch die Zelle wandern und so ihre Fracht an den Ort ihrer Bestimmung bringen. Myo3p und Myo5p sind in ihrer Funktion redundant und vermitteln als Klasse I Myosine die Endozytose, sowie die Integrität und Polarität des kortikalen Aktinzytoskeletts. Sie liegen als Monomere vor und interagieren über spezifische Domänen in ihren Schwanzbereich mit einer Vielzahl von Proteinen wie z.B. Verprolin oder Komponenten des Arp2/3-Komplexes. Die rekombinante Expression von Myosinen stellt sich als sehr problematisch dar, da sich die Motordomäne nicht spontan in eine funktionelle Konformation falten kann. Verschiedene Publikationen deuten daraufhin, dass für die Faltung dieser Multidomänenstruktur die UCS-Proteine notwendig sind. UCS leitet sich von den Namen der zuerst identifizierten Mitglieder ab (UNC-45 aus C. elegans, Cro1p aus P. anserina und She4p aus S. cerevisiae), welche lediglich die C-terminale UCS-Domäne gemeinsam haben. Für UNC-45 konnte bereits gezeigt werden, das es über die UCS-Domäne mit der Motordomäne von Muskelmyosin interagiert und als Chaperon dessen thermale Aggregation verhindert. Ausserdem interagiert UNC-45 über eine N-terminale TPR-Domäne mit Hsp90 und über den zentralen Bereich mit Hsp70. Im Rahmen meiner Arbeit wurde der Einfluss von She4p auf die Funktion der Myosine untersucht. Es wurde gezeigt, dass She4p über die UCS-Domäne mit der Motordomäne von Klasse I und Klasse V Myosinen interagiertund somit die Lokalisation von Myo3p, Myo4p und Myo5p ermöglicht. Mit Hilfe eines Aktin Pelleting Assays konnte gezeigt werden, dass die Misslokalisation der Klasse I Myosine im she4! Hintergrund durch einen Defekt in der Aktinbindedomäne im Motorbereich verursacht wird. Die Spezifität von She4p für verschiedene Myosinklassen spiegelt sich in der zellulären Verteilung des Proteins wieder. Das UCS-Protein wird Myo2p-abhängig in die Knospenspitze transportiert, um dort die Interaktion zwischen Klasse I Myosinen und dem Aktinzytoskelett zu vermitteln. Im Gegensatz dazu benötigt Myo4p lediglich funktionelles She4p innerhalb der Zelle, da dieses Myosin durch Mutter- und Tochterzelle wandert und somit seinen Regulator überall benötigt. Die Tatsache, ob She4p wie UNC-45 als Chaperon an der Faltung der Motordomäne beteiligt ist, ist weiterhin unklar. Es konnte jedoch in einem Pulldown Experiment und einer Immunpräzipitation eine Interaktion zwischen She4p und Hsp90 festgestellt werden. Es ist daher durchaus möglich, dass She4p als Kochaperon das Hsp90 System zum Myosin rekrutiert, damit die Motordomäne in eine funktionelle Konformation gefaltet wird. Neben der zytoplasmatischen Funktion von She4p scheint es noch eine nukleäre zu geben, da im Pulldown Experiment zahlreiche Proteine gefunden wurden, die Teil des Processosomes der kleinen ribosomalen Untereinheit sind und im Nucleolus lokalisieren. Die Funktion von She4p in diesem Prozess ist noch unbekannt.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Hypusine is an unusual and unique posttranslational modification, conserved in evolution from halobacteria to man. However, despite being essential for life the function of the modification and the protein carrying it (Hypp) remains unclear so far. In yeast temperature sensitive mutants were generated and phenotypicly characterized. The investigation included proteomic and transcriptomic techniques. Furthermore binding assays using several Hypp fusion proteins were performed in order to find cellular protein and RNA interaction partners. Describing the phenotype of a highly temperature sensitive point mutated allele of Hypp a limited viability at restrictive temperature was shown leading to apoptotic cell death suggesting an antiapototic property of the protein. On the transcriptomic level studies using high density oligonucleotide micro arrays covering the whole yeast genome were performed. As also found on the protein level by 2D-gel analysis the impairment of mitochondrial functions was confirmed. Respectively 70% of the enriched transcripts of the mutant were also accumulated in strains in which components of the NMD pathway were disrupted indicating a function of the hypusine containing protein in this special 5’-3’-mRNA degradation pathway to which NMD belongs. A respiratory deficiency also was the first observed phenotype of strains bearing a NMD dysfunction. The mutant showed an attenuation of the telomer positioning effect leading to elevated transcriptional activity of genes near the telomers. It could be demonstrated that the Hypp mutant showed shortening of telomers similarly observed in NMD deficient strains. No evidence for the protein to be a general nuclear export factor of a special RNA subset could be given. By affinity chromatographic purification of N-terminal GST-Hypp fusion proteins an interaction of Hypp to the major coat protein of the yeast specific virus L-A was demonstrated, a protein that itself posesses an enzymatic activity for the decapping of mature RNA molecules. Before it was shown that N-terminally GST-tagged Hypp was able to take over the function of the wild-type protein unrestrictedly. Our results give evidence that the protein posesses cellular cytosolic functions in the posttranscriptional control of gene activity of viral and normal genes in Saccharomyces cerevisiae. A connection to a special RNA degradation pathway is evident and should be investigated further on.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Mon, 22 Mar 2004 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/1906/ https://edoc.ub.uni-muenchen.de/1906/1/Reinke_Hans.pdf Reinke, Hans
