POPULARITY
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 16/19
In der vorliegenden Arbeit wurde die potentielle Rolle der AMP-Kinase, eines der Schlüsselenzyme im Energiestoffwechsel, bei der Regulation des Vasotonus kleiner arterieller Blutgefäße untersucht und die Effekte einer AMPK-Stimulation mit der EDHF-vermittelten endothelialen Dilatation verglichen. Mittels Western-Blot Technik wurde auf Proteinebene nachgewiesen, dass in Arterien des Hamsters sowohl die α1-Untereinheit der AMPK - als prädominante katalytische Untereinheit - sowie die β1-Untereinheit der AMPK exprimiert werden. Die funktionellen Untersuchungen erfolgten an isoliert perfundierten Widerstandsarterien aus der Skelettmuskulatur des Hamsters. An diesen wurden gleichzeitige Registrierungen des Außendurchmessers als Maß für den Vasotonus sowie der intrazellulären Kalziumkonzentration in der glatten Gefäßmuskulatur (Kalziumindikator Fura 2) nach Zugabe verschiedener vasoaktiver Substanzen durchgeführt. An mit Noradrenalin vorkontrahierten isolierten Gefäßen führte der auf die β1-Untereinheit wirkende AMPK-Aktivator A769662 (A76) endothelunabhängig zu einer maximalen Dilatation der Gefäße, die mit einem erheblichen Abfall des glattmuskulären Kalziumspiegels einherging. Die beobachteten A76 Effekte auf Gefäßtonus und Kalziumspiegel waren dosisabhängig. Der Vasodilatator Acetylcholin löste ebenfalls einen ausgeprägten Kalziumabfall in der glatten Muskulatur aus. Dies war jedoch nur bei einem intakten Endothel zu beobachten. Eine Transfektion kultivierter Gefäße mit einer dominant negativ Variante der α1-Untereinheit der AMPK führte zu einer partiellen Herabsetzung der Dilatation und des Kalziumabfalls. Zwei weitere Aktivatoren der AMPK, AICAR und Metformin, bewirkten an den Widerstandsgefäßen ebenfalls eine statistisch signifikante Dilatation und einen Kalziumabfall. An Gefäßen, welche anstelle von Noradrenalin durch eine hohe extrazelluläre Kaliumkonzentration vorkontrahiert wurden, ließ sich nach Stimulation mit A76 weder eine Dilatation noch ein Kalziumabfall feststellen, welches als ein Hinweis auf eine Beteiligung von Kaliumkanälen an den A76 mediierten Effekten zu werten war. Zur genaueren Evaluation dieser Hypothese wurden die A76 Effekte nach pharmakologischer Blockade verschiedener Kaliumkanäle untersucht. Hierbei zeigte sich, dass Iberiotoxin, ein selektiver Inhibitor von BKCa-Kanälen keinen Einfluss auf eine A76 vermittelte Dilatation hatte. Ebenso wenig wurde eine Acetylcholin vermittelte Vasodilatation blockiert. Demgegenüber führte Charybdotoxin, ein Hemmer von BKCa-Kanälen und IKCa-Kanälen, zwar zu einer Blockade der Acetylcholinantwort, ließ die A76 Effekte jedoch weitgehend unbeeinflusst. Die Blockade von ATP-abhängigen Kaliumkanälen KATP durch Glibenclamid in hohen Konzentrationen bewirkte hingegen eine deutliche Reduktion sowohl der Dilatation als auch des Kalziumabfalls nach Gabe von A76. Insgesamt konnte im Rahmen dieser Arbeit damit gezeigt werden, dass eine Aktivierung der AMPK in isolierten Widerstandsgefäßen des Hamsters zu einer schnellen und ausgeprägten Vasodilatation führt, welche durch einen vorhergehenden Abfall der intrazellulären Kalziumkonzentration in der glatten Gefäßmuskulatur initiiert wird. Die Hemmwirkung von Glibenclamid weist darauf hin, dass dieser Dilatation ein Effekt der AMPK auf KATP-Kanäle in der glatten Muskulatur zu Grund liegen könnte.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 16/19
Die vorliegend präsentierten Experimente hatten zum Ziel, die hypothetische Rolle von Gq/11- bzw. G12/13-koppelnden heptahelikalen Transmembrandomänenrezeptoren (7TMR) als Mechanosensoren für die Initiation des myogenen Tonus zu untersuchen. Um festzustellen, welche 7TMR hierfür besonders relevant sind, wurden Leitungsgefäße mit Widerstandsgefäßen in ihren RNA-Leveln für eine Reihe von 7TMR verglichen. Dies geschah auf der Grundlage, dass Leitungsgefäße einen geringeren myogenen Tonus aufweisen als Widerstandsgefäße. Eine aus höheren RNA-Leveln ableitbare größere Anzahl an putativen Sensormolekülen sollte also über eine größere Mechanosensitivität des Gefäßes zu einem höheren Ausmaß an myogener Vasokonstriktion führen. Die RNA-Level wurden mittels quantitativer RT-PCR (qRT-PCR) bestimmt. Die Quantifizierung erfolgte relativ zum geometrischen