Podcasts about cytohesin

  • 4PODCASTS
  • 6EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Jan 1, 2013LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about cytohesin

Latest podcast episodes about cytohesin

Medizin - Open Access LMU - Teil 20/22
The cytohesin paralog Sec7 of Dictyostelium discoideum is required for phagocytosis and cell motility

Medizin - Open Access LMU - Teil 20/22

Play Episode Listen Later Jan 1, 2013


Background: Dictyostelium harbors several paralogous Sec7 genes that encode members of three subfamilies of the Sec7 superfamily of guanine nucleotide exchange factors. One of them is the cytohesin family represented by three members in D. discoideum, SecG, Sec7 and a further protein distinguished by several transmembrane domains. Cytohesins are characterized by a Sec7-PH tandem domain and have roles in cell adhesion and migration. Results: We study here Sec7. In vitro its PH domain bound preferentially to phosphatidylinositol 3,4-bisphosphate (PI(3,4) P-2), phosphatidylinositol 4,5-bisphosphate (PI(4,5)P-2) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P-3). When following the distribution of GFP-Sec7 in vivo we observed the protein in the cytosol and at the plasma membrane. Strikingly, when cells formed pseudopods, macropinosomes or phagosomes, GFP-Sec7 was conspicuously absent from areas of the plasma membrane which were involved in these processes. Mutant cells lacking Sec7 exhibited an impaired phagocytosis and showed significantly reduced speed and less persistence during migration. Cellular properties associated with mammalian cytohesins like cell-cell and cell-substratum adhesion were not altered. Proteins with roles in membrane trafficking and signal transduction have been identified as putative interaction partners consistent with the data obtained from mutant analysis. Conclusions: Sec7 is a cytosolic component and is associated with the plasma membrane in a pattern distinctly different from the accumulation of PI(3,4,5)P-3. Mutant analysis reveals that loss of the protein affects cellular processes that involve membrane flow and the actin cytoskeleton.

Medizin - Open Access LMU - Teil 16/22
A cytohesin homolog in Dictyostelium amoebae.

Medizin - Open Access LMU - Teil 16/22

Play Episode Listen Later Jan 1, 2010


Dictyostelium, an amoeboid motile cell, harbors several paralogous Sec7 genes that encode members of three distinct subfamilies of the Sec7 superfamily of Guanine nucleotide exchange factors. Among them are proteins of the GBF/BIG family present in all eukaryotes. The third subfamily represented with three members in D. discoideum is the cytohesin family that has been thought to be metazoan specific. Cytohesins are characterized by a Sec7 PH tandem domain and have roles in cell adhesion and migration. Dictyostelium SecG exhibits highest homologies to the cytohesins. It harbors at its amino terminus several ankyrin repeats that are followed by the Sec7 PH tandem domain. Mutants lacking SecG show reduced cell-substratum adhesion whereas cell-cell adhesion that is important for development is not affected. Accordingly, multicellular development proceeds normally in the mutant. During chemotaxis secG(-) cells elongate and migrate in a directed fashion towards cAMP, however speed is moderately reduced. The data indicate that SecG is a relevant factor for cell-substrate adhesion and reveal the basic function of a cytohesin in a lower eukaryote.

camp medizin mutants dictyostelium guanine homolog amoebae cytohesin
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Regulation der Zelladhäsion in Lymphozyten durch Interaktion der cytoplasmatischen Proteine Cytohesin-1 und CYTIP