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 02/19
Im Rahmen dieser Arbeit wurden zwei Fragen zur Wechselbeziehung von Struktur und Funktion von Transkriptionsaktivatoren am PHO5-Promotor in Saccharomyces cerevisiae bearbeitet. Im ersten Teil der Arbeit wurden zwei Deletionsmutanten des Transkriptionsfaktors Pho4 hergestellt und charakterisiert. Dazu wurden aus der PHO4-Sequenz mit Hilfe einer PCR-gestützten Methode jeweils die für die Aminosäuren 97 bis 106 sowie 101 bis 110 kodierenden Sequenzen entfernt. Mit Hilfe von geeigneten Expressionsvektoren wurden beide Deletionsmutanten in S. cerevisiae exprimiert. Das Ausmaß der Transkriptionsaktivierung durch die Konstrukte wurde durch Messung der Aktivität der saueren Phosphatase bestimmt. Beide Mutanten bewirkten eine deutliche Aktivierung der Transkription am PHO5-Promotor. Daraus kann geschlossen werden, dass die hier deletierten Abschnitte von PHO4 keinen wesentlichen Anteil an der Transkriptionsaktivierung durch Pho4 haben. Zwischenzeitlich wurde der Nachweis einer minimalen transkriptionsaktivierenden Domäne von Pho4 publiziert. Die minimale transaktivierende Domäne besteht aus den Aminosäuren 79 bis 99. Dieser Abschnitt ist notwendig und ausreichend für die Öffnung der Chromatinstruktur des Promotors und die Aktivierung der Transkription. Die hier beschriebene Herstellung und Charakterisierung der Deletionsmutanten von PHO4 leistete einen wesentlichen Beitrag zur Eingrenzung der transaktivierenden Domäne von Pho4. Der zweite Teil der Arbeit befasste sich mit der Wirkung des als GAGA-Faktor (GAF) bezeichneten Transkriptionsfaktors aus Drosophila melanogaster am PHO5-Promotor von S. cerevisiae. Dazu wurden chimäre Konstrukte aus dem GAF und der DNA-bindende Domäne des Transkriptionsaktivators Pho4 hergestellt. Zudem wurden auch Fusionskonstrukte mit jeweils nur einer Hälfte des GAF und der DNA-bindende Domäne des Pho4 erzeugt. Diese Konstrukte wurden in S. cerevisiae exprimiert. Hier zeigte sich, dass die Verbindung aus dem gesamten GAF und der DNA-bindenden Domäne von Pho4, vermutlich aufgrund eines gestörten intrazellulären Transports oder aufgrund einer Instabilität des Proteins, keine Aktivität aufwies. Dagegen waren die Konstrukte, welche jeweils nur eine Hälfte des GAF enthielten, in der Lage, eine Öffnung der Chromatinstruktur und eine Aktivierung der Transkription am PHO5-Promotor zu bewirken.Um zu untersuchen, welche Veränderungen die chimären Konstrukte durch ihr Angreifen am PHO5-Promotor an der Chromatinstruktur des Promotors verursachen, wurden spezielle experimentelle Verfahren angewendet. Diese nutzen die unterschiedliche Zugänglichkeit der DNA für Enzyme bei geöffneter oder geschlossener Chromatinstruktur. Die Untersuchungen zeigten eine gleichartige Öffnung der Chromatinstruktur am PHO5-Promotor durch beide Konstrukte. Die gleichartige Öffnung der Chromatinstruktur korrelierte dabei nicht mit dem unterschiedlichen Umfang der Transkriptionsaktivierung von PHO5. Aufgrund der fehlenden Korrelation von Chromatinöffnung und Transkriptionsaktivierung stehen diese Ergebnisse im deutlichen Widerspruch zu der von vielen Autoren vertretenen Hypothese, der GAF würde die Transkription indirekt, nur durch die Öffnung repressiver Chromatinstrukturen aktivieren (Derepression). Vielmehr weisen diese Ergebnisse darauf hin, das der GAF auch als klassischer Transaktivator eine direkte Aktivierung der Transkription bewirken kann. Die Aktivierung der Transkription durch beide Hälften des GAF in den chimären Konstrukten war ein überraschendes Ergebnis. Es zeigt, dass GAF neben der glutaminreichen Domäne eine weitere Domäne enthält, die in vivo eine Aktivierung der Transkription bewirken kann. Diese Erkenntnis ist grundsätzlich neu und in der Literatur bisher nicht beschrieben worden.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 02/19
Zu den idiopathischen chronisch entzündlichen Darmerkrankungen zählt man den Morbus Crohn und die Colitis ulcerosa. Bisher wird die Diagnose anhand radiologischer, endoskopischer und histologischer Befunde gestellt. Aufgrund der ähnlichen Erkrankungsbilder ist es oft schwierig, die richtige Diagnose zu stellen und zwischen Morbus Crohn und Colitis ulcerosa zu unterscheiden. Um die Diagnosestellung zu erleichtern, wurden zwei serologische Tests entwickelt, der eine testet auf anti-neutrophile-cytoplasmatische Antikörper (ANCA-Test) und der andere auf anti-Saccharomyces-cerevisiae Antikörper (ASCA-Test). Um die Aussagekraft dieser beiden Tests beurteilen zu können, untersuchten wir Seren von 32 Morbus Crohn und 19 Colitis ulcerosa Patienten und verglichen diese mit Seren von 73 (ASCA) bzw. 30 (ANCA) Kontrollkindern. Der p-ANCA wurde mit Hilfe indirekter Immunfluoreszenztechnik und IgG wie IgA ASCA mit einem ELISA bestimmt. Der ANCA-Test hatte eine Sensitivität von 31,6%, bei einer Spezifität von 91,9% und einem positiven Vorhersagewert für Colitis ulcerosa von 54,6%. Wir konnten keinerlei signifikanten Zusammenhang zwischen dem Vorkommen von ANCA und dem intestinalen Befallsmuster der beiden Erkrankungen nachweisen. Es fiel allerdings auf, dass die ANCA positiven Morbus Crohn Patienten alle einen Kolonbefall aufwiesen. Weder der PCDAI bei Morbus Crohn noch die Schwere der Erkrankung bei Colitis ulcerosa sind mit der Bildung von Antikörpern assoziiert. Erkrankungsdauer und Alter bei Diagnosestellung hatten auch keinen Einfluss auf die Bildung der anti-neutrophilen-cytoplasmatischen Antikörper bei Colitis ulcerosa Patienten. Es war jedoch festzustellen, dass mit zunehmender Erkrankungsdauer des Morbus Crohns die ANCA-Titer zurückgingen. Der ASCA-Test hatte eine Sensitivität von 56,3%, bei einer Spezifität von 85,9% und einem positiven Vorhersagewert für Morbus Crohn von 58,1%. Auch bei diesem Test konnte man keine Rückschlüsse auf klinische Parameter ziehen. Fasst man die beiden Tests zu einem Diagnoseblock zusammen, erhält man eine Sensitivität von 46,9%, eine Spezifität von 87,8% und einen positiven Vorhersagewert für Morbus Crohn von 71,4%. Für die Erkrankung Colitis ulcerosa erhält man eine Sensitivität von 31,6%, eine Spezifität von 96,8% und einen positiven Vorhersagewert von 75,0%. Sowohl der ANCA- als auch der ASCA-Test sind nicht sensitiv genug, um als Screening- Untersuchung auf chronisch entzündliche Darmerkrankungen Einsatz zu finden.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 02/19
Nach der Aufklärung der Basenabfolge des Genoms von Saccharomyces cerevisiae ist die Funktion der 30.000-40.000 Gene und insbesondere das Zusammenspiel der Regulation der einzelnen Gene ein zentrales Thema der Molekularbiologie. Die DNA eukaryonter Zellen liegt durch Bindungen an Histon-Proteine im Zellkern als Chromatin vor. Die Chromatinstruktur dient nicht nur der Komprimierung der DNA auf engstem Raume, sondern hat auch starke Auswirkungen auf die Funktion der DNA. So müssen Gene bei ihrer Aktivierung durch Veränderung ihrer Chromatinstruktur, die bis zur Ablösung der Histone führen kann, den für die Transkription benötigten Enzymen und Faktoren erst zugänglich gemacht werden. Das PHO5-Gen der Hefe Saccharomyces cerevisiae stellt ein sehr gut untersuchtes Modell dar, bei dem Veränderungen der Chromatinstruktur genau untersucht und mit dem funktionellen Zustand des Gens korreliert worden sind. PHO5 kodiert für eine saure Phosphatase, die bei Verbrauch der Phosphatreserven der Zelle in den periplasmatischen Raum sezerniert wird, um aus dort eventuell vorhandenen organischen Phosphatverbindungen Phosphat zu gewinnen. Ist im Medium genügend Phosphat vorhanden, ist PHO5 reprimiert. In diesem Zustand ist die Chromatinstruktur des PHO5-Promotors durch vier dicht aufeinander folgende Nukleosomen gekennzeichnet, wodurch der Promotor Enzymen und regulatorischen Proteinen allgemein schlecht zugänglich ist. Nur zwischen dem zweiten und dem dritten Nukleosom ist die dichte Anordnung der Nukleosomen durch einen etwa 70 bp langen gut zugänglichen Bereich unterbrochen. In dieser sogenannten hypersensitiven Region bindet bei Phosphatmangel der aktivierende Transkriptionsfaktor Pho4 gemeinsam mit dem Faktor Pho2 an ein UAS-Element und induziert die PHO5-Expression. Dabei lösen sich die vier Nukleosomen vom DNA-Strang ab. Sin4 ist ein Transkriptionsfaktor der Hefe Saccharomyces cerevisiae, der auf mehrere Promotoren zumeist reprimierenden Einfluss ausübt. Ausgangspunkt der hier vorliegenden Arbeit war der Befund, dass in Abwesenheit von Sin4 die Gegenwart der prokaryontischen lacZ Sequenz stromaufwärts des PHO5-Promotors zu einer Derepression des PHO5-Gens führt, und zwar in Gegenwart von Phosphat, also unter eigentlich reprimierenden Bedingungen. Dieser Effekt wurde ursprünglich bei der Verwendung der kodierenden Sequenz von lacZ als dem PHO5-Promotor nachgeschalteten Reporter-Gen in sin4-Hefezellen entdeckt. Eine Frage der hier vorliegenden Arbeit galt der Ursache der Derepression von PHO5 durch die lacZ kodierenden DNA-Sequenz. Dazu interessierte uns, ob die Derepression ein spezielles Phänomen der lacZ-Sequenz ist oder ob es sich hierbei eher um eine allgemeine Eigenschaft von DNA-Fragmenten handelt. Außerdem interessierte uns, ob die Herkunft der DNA aus prokaryonten oder eukaryonten Zellen eine Rolle spielen könnte. Dazu wurde jeweils eine große Anzahl zufällig ausgewählter DNA-Fragmente einer Länge zwischen 900bp und 1200bp aus den Genomen der Hefe Saccharomyces cerevisiae und der Bakterien Escherichia coli und Micrococcus lysodeikticus an entsprechender Stelle vor den PHO5-Promotor integriert. Die so konstruierten Plasmide wurden in einen Hefestamm transformiert, in dem das SIN4-Gen zerstört worden war. Insgesamt wurden 400 Klone mit integrierten Hefe-DNA-Fragmenten, 300 Klone mit integrierten M. lysodeikticus-DNA-Fragmenten und 14 Klone mit integrierten E. coli-DNA-Fragmenten untersucht. Die Bestimmung der Phosphatase-Aktivitäten der einzelnen Klone ergab für fast alle Plasmide mit integrierten E. coli- und M. lysodeikticus-DNA-Fragmenten eine erhöhte Aktivität trotz phosphatreichen Mediums. Im Gegensatz dazu zeigten die wenigsten Plasmide mit integrierten Hefe-DNA-Fragmenten eine Erhöhung der PHO5-Expression unter denselben Bedingungen. Von den insgesamt 400 getesteten Plasmiden wiesen nur neun eine gesteigerte PHO5-Expression auf. In allen Fällen, also für alle E. coli-, M. lysodeikticus- und Hefe-DNA-Fragmente, wurde nur in Abwesenheit von Sin4 eine erhöhte Phosphatase-Aktivität gemessen. Bei seiner Anwesenheit wurden in phosphatreichem Medium nie gesteigerte Aktivitäten beobachtet. Diese Ergebnisse zeigen deutlich, dass die hier beobachtete Derepression typischerweise eine Eigenschaft prokaryonter DNA ist. Nur ein Bruchteil der eukaryonten DNA-Fragmente aus dem Hefe-Genom führt zu einer Derepression der Promotoraktivität, während dies nahezu alle prokaryonten DNA-Fragmente aus Escherichia coli- bzw. Micrococcus lysodeikticus tun. Um die neun Hefe-DNA-Fragmente, die zu einer Aktivierung des PHO5-Promotors führten, auf eventuelle Besonderheiten zu untersuchen, wurden ihre DNA-Sequenzen bestimmt und analysiert. Außerdem wurden noch zwei E. coli-DNA-Fragmente sequenziert, die zu keiner gesteigerten PHO5-Expression geführt haben. Diese sehr eindeutigen Ergebnisse werfen Fragen nach dem zugrunde liegenden Mechanismus auf. Eventuelle DNA-Methylierungen oder kryptische Promotoren schieden als Erklärung des Phänomens aus. Unterschiede des G-C-Gehalts der einzelnen DNA-Fragmente könnten besonders für die prokaryonte DNA teilweise eine Erklärung liefern. Die beiden prokaryonten Genome haben mit 51% bzw.72% einen wesentlich höheren G-C-Gehalt als das Hefegenom mit 38%. Besonders die beiden E. coli-DNA-Fragmente, die zu keiner gesteigerten PHO5-Expression führten, besitzen einen wesentlich geringeren G-C-Gehalt als der Durchschnitt des gesamten E. coli-Genoms (44,7% bzw. 38,0% im Vergleich zu 51%). Eukaryonte DNA besitzt in ihrer Sequenz im Gegensatz zu der aus Prokaryonten eine gewisse Periodizität, die sich etwa alle 10,5bp wiederholt und die Ausbildung von Nukleosomen erleichtert. Das Fehlen dieser Periodizität in prokaryonter DNA könnte sich ebenfalls auswirken, z.B. über eine labile Chromatinstruktur, die sich auch auf den benachbarten PHO5-Promotor auswirkt und dadurch eine Dereprimierung von PHO5 in sin4-Zellen auslöst. Die Dereprimierung des PHO5-Promotors durch die wenigen Hefe-DNA-Fragmente trotz reprimierender Bedingungen könnten aufgrund anderer Mechanismen zustande zu kommen. Die neun Hefe-DNA-Fragmente, die zu einer Aktivierung des PHO5-Promotors führten, zeigten auch keinen vom Hefegenom abweichenden G-C-Gehalt. Es ist auffällig, dass alle 9 DNA-Fragmente intergenische Bereiche enthalten. In diesen Bereichen gibt es oft regulatorische Elemente, die häufig in hypersensitiven Regionen gefunden werden. Hypersensitive Regionen sind nicht in Nukleosomen gepackt und könnten dadurch auch die umgebene Chromatinstruktur beeinflussen. Unabhängig von den mechanistischen Überlegungen zeigen diese Untersuchungen, dass die Aktivität eines Promotors von der Umgebung beeinflusst werden kann und dass daher der Einsatz von heterologen Reportergenen mit Vorsicht betrachtet werden muss.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Das Dhh1 Protein aus Saccharomyces cerevisiae ist aufgrund von acht hoch konservierten Aminosäure-Motiven als putative RNA Helikase klassifiziert. In S. pombe (Ste13p), Drosophi-la melanogaster (ME31B), Xenopus laevis (Xp54), Mus musculus (mmRCK) und Homo sa-piens (hRCK/p54) findet man Proteine, die zu Dhh1p eine sehr hohe Konservierung von bis zu 83 % aufweisen. Lediglich der N- und C-Terminus dieser Proteingruppe ist nicht konserviert. In der vorliegenden Arbeit wurde die Auswirkung der Deletion von DHH1 in Saccharomyces cerevisiae auf verschiedene Aspekte der DNA Schädigung und Reparatur, sowie die Funktio-nalität verschiedener Domänen von Dhh1p durch Mutationsanalysen untersucht. Im ersten Teil der Arbeit wurde das DHH1 Gen in verschiedenen Hefestämmen deletiert und die Auswirkungen von DNA schädigenden Substanzen auf diese Mutanten untersucht. Die De-letion von DHH1 führte zu einer starken Erhöhung der Sensitivität von Hefezellen sowohl ge-genüber Bleomycin als auch gegenüber MMS. Allerdings zeigten dhh1D-Zellen nur eine schwache Sensitivität gegenüber UV-Strahlung und keine Sensitivität gegenüber g-Strahlung. Dies weist sehr stark darauf hin, dass die beobachteten Sensitivitäten auf einem eventuell durch Membrandefekte verursachten, sogenannten „uptake“-Phänotyp beruhen. In „uptake“ unabhängigen Experimenten wurde die Funktionalität des Non-homologous End-joining Repa-raturweges der Hefe untersucht. Dabei konnte gezeigt werden, dass dhh1D-Stämme eine um den Faktor fünf reduzierte Effizienz in der Rezirkularisierung linearisierter Plasmide zeigen. Allerdings ist nur die Effizienz, nicht die Genauigkeit des End-joining in dhh1D-Stämmen be-troffen – die rezirkularisierten Plasmide wurden zu 100 % genau repariert. Dies weist darauf hin, dass die Deletion sich auf mehr als nur einen einzelnen Aspekt zellulä-rer Vorgänge auswirkt. Im zweiten Teil der Arbeit wurde die extreme Sensitivität der dhh1D-Stämme gegenüber Ble-omycin und MMS als Testsystem für die funktionelle Charakterisierung verschiedener Dhh1p Domänen verwendet. Dabei zeigte sich, dass eine Deletion des N-Terminus von Dhh1p kaum Einfluss auf die Funktionalität des Proteins hat. Die Deletion des C-Terminus führt zu einer deutlichen Sensitivität der Zellen gegenüber Bleomycin. Bei Deletion beider Termini wachsen die Zellen auf Bleomycin nur noch geringfügig besser als der dhh1D-Stamm. Diese Effekte werden durch Überexpression der verkürzten Proteine aufgehoben. Keine der drei Verkürzun-gen hat Einfluss auf das Wachstum auf MMS-haltigen Platten. Die Mutation der ATPase Domäne (Walker A Motiv) hebt die Funktion des Proteins fast voll-ständig auf. Diese Mutanten sind nahezu so sensitiv gegenüber Bleomycin, wie dhh1D Zellen. Die Überexpression der ATPase Mutante führt im Gegensatz zu den Verkürzungen zu keiner Verringerung der Sensitivität gegenüber Bleomycin. Die zusätzliche Entfernung der Termini in der ATPase Mutante führt nicht zu einer Erhöhung der Bleomycin-Sensitivität. Allerdings zeigt die Dreifachmutante deutlich schlechteres Wachstum auf MMS-haltigen Platten. Die Mutation des SAT-Motives in AAA führt ebenfalls zu einer deutlichen Bleomycin-Sensitivität. Der Phänotyp ist vergleichbar mit den Auswirkungen der Deletion des C-Terminus. Das ur-sprünglich als RNA Entwindemotiv charakterisierte SAT-Motiv wind mittlerweile eher als eine Art „Scharnier“ angesehen, das eine Bewegung der Domänen 1 und 2 im Dhh1 Protein relativ zueinander ermöglicht. Die Auswirkung der Mutation des SAT-Motivs in AAA im Vergleich zu den Verkürzungen und den ATPase Mutanten weist auf eine eher strukturelle Rolle des SAT-Motives in Dhh1p hin. Aus diesen Daten ließ sich ein vorläufiges Modell über die Funktionsweise des Dhh1 Proteins ableiten. In in vitro Experimenten wurde mit dem IMPACT-System aufgereinigtes Dhh1 Protein auf seine Fähigkeit hin untersucht, DNA und RNA zu entwinden. Für die verwendeten Substrate konnte keine in vitro Helikase Aktivität festgestellt werden. Zur Analyse der ATPase Aktivität wurde IMPACT-gereinigtes Dhh1p und durch Immunopräzipitation aus Heferohextrakten ge-wonnenes Protein eingesetzt. In beiden Fällen konnte keine ATP Hydrolyse beobachtet wer-den, obwohl die Mutationsanalyse eindeutig darauf hinweist, dass die ATPase Aktivität essen-tiell für die Funktion des Dhh1 Proteins ist.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Im Mittelpunkt der vorliegenden Arbeit steht die Funktion der Untereinheit e (Sue) der mitochondrialen F1FO-ATP Synthase von Saccharomyces cerevisi-ae. Anhand der Resultate der durchgeführten Experimente wurden folgende Schlussfolgerungen gezogen: (1) Sue ist der Lage, ein Sue-Homodimeres zu bilden. Das Protein spielt eine zentrale Rolle bei der Assemblierung der F1FO-ATP Synthase zu einem stabilen Dimer. Sue-Disruptanten bilden entsprechend kein stabiles ATP Synthase-Dimeres aus. Die C-terminalen 36 Aminosäurereste von Sue, die gegenüber Untereinheiten e aus Säugerzellen zusätzlich vorhanden sind, sind für die Dimerisierung von Sue und der F1FO-ATP Synthase ohne Bedeutung. (2) Zwischen den Untereinheiten e und k, die beide im FO-Sektor der ATP Synthase lokalisiert sind, besteht eine enge räumliche Beziehung. Für die In-teraktion von Sue mit Suk ist der Bereich von Sue, der anderen Untereinheiten e aus Säugerzellen ähnelt, ausreichend. (3) Im Hefegenom wurde ein der Sequenz von Suk nahe verwandtes Le-seraster gefunden. Die Sequenzähnlichkeit auf Aminosäureebene beträgt 45%. Ein entsprechendes hypothetisches Protein wurde als Suk hom bezeichnet. Eine Deletion dieser Sequenz allein oder gemeinsam mit dem Gen für Suk blieb ohne Auswirkungen auf die oxidative Phosphorylierung, die Assemblie-rung der F1FO-ATP Synthase und die Expression von Untereinheiten des FO-Sektors der F1FO-ATP Synthase. (4) Die Dimerisierung der F1FO-ATP Synthase und somit auch die Funkti-on von Sue als Dimerisierungsfaktor erwies sich als essentiell für die Funkti-on weiterer Komponenten der Atmungskette: der Cytochrom c-Oxidase und des Cytochrom bc1-Komplexes. Die Assemblierung der ATP Synthase wirkt sich auf die Aktivitäten der beiden Komponenten des Cytochrom bc1-COX-Suprakomplexes aus. Sie beeinflusst auch deren Assemblierung in den Supra-komplex beziehungsweise seine Stabilität. Die Anwesenheit der Region von Sue, die anderen Untereinheiten e aus Säugetierzellen ähnelt, reicht für die Bildung des Cytochrom bc1-COX-Suprakomplexes aus. Das Dimer der ATPase Synthase ist demzufolge in den Suprakomplex einge-bunden. Allerdings hat der Assemblierungszustand des Cytochrom bc1-COX-Suprakomplexes keinerlei Auswirkungen auf die Assemblierung der ATP Synthase. Dies deutet auf einen hierarchisch ablaufenden Prozeß der Bildung eines Suprakomplexes aus Cytochrom bc1-Komplex, Cytochrom c-Oxidase und F1FO-ATP Synthase hin. Die ATP Synthase nutzt zur Bildung von ATP den elektrochemischen Gra-dienten über die innere Mitochondrienmembran, an dessen Aufbau der Cy-tochrom bc1-Komplex und die Cytochrom c-Oxidase beteiligt sind. Eine Ein-bindung dieser Enzyme in einen Suprakomplex würde eine koordinierte Re-gulation der oxidativen Phosphorylierung ermöglichen. (5) Zwischen der Untereinheit Sue der F1FO-ATP Synthase und der Unter-einheit Cox2 der Cytochrom c-Oxidase konnte eine enge räumliche Bezie-hung nachgewiesen werden. Diese ist von der Funktionalität der F1FO-ATP Synthase abhängig. Anhand der Ergebnisse der vorliegenden Arbeit konnte somit folgende Erklä-rung für die Funktion der Untereinheit e der mitochondrialen F1FO-ATP Synthase gefunden werden: Sue dient als Dimerisierungsfaktor der F1FO-ATP Synthase. Die Dimerisie-rung von Sue und damit die Dimerisierung der ATP Synthase ist essentiell für die Stabilisierung des Cytochrom bc1-COX-Suprakomplexes und die Funkti-on seiner Komponenten.
Anti-Saccharomyces cerevisiae antibodies (ASCA) have been described as specific markers in Crohn's disease and their healthy first-degree relatives. 171 patients with Crohn's disease, their 105 first-degree relatives, 145 patients with ulcerative colitis and 101 first-degree relatives of patients with ulcerative colitis, 50 patients with infectious enterocolitis and 100 healthy controls were tested for ASCA employing the ELISA technique. When compared with the healthy controls (p < 0.0001) and patients with infectious enterocolitis (p < 0.0001) the prevalence of ASCA was significantly increased in patients with Crohn's disease and their first-degree relatives (p < 0.01). Further significant differences concerning the frequency of ASCA within the different groups of our study population were not observed. In particular, ASCA were not found in increased prevalence in infectious enterocolitis. These observations are compatible with a role of ASCA as a marker of genetic predisposition to Crohn's disease. Copyright (C) 2002 S. Karger AG, Basel.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Die vorliegende Arbeit leistet einen Beitrag zur funktionellen Genomforschung in der Bäckerhefe Saccharomyces cerevisiae. Ein bei der Sequenzierung des Hefegenoms identifizierter offener Leserahmen, YOR179c, zeigte im Rahmen einer Datenbankanalyse eine erstaunliche Sequenzähnlichkeit zu dem bereits bekannten mRNA-3’-Prozessierungsfaktor Brr5. Dies legte die Vermutung nahe, dass es sich bei dem noch nicht näher charakterisierten Leserahmen ebenfalls um ein Gen handeln könnte, das für einen mRNA-3’- Prozessierungsfaktor codiert. Zunächst wurde durch eine Northern-Blot-Analyse eine dem Leserahmen entsprechende mRNA nachgewiesen. Des weiteren konnte auch ein Protein der erwarteten Größe anhand von polyklonalen Antikörpern, die gegen Yor179c gerichtet waren, detektiert werden. Diese Resultate belegen, dass es sich bei dem offenen Leserahmen YOR179c tatsächlich um ein exprimiertes Gen handelt. Eine Beteiligung des Yor179c-Proteins an der 3’-Prozessierung von mRNA-Vorläufern konnte anschließend anhand folgender Kriterien nachgewiesen werden: -Das Yor179c-Protein wurde als Fusionskonstrukt mit dem „green fluorescent protein“ im Kern lokalisiert, in dem Zellkompartiment, in dem auch der Prozess der mRNA-3’- Prozessierung abläuft. -Der letale Phänotyp eines Brr5-defizienten Hefestammes konnte durch Expression eines chimären Brr5/Yor179c-Gens, in dem der sequenzähnliche Bereich von Brr5 durch denjenigen von Yor179c ersetzt worden war, aufgehoben werden. -Ein in vivo Vergleich der Poly(A)-Schwänze eines Wildtyp und eines USY3-Stammes, der kein Yor179c-Protein mehr synthetisieren konnte, ergab eine erhöhte Polyadenylierungseffizienz des USY3-Stammes. -Immunochemische Analysen zeigten, dass nach Entfernung von Yor179c aus einem Hefe-Ganzzellextrakt dieser nicht mehr fähig war, eine mRNA-3’- Prozessierungsreaktion durchzuführen. -Dieser mRNA-3’-Prozessierungsdefekt eines depletierten Wildtyp-Extraktes konnte durch Expression eines extrachromosomal eingeführten YOR179c-Gens in den Wildtyp- Stamm komplementiert werden. -Durch Coimmunpräzipitationen wurde nachgewiesen, dass Yor179c mit dem mRNA-3’- Prozessierungsfaktor Brr5 und dem Polyadenylierungsfaktor Fip1 in vitro interagiert. Nachdem es sich bei Yor179c um ein Protein handelt, das für die Überlebensfähigkeit der Hefe nicht essentiell ist und ein Yor179c-defizienter Hefestamm ein vorgegebenes Substrat unter bestimmten Bedingungen durchaus prozessieren kann, muss zwar eine elementare Beteiligung von Yor179c an der mRNA-3’-Prozessierung ausgeschlossen werden, insgesamt kann jedoch aus den erhaltenen Daten gefolgert werden, dass Yor179c sowohl am Proteinkomplex, der den endonukleolytischen Schnitt katalysiert, als auch an der anschließenden Polyadenylierungsreaktion beteiligt ist. Die Ergebnisse sind konsistent mit der Vermutung, dass Yor179c eine Rolle bei der Ausbildung und Stabilisierung dieser Proteinkomplexe spielt. Diese Schlussfolgerungen konnten in jüngster Zeit durch weiterführende Experimente in einem kooperierenden US-amerikanischen Labor, dem unser Material zur Verfügung gestellt wurde, untermauert und bestätigt werden.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
In der vorliegenden Arbeit wurde die Wechselwirkung zwischen Transkriptionsfaktoren und Elementen der Chromatinstruktur bei der Regulation zweier Promotoren des Phosphatase-systems der Hefe Saccharomyces cerevisiae untersucht. Als Modellsystem wurden die Promotoren der Gene PHO5 und PHO8 gewählt, die für eine saure bzw. eine alkalische Phosphatase kodieren und durch Phosphatmangel induziert werden. Während der Induktion findet eine charakteristische Chromatin-Umordnung am Promotor statt, die sich bei PHO5 über einen Bereich von vier Nukleosomen ausdehnt, bei PHO8 jedoch signifikant geringer ist. Für die transkriptionelle Aktivierung sind insbesondere zwei Transkriptionsfaktoren nötig: das bHLH-Protein Pho4 und das Homöodomänenprotein Pho2. Der PHO5-Promotor besitzt zwei Pho4-Bindestellen, die den regulatorischen Elementen UASp1 und UASp2 entsprechen. Während UASp1 in einem hypersensitiven Bereich zwischen den Nukleosomen liegt, ist UASp2 intranukleosomal lokalisiert. Mutagenese einer der beiden Bindestellen führte zu einer zehnfachen Abnahme der Promotoraktivität, während Mutagenese beider Stellen die Induzierbarkeit des Promotors völlig aufhob. Um die Bedeutung der Lokalisation der UAS-Elemente im Chromatin zu analysieren, wurde ein Operator für den a2-Repressorkomplex oberhalb des PHO5-Promotors eingebaut. Dieser Repressorkomplex bildet im Kontext bestimmter Promotoren eine zum a2-Operator benachbarte repressive Chromatinstruktur mit basenpaargenauer Nukleosomenposition aus. Im PHO5-Promotor führte der Einbau dieses Operators zur Repression der Promotoraktivität und einer leicht verminderten Chromatinzugänglichkeit. Demnach kann der a2-Operator transkriptionshemmende Strukturen initiieren, wobei die Repression durch verstärkte Chromatinkondenation und möglicherweise durch die Rekrutierung von reprimierenden Mediatorproteinen des RNA-PolymeraseII-Holoenzyms vermittelt wird. Durch Deletionen von Bereichen zwischen dem a2-Operator und den UAS-Elementen konnten Nukleosomen wie das Nukleosom -2 zwar stabilisiert, aber nicht gezielt verschoben werden. Rekonstitutionsexperimente mit einem 180 Bp-DNA-Fragment, das den Bereich des Nukleosoms -2 enthielt, zeigten zwar einen gewissen Beitrag der Sequenz zur Histon-DNA-Bindung, dieser allein kann jedoch keinesfalls die Positionierung erklären, vielmehr scheinen Wechselwirkungen der Histone mit anderen Chromatinkomponenten entscheidenden Anteil zu haben. Zusammenfassung E -144-Der Mechanismus der Chromatin-Umordnung am PHO5-Promotor durch die Transkriptions-faktoren Pho4 und Pho2 wurde zunächst durch in vitro Experimente unter Verwendung von rekombinantem Pho2-Protein analysiert. Es konnten mehrere Pho2-Bindestellen verschie-dener Affinität im PHO5-Promotor gefunden werden. Eine der hochaffinen Pho2-Binde-stellen überlappt größtenteils mit der Pho4-Bindestelle UASp1. Die kooperative DNA-Bindung der beiden Proteine an ihre überlappenden Bindestellen resultierte in einem hochaffinen ternären Komplex. Auch am UASp2-Element, bei dem zwei Pho2-Bindestellen eine Pho4-Bindestelle flankieren, findet eine kooperative Bindung von Pho2 und Pho4 an die DNA statt. Durch Mutation der mittels in vitro-Footprints entdeckten Pho2-Bindestellen konnte gezeigt werden, daß diese zur Promotoraktivität beitragen. Sie sind nicht nur wichtig, um Pho2 an den Promotor zu rekrutieren, sondern ermöglichen auch die kooperative DNA-Bindung mit Pho4 über direkte Protein-Protein-Wechselwirkung zwischen Pho2 und Pho4. Eine Pho2-Interaktionsdomäne von Pho4 ist essentiell für die Aktivierung des PHO5-Promotors, wie durch Deletionsanalyse demonstriert wurde. Die kooperative DNA-Bindung dieser Faktoren scheint demnach sehr wichtig für die Transkriptionsregulation des PHO5-Gens zu sein. Getrennte Untersuchungen von UASp1 und UASp2 in einem CYC1-Promotor-Kontext zeigen einen eindrucksvollen Unterschied zwischen den zwei UAS-Elementen und verdeutlichen die duale Rolle von Pho2 in der Aktivierung des PHO5-Promotors. Es ist in entscheidender Weise für die Rekrutierung von Pho4 zur UASp1-Stelle nötig und verstärkt darüber hinaus das Pho4-Aktivierungspotential, während es an der UASp2-Stelle eher nur das Pho4-Aktivierungspotential erhöht. Trotz der koordinierten Regulation beider Promotoren ist der PHO8- fast 10mal schwächer als der PHO5-Promotor. Von den beiden Pho4-Bindestellen am PHO8-Promotor, welche früher in vitro bestimmt worden waren, ist nur eine in vivo funktional. Der Austausch des inaktiven PHO8-UASp1-Elements durch das UASp1-Element des PHO5-Promotors erhöht das Ausmaß der Chromatinöffnung im Bereich der Nukleosomen -3 und -2 und ergibt einen zweifachen Anstieg der Promotoraktivität. Im Gegensatz dazu verhindert der Austausch der hochaffinen UASp2-Stelle durch die entsprechende UASp2-Stelle von PHO5 die Chromatin-umordnung und Promotoraktivierung, obwohl eine effiziente Bindung von Pho4 an dieser Stelle besteht. Diese Daten zeigen, daß eine quantitative Bindung von Pho4 an ein UAS-Element ohne irgendeine Chromatin-Umordnung und Promotoraktivierung möglich ist. Die Deletion der Promotorregion, die normalerweise von den Nukleosomen -3 und -2 bedeckt wird, ergibt einen zweifachen Anstieg der Promotoraktivität, was die repressive Rolle dieser Zusammenfassung -145-Nukleosomen anzeigt. Die gute Korrelation zwischen Promotoraktivität und Ausmaß der Chromatin-Umordnung impliziert, daß für das Ausmaß der PHO8-Induktion im Vergleich zu PHO5 die Qualität der Histon-DNA-Wechselwirkung eine Rolle spielt, da auch bei Einführung des PHO5-UASp1-Elements in den PHO8-Promotor keine vollständige Chromatinöffnung beobachtet wird. Obwohl Pho4 in Pho2-unabhängiger Weise am PHO8-Promotor bindet und Chromatin remoduliert, ist Pho2 dennoch an der Promotoraktivität durch Erhöhen des Aktivierungspotentials von Pho4 beteiligt, ähnlich wie am UASp2-Element des PHO5-Promotors. Die Ergebnisse dieser Arbeit haben die Rolle des Homöoproteins Pho2 bei der Induktion des PHO5- und PHO8-Promotors aufgeklärt und unterstreichen die enorme Bedeutung des kooperativen Bindens der Transkriptionsfaktoren Pho4 und Pho2. Zum anderen haben sie das Wechselspiel zwischen Transkriptionsfaktoren und der Chromatinstruktur am Beispiel dieser Promotoren besser definiert.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
The work presented in this dissertation gave the following results: (i) Sequence homologous of the membrane proteins Lag1p and Dgt1p exist all over the kingdom of eucaryotes. All of them share a highly conserved motif with two hydrophilic residues within a transmembrane domain. A limited proteolytic digestion showed, that the N-terminus of Dgt1p is orientated to the cytosolic side. Together with the in silicio analysis, the proteins of the LAG family have six transmembrane domains, a cytosolic C-terminus and an ER lumenal loop of ca. 45 amino acids. (ii) Different mutants of Dgt1p showed, that the C-terminus is essential for the function of the protein. The soluble N-terminus or its dilysine motif, normally mediating retrieval of ER resident proteins that escaped to the Golgi, have not obvious importance for Dgt1p. (iii) Lag1p and Dgt1p fulfill their function in the membrane of the ER and are no constitutive parts of COPII transport vesicles. Moreover, both proteins interact with each other and therefore appear to form a heteropolymeric complex in the ER membrane. (iv) The synthesis rates of complex sphingolipids are drastically reduced in the absence of LAG1 and DGT1. Consequently, lag1Ddgt1D cells have a decreased portion of sphingolipids compared to the wild type. The lipid defekt is not due to lacking phosphoinositolation of ceramide, since the catalytic activity of the corresponding enzyme was proven in vivo.(v) The synthesis block in lag1Ddgt1D cells leads to an accumulation of sphingoid bases. In this connection it was shown, that Lag1p and Dgt1p are essential for the incorporation of exogenous dihydrosphingosine into ceramide, whereas in their absence endogenous dihydrosphingosine is converted to ceramide with a merely decreased rate. The elongation of fatty acids to C26 is not reduced in lag1Ddgt1D cells. Lipid extracts of fumonisin B1 treated wild type cells resemble that of the double mutant, whereas the latter is not influenced by a toxin based inhibition of ceramide synthase. Overexpression of LAG1 and DGT1 does not lead to an overproduction of ceramide or sphingolipids. However, a direct in vitro assay for ceramide synthase activity finally proved the essential requirement of the reaction for Lag1p and Dgt1p. (vi) The overproduction of the ceramidases Ypc1p and Ydc1p in lag1Ddgt1D cells increases the synthesis rates as well as the effective amounts of complex sphingolipids. The defective incorporation of exogenous dihydrosphingosine into ceramide was, however, not reverted. The additional deletion of YPC1 and YDC1 in the absence of LAG1 and DGT1 decreased the amounts of inositol containing sphingolipids beyond detectable levels and, therefore, confirmed the essential requirement of Lag1p and Dgt1p for the ceramide synthase reaction. (vii) The survival of lag1Ddgt1D cells compared to wild type cells after short heat shock is drastically impaired. Moreover, the ability of yeast to form single cells on agar plates directly contributes to the temperature and the amount of ceramide available. As a consequence of the data obtained, the proteins Lag1p and Dgt1p are the first to be characterized as essential parts of the ceramide synthase reaction.
The gene encoding a novel DnaJ-like protein, termed Xdj1, has been identified by amplification of Saccharomyces cerevisiae genomic DNA. An open reading frame of 1380 bp was detected. Disruption of XDJ1 did not yield any detectable new phenotype. A double-deletion strain containing a disruption of both XDJ1 and YDJ1, another gene coding for a DnaJ-like protein, was still viable. Under a variety of growth conditions, no XDJ1 transcripts could be detected by Northern blot analysis and no translation product was found by immunoblotting with antibody against Xdj1 produced in Escherichia coli. Thus, XDJ1 is either expressed only under very specific conditions or represents a silent gene.
Mitochondrial protein import involves the recognition of preproteins by receptors and their subsequent translocation across the outer membrane. In Neurospora crassa, the two import receptors, MOM19 and MOM72, were found in a complex with the general insertion protein, GIP (formed by MOM7, MOM8, MOM30 and MOM38) and MOM22. We isolated a complex out of S. cerevisiae mitochondria consisting of MOM38/ISP42, the receptor MOM72, and five new yeast proteins, the putative equivalents of N. crassa MOM7, MOM8, MOM19, MOM22 and MOM30. A receptor complex isolated out of yeast cells transformed with N. crassa MOM19 contained the N. crassa master receptor in addition to the yeast proteins. This demonstrates that the yeast complex is functional, and provides strong evidence that we also have identified the yeast MOM19.
Tue, 1 Oct 1991 12:00:00 +0100 http://epub.ub.uni-muenchen.de/8594/ http://epub.ub.uni-muenchen.de/8594/1/Mueller_Guenter_8594.pdf Müller, Günter; Bandlow, Wolfhard Müller, Günter und Bandlow, Wolfhard (Oktober 1991): A cAMP-binding ectoprotein in the yeast Saccharomyces cerevisiae. In: Biochemistry, Vol. 30, Nr. 42: pp. 10181-10190. Chemie und Pharmazie
Tue, 1 Jan 1991 12:00:00 +0100 http://epub.ub.uni-muenchen.de/8687/ http://epub.ub.uni-muenchen.de/8687/1/Mueller_Guenter_8687.pdf Müller, Günter; Bandlow, Wolfhard Müller, Günter und Bandlow, Wolfhard (1991): Two lipid-anchored cAMP-binding proteins in the yeast Saccharomyces cerevisiae are unrelated to the R subunit of cytoplasmic protein kinase A. In: European Journal of Biochemistry, Vol. 202, Nr. 2: pp.
Thu, 28 Dec 1989 12:00:00 +0100 https://epub.ub.uni-muenchen.de/7541/1/Neupert_Walter_7541.pdf Neupert, Walter; Barthelmess, Ilse B.; Tropschug, Maximilian