Mittel dreier Haushaltsgene. Die untersuchten Widerstandsgefäße umfassten kleine Mesenterialarterien, Nierenarterien und Gehirnarterien. Die untersuchten Leitungsgefäße umfassten die A. mesenterica superior, Bauchaorta, A. carotis communis und die Pulmonalarterie. Folgende Rezeptoren stellten sich in der qRT-PCR aufgrund ihres Expressionsprofils als vielversprechende molekulare Sensorproteine in Widerstandsgefäßen heraus: AT1B-Angiotensinrezeptor, ETA-Endothelinrezeptor, V1A-Vasopressinrezeptor, �1A-Adrenozeptor. In einem zweiten Schritt wurde versucht, über pharmakologische Inhibition der vorgenannten Rezeptoren eine Reduktion des myogenen Tonus zu erreichen. Die eingesetzte Methode war die isobare Konstriktionsmessung (Arteriographie) an isolierten kleinen Mesenterialarterien. Die Methode erforderte vor der eigentlichen Applikation der Pharmaka die Registrierung eines myogenen Tonus in Abwesenheit jeglicher Pharmaka. Dann erst wurde der myogene Tonus unter Anwesenheit von Pharmaka ein zweites Mal registriert. Bei der genaueren Analyse des ersten myogenen Tonus fiel dessen bisigmoider Verlauf auf. Möglicherweise liegt dieser charakteristischen Form eine zeitversetzte Aktivierung der an die putativen mechanosensitiven 7TMR koppelnden G-Proteine zugrunde: Zunächst werden wahrscheinlich Gq/11-Proteine aktiviert, dann G12/13-Proteine. Bei der Analyse des Kurvenverlaufs zum zweiten myogenen Tonus zeigte sich unter Kontrollbedingungen, d.h. unter Abwesenheit von Pharmaka, eine Linksverschiebung relativ zum ersten myogenen Tonus. Darüberhinaus änderte sich die Kurvenform von bisigmoid zu monosigmoid. Wahrscheinlich sind auch für diese Charakteristika Eigenheiten der an die putativ mechanosensitiven 7TMR koppelnden G-Proteine verantwortlich: Die im Zuge des ersten myogenen Tonus aktivierten G12/13-Proteine inaktivieren möglicherweise langsamer durch GTP-Hydrolyse als die Gq/11-Proteine. Deshalb könnten zu Beginn des zweiten myogenen Tonus beide G-Protein-Spezies aktiv sein und so die Mechanosensitivität der glatten Muskelzellen drastisch erhöhen, was die Linksverschiebung erklären würde. Die nun konzertiert erfolgende G-Protein-Aktivierung könnte ferner den monosigmoiden Kurvenverlauf erklären. Die Applikation der Pharmaka erfolgte zunächst als Kombination von antagonistischen Substanzen an AT1-, ETA-, V1A- und �1-Rezeptoren. Eingesetzt wurden Candesartan, BQ-123, Relcovaptan und Prazosin. Diese Kombination reduzierte den myogenen Tonus signifikant in seiner Amplitude. Anschließend wurde Prazosin als Monosubstanz getestet. Der Hemmeffekt unterschied sich nicht von der ursprünglichen Viererkombination. Schließlich erfolgte eine Testung der ursprünglichen Kombination unter Auslassung von Prazosin. Auch hier war der hemmende Effekt derselbe. Zur Erklärung dieser Befunde wurde das Konzept der negativen Interferenz herangezogen: Dabei konkurrieren 7TMR um einen limitierten Pool an G-Proteinen. Inverse Agonisten (wie sie die Substanzen Candesartan und Prazosin darstellen) führen zu einer Sequestrierung von G-Proteinen an den jeweiligen Rezeptoren ohne folgende Signaltransduktion. Dabei könnte die Applikation eines inversen Agonisten dieselben Effekte erzielen wie eine kombinierte Applikation. Letztlich konnte durch den hemmenden Effekt von Prazosin für �1-Adrenozeptoren bestätigt werden, dass sie eine mechanosensitive Funktion ausüben. Unter Berücksichtigung der Ergebnisse des qPCR-Teils handelt es sich wahrscheinlich um �1A-Adrenozeptoren. Deren Mechanosensitivität kann einen Teil der Kontraktion glatter Muskelzellen auf einen steigenden intravasalen Druck vermitteln und damit einen entsprechenden Anteil am myogenen Tonus erklären.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 03/19
Verschiedene Wirkmechanismen des endothelialen Autacoids NO sind an unterschiedlichen, experimentellen Modellen beschrieben worden. Es ist aber noch nicht abschließend geklärt, welche Wirkmechanismen von NO in den Widerstandsgefäßen des Kreislaufs (den kleinen Arterien und Arteriolen)tatsächlich funktionell bedeutsam sind. In der vorliegenden Arbeit sollten daher die Wirkmechanismen von NO am Modell der isolierten Widerstandsarterie des Hamsters untersucht werden. Kleine Arterien (Durchmesser 17435µm) aus dem M. quadriceps weiblicher syrischer Goldhamster wurden mikrochirugisch präpariert, in einem Organbad mit Glasmikropipetten kanüliert und dann an beiden Enden mit monofilem Faden druck- und flüssigkeitsdicht befestigt. Im Gefäß wurde ein hydrostatischer Druck von 45mmHg erzeugt. Die glattmuskuläre Ca2+ - Konzentration wurde mit der Fura-2 Methode und der Außendurchmesser des Gefäßes mittels eines Videosystems bestimmt. Zu Beginn des Versuchs wurden die Gefäße mit Noradrenalin vorkontrahiert. Der NO-Donator SNAP induzierte in niedrigen Konzentrationen (0,1 µmol/l) eine langsame Dilatation des Gefäßes ohne signifikante Beeinflussung der glattmuskulären Ca2+ - Konzentration. In niedrigen Dosen dilatiert NO isolierte Widerstandsarterien also nur durch calciumunabhängige Mechanismen, wahrscheinlich durch eine Calciumdesensitivierung des kontraktilen Apparates. Höhere Dosen des NO Donators SNAP (100µmol/l) führten hingegen zu einer zusätzlichen, initialen, schnellen Komponente der Dilatation, die von einem transienten Abfall der Ca2+ - Konzentration ausgelöst wurde. Obwohl die intrazelluläre Ca2+ - Konzentration bereits nach kurzer Zeit den Ausgangswert wieder erreicht hatte, dilatierte das Gefäß weiter. Der zeitliche Verlauf dieser sich anschließenden, zweiten, langsamen Komponente zeigte dabei in Bezug auf Kinetik und Amplitude Ähnlichkeiten zu der langsamen Dilatation, wie sie bereits bei Verwendung von niedrigen SNAP-Konzentrationen beobachtet wurde. Der transiente Abfall der Ca2+ - Konzentration und die damit einhergehende, initiale, schnelle Komponente der Dilatation waren dosisabhängig und vollständig durch Charybdotoxin hemmbar, das hauptsächlich calciumabhängige Kaliumkanäle (BKCa-Kanäle) blockiert. Versuche mit dem L-Typ Calciumkanalblocker Felodipin stützen die Hypothese, daß eine NO-induzierte Aktivierung von calciumabhängigen Kaliumkanälen zur Hyperpolarisation der Zellmembran und schließlich zu einer verringerten Öffnungswahrscheinlichkeit der L-Typ-Calciumkanäle und damit zu einem Abfall des intrazellulären Calciumspiegels führt. Die langsame Komponente der Dilatation, ohne Änderung der intrazellulären Ca2+ - Konzentration, wurde hingegen durch Charybdotoxin nicht beeinflußt. Der transiente Ca2+ - Abfall und die schnelle Komponente der Dilatation kommen also wahrscheinlich durch die Aktivierung von hyperpolarisierenden, calciumabhängigen Kaliumkanälen zustande. Beide Komponenten der NO-induzierten Dilatation waren vollständig durch ODQ, einen Inhibitor der löslichen Guanylatcyclase (sGC), hemmbar. Zwar ist ODQ nicht vollständig spezifisch für die sGC, aber die Versuche legen den Schluss nahe, dass in isolierten Widerstandsarterien des Hamsters die NO-induzierten Calciumabfälle und Dilatationen durch cGMP vermittelt werden. Die Hypothese, dass der „Endothelium Derived Hyperpolarizing Factor“ EDHF eine Cytochrom P450 abhängig gebildete Epoxyeicosatrien-säure (EET) ist, wurde inzwischen durch eine ganze Reihe von pharmakologischen und molekularbiologischen Experimenten untermauert. Allerdings kann auch NO, wie oben beschrieben, glatte Gefäßmuskelzellen durch Hyperpolarisation relaxieren und der Beitrag von EDHF zur agonisteninduzierten Dilatation hängt vom untersuchten Stromgebiet, der Spezies und vor allem der Gefäßgröße ab. Welche Rolle EDHF in den Widerstandsgefäßen des Kreislaufs spielt und über welche zellulären Mechanismen die Wirkungen von EDHF vermittelt werden, ist noch nicht abschließend geklärt. Daher sollten im zweiten Teil der vorliegen-den Arbeit die Wirkmechanismen von EDHF an isolierten, kleinen Widerstandsarterien charakterisiert werden und mit denen des zuvor untersuchten NO verglichen werden. Während auch bei hohen Dosen von NO ein nur transienter Ca2+ - Abfall beobachtet wurde, löste EDHF einen lang anhaltenden Ca2+ - Abfall unter das Ausgangsniveau aus. Der EDHF-induzierte Ca2+ - Abfall und die Dilatation wurden durch ODQ, einen Inhibitor der löslichen Guanylatcyclase, nicht beeinflusst. Während die NO-induzierten Dilatationen im Modell der isolierten Widerstandsarterie des Hamsters vermutlich aus-schließlich durch cGMP vermittelt werden, sind die Effekte von EDHF cGMP-unabhängig. Die beobachteten Effekte von NO und EDHF unterscheiden sich in diesem Modell also grundlegend, denn sie haben verschiedene Charakteristiken und werden durch die Aktivierung von zwei unterschiedlichen Signalketten vermittelt.