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later May 19, 2005


Adhäsionsvorgänge von Leukozyten spielen eine wichtige Rolle bei den verschiedensten biologischen Prozessen. Die Adhäsionsinteraktionen können Signalkaskaden aktivieren, die Funktionen wie die Zellmigration, Proliferation und Reifung von T-Lymphozyten steuern. Die Zellen des Immunsystems müssen schnell auf körperfremde Eindringlinge reagieren können und Adhäsionsvorgänge zwischen Zellen bzw. zwischen Zellen und der extrazellulären Matrix effektiv regulieren. Um jeden Infektionsherd im Körper zu erreichen, benutzen die Immunzellen die Lymph- und Blutbahnen, können diese Systeme aber verlassen (Diapedese) und durch Gewebe migrieren. Am Infektionsort interagieren die Immunzellen mit infizierten Zellen und starten Vernichtungsprogramme. Weiterhin präsentieren antigenpräsentierende Zellen im Lymphknoten ihre Antigene vorbeiziehenden T-Zellen, die bei korrekter Antigenerkennung zu T-Effektorzellen proliferieren. Bei all diesen regulierten Adhäsionsreaktionen spielen besonders die Integrine eine große Rolle. Von besonderem Interesse ist hierbei das Heterodimer LFA-1 (CD11a/CD18). LFA-1 wird nur auf Leukozyten exprimiert und bindet an die Liganden ICAM-1,-2,-3 der Immunglobulinsuperfamilie. Die kontrollierte Adhäsion bzw. Deadhäsion von Leukozyten bedarf einer spezifischen Regulation des LFA-1-Integrins und die Aufklärung der molekularen Grundlagen dieser Vorgänge ist von großem Interesse. Die LFA-1-vermittelte Zelladhäsion kann über den intrazellulären Guanin-Nukleotid-Austauschfaktor Cytohesin-1 aktiviert werden. Die Aktivierung wird dabei u.a. über Inositid-abhängige Membranrekrutierung von Cytohesin-1 kontrolliert. In dieser Arbeit wurde ein mit Cytohesin-1 interagierendes Protein, CYTIP, identifiziert, welches durch Cytokine in hämatopoetischen Zellen vermehrt exprimiert wird. CYTIP interagiert über seine „coiled-coil“-Proteininteraktionsdomäne direkt mit der N-terminalen „coiled-coil“-Domäne von Cytohesin-1 und inhibiert vollständig die Zelladhäsion auf Integrinliganden. Aufgrund der zwei Proteininteraktionselemente („coiled-coil“-Domäne, PDZ-Domäne) stellt CYTIP ein Adaptermolekül dar, um verschiedene Signalkomponenten in einem Multiproteinkomplex zu koppeln. CYTIP (Cytohesin-1 interacting protein) stellt eine neue Molekülklasse dar, die durch direkte Interaktion mit Cytohesin-1 die LFA-1 vermittelte Zelladhäsion negativ regulieren kann.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Biochemische Analysen zur Funktion und Regulation von Cytohesin-1 in humanen T-Zellen

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later May 13, 2002


Die Integrinrezeptor-vermittelte Zelladhäsion wird durch intrazelluläre Signalkaskaden kontrolliert. Cytohesin-1 ist ein integrinbindendes Protein und ein Guanin-Nukleotid- Austauschfaktor (GEF). Dieser aktiviert das b2-Integrin LFA-1 und induziert dessen Bindung an ICAM-1. Cytohesin-1 enthält eine PH-Domäne, diese ist an der funktionalen Regulation des Proteins beteiligt und vermittelt die Membranrekrutierung über Phosphatidylinositol- (3,4,5)-trisphosphat, dem Produkt der Phosphatidylinositol-3-Kinase. Die Phosphoinositidvermittelte Membranbindung wird primär von der PH-Domäne bewirkt, jedoch wird diese Funktion von der carboxyterminalen polybasischen c-Domäne gestützt. In der vorliegenden Studie wurde gezeigt, daß ein Serin/Threonin-Motiv innerhalb dieser c-Domäne durch gereinigte PKCd in vitro und in vivo nach Phorbolesterstimulierung phosphoryliert wird. Biochemische und funktionale Analysen zeigten, daß phosphoryliertes Cytohesin-1 mit dem Aktinzytoskelett assoziiert. Weiterhin konnte gezeigt werden, daß durch Phosphorylierung von Cytohesin-1 der Guanin-Nukleotid-Austausch an ARF1 in vitro reguliert wird. ARF-Proteine sind entscheidend an der Zytoskelettreorganisation beteiligt, die während Zelladhäsionsprozessen stattfindet. In Zellen zeigte sich, daß die LFA-1-abhängige Zelladhäsion an ICAM-1 durch phosphoryliertes Cytohesin-1 drastisch gesteigert wird. Zusammengefaßt zeigen diese Erkenntnisse, daß intrazelluläre Signalkaskaden über Phosphatidylinositol-3-Kinase und Protein-Kinase-C in Cytohesin-1 als funktionalem Integrator münden. Cytohesin-1 reguliert über diese Prozesse die b2-Integrin-vermittelte Zelladhäsion von T-Lymphozyten.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Ein Protein für neue Aufgaben: die cytosolische PH-Domäne des Cytohesin-1 als Paratop und als Substrat für Translokationen

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Dec 20, 2001


6.1. Die PH-Domäne als Paratop Die Pleckstrin-homologe (PH-) Domäne des humanen Cytohesin-1 besteht aus einem Proteingerüst sowie vier längeren Loops. Von diesen weisen drei in eine Richtung und bilden eine komplexe, flexible Oberflächenstruktur aus. Sollte man diese Oberflächenstruktur durch Mutation der Loops als Bindungstasche (Paratop) für Epitope von Schlüsselmolekülen etablieren können, wäre ein breiter Einsatz der PH-Domäne als Wirkstoff oder spezifisches Nachweisreagenz interessant, zumal sie sich in E. coli mit hohen Ausbeuten cytoplasmatisch löslich exprimieren läßt. In dieser Arbeit konnte gezeigt werden, daß sich die drei Loops verändern lassen, ohne daß die PH-Domäne ihre Struktur verliert; von daher eignet sich die PH-Domäne als Proteingerüst. Sie wurde insgesamt in 29 Aminosäurepositionen mit einem neuartigen Verfahren gewichtet randomisiert, indem an jeder Position die Wildtyp-Aminosäure bevorzugt wird. In Anbetracht der Zahl randomisierter Positionen sollte damit gegenüber einer ungewichteten Randomisierung kein Verlust an Komplexität für die Bibliothek zu befürchten sein, durch den möglichen Erhalt lokaler und nicht lokaler Wechselwirkungen aber die Zahl stabiler (damit exprimierbarer und selektierbarer) Mutanten deutlich erhöht werden. Die Randomisierung erfolgte dabei mit drei Oligodesoxynukleotiden, die in den randomisierten Positionen jeweils eine definierte Basenverteilung aufweisen. Zur Klonierung einer Bibliothek wurden sie im dazu entwickelten Verfahren der „asymmetrischen PCR-Reaktion“ eingesetzt und daraufhin zu einem in drei Segmenten randomisierten DNA-Fragment assembliert. Mit dieser Strategie konnten 6 · 107 Mutanten erzeugt werden. (Aus deutlich kleineren Bibliotheken anderer Proteine ließen sich bereits bindende Mutanten isolieren.) Die randomisierten Mutanten der PH-Domäne wurden im phage-display-Verfahren zur Selektion gegen drei Zielsubstanzen eingesetzt. Danach konnten ausschließlich Deletionsmutanten und Mutanten mit stop-Codons nachgewiesen werden, die keine Expression von PH-Domänen erlauben. Zurückgeführt wird dieses Ergebnis auf die schlechten Transporteigenschaften der PH-Domäne bei der Translokation in das Periplasma von E. coli, weshalb nicht auf bindende Paratope aus der Bibliothek selektiert werden konnte. Nach Verbesserung der Translokationseigenschaften von PH-Domänen sollte sich das phage-display-Verfahren zur Selektion bindender Mutanten fortsetzen lassen. 6.2. Die PH-Domäne als Substrat für Translokationen Die im phage-display-Verfahren eingesetzten M13-Bakteriophagen assemblieren in der inneren Membran von E. coli. Dies setzt die Translokation der mit dem g3-Protein fusionierten PH-Domäne in das Periplasma voraus. Die geringe periplasmatische Expression bei mehrheitlich aberranten Prozessierungen im Bereich des Signalpeptids und die geringe Darstellung auf der Phagenoberfläche veranlaßten zur Translokationsoptimierung der PH-Domäne. Während der allgemeine sekretorische Transportmechanismus von E. coli durch die beteiligten Membranproteine strukturell und funktionell gut verstanden ist, sind die Eigenschaften und Voraussetzungen für die Translokation von Substratproteinen (mit Signalpeptid als Präprotein bezeichnet) bislang weniger gut charakterisiert. Der „translokationskompetente“ Zustand beschreibt die Präproteine nur phänomenologisch. Für die schlechte Translokation wurden mehrere biochemische und biophysikalische Eigenschaften der PH-Domäne in Betracht gezogen und verschiedene Mutanten hergestellt, die demzufolge eine verbesserte Translokationseigenschaft aufweisen sollten. Dabei erwies sich weder die Verringerung der thermodynamischen Stabilität noch das engineering ausgewählter, spezifischer Sequenzelemente als translokationsbegünstigend. Wird dagegen durch Einführung neuer N- und C-Termini sowie der Verbrükkung der ursprünglichen Termini mit einem Linker die Topologie verändert, können bei zwei dieser sogenannten Circularpermutanten bis zu 30-fach höhere Expressionsausbeuten im Periplasma erzielt werden. Die Circularpermutation wurde damit erstmalig erfolgreich im rationalen Proteindesign angewendet. Die vorliegenden Ergebnisse legen nahe, daß die Mutanten der PH-Domäne vor der Translokation in einem nativ-ähnlichen Zustand gefaltet vorliegen und zur Translokation entfaltet werden müssen. Das in dieser Arbeit vorgeschlagene „Kräftemodell“ erklärt die verbesserte Translokation der Circularpermutanten CP X.6. gegenüber dem Wildtyp. Danach ist die maximale Kraft zur Entfaltung des Proteins die translokationslimitierende Größe, was sich mit Hilfe von Einzelmolekül-Kraft-Spektroskopie weiter untersuchen ließe. Wie sich die Mutationen an der PH-Domäne bei weiteren Transportprozessen auswirken, wurde beim mitochondrialen Import analysiert. Die untersuchten Mutanten zeigten unabhängig von ihrer thermodynamischen Stabilität und ihrer periplasmatischen Expression eine Unterbrechung des Imports. Ursache dafür ist eine Peptidsequenz von 27 Aminosäuren, die sich mit Hilfe der Circularpermutanten eindeutig identifizieren läßt. Sie führt bei der Circularpermutante CP 2.6. zu einer stabilen Expression im Intermembranraum und beim Wildtyp sowie bei der Circularpermutante CP 2.7. zu einem Verharren in der inneren Membran. Bei Mitochondrien konnte zuvor noch nie eine importunterbrechende Peptidsequenz nachgewiesen werden. Sie sollte sich zur stabilen Expression von Proteinen im Intermembranraum einsetzen lassen. In der (modellierten) Raumstruktur der PH-Domäne interagieren 19 der 27 Aminosäuren in einem Faltblatt/turn/Faltblatt-Motiv. Sie könnten als stabile Subdomäne den Import unterbrechen. Diese Interpretation ergänzt ein Modell zur Translokation von Präproteinen, wonach das Präprotein vom Intermembranraum schrittweise durch die innere Membran (bzw. den TIM-Komplex) in die Matrix diffundiert und dort arretiert wird. Dadurch wird die Rückdiffusion verhindert. Die Unterbrechung des weiteren Imports währt solange, bis aufgrund des thermodyamischen Gleichgewichts die Peptidsequenz vor der Membran entfaltet vorliegt und dann in die Matrix diffundieren kann. Ergänzende Experimente zum mitochondrialen Import sind in Vorbereitung. In dieser Arbeit konnte die PH-Domäne mit ihren Mutanten somit als Substrat für die Untersuchung von Transportprozessen etabliert werden. Die zukünftige Anwendung dieser Mutanten auf weitere Transportsysteme liegt dabei auf der Hand. Die Bibliothek randomisierter PH-Domäne wird in Kooperation mit anderen Arbeitskreisen zur Selektion spezifisch bindender und inhibierender Mutanten eingesetzt.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Charakterisierung der funktionalen Rolle von Cytohesin-1 in der LFA-1-vermittelten T-Zell-Adhäsion

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Feb 1, 2001


Das Leukocyten-spezifische Integrin LFA-1 spielt eine wichtige Rolle bei der Immunantwort, durch die Vermittlung dynamischer Zell-Zell- bzw. Zell-Matrix-Interaktionen. Die kontrollierte Adhäsion bzw. Deadhäsion von Leukocyten bedarf einer spezifischen Regulation des LFA-1-Integrins und die Aufklärung der molekularen Grundlagen dieser Vorgänge ist von großem Interesse. Cytohesin-1 war unmittelbar vor Beginn dieser Arbeit als cytoplasmatischer Regulationsfaktor der durch LFA-1 vermittelten Zelladhäsion identifiziert worden und seine spezifische Interaktion mit der cytoplasmatischen Domäne von CD18 konnte in vitro dokumentiert werden. Im Rahmen dieser Arbeit gelang es zunächst, die Assoziation von Cytohesin-1 und LFA-1 auch endogen, im intakten Zellverband, mittels Kolokalisationsstudien in der lymphoblastoiden B-Zellinie LCL-721, zu demonstrieren. Ferner konnte mit Hilfe von Mutationsanalysen die, für die Interaktion kritische Region in der cytoplasmatischen Domäne von CD18 lokalisiert werden. Sie befindet sich im aminoterminalen Bereich und umfaßt die Aminosäuren WKA(723 - 725). Die Mutation dieser Aminosäurereste nach TRG resultierte in einem vollständigen Interaktionsverlust mit Cytohesin-1. Die Inhibition der Cytohesin-1/CD18-Bindung konnte dabei sowohl durch Protein-Protein-Interaktionsanalysen in Hefe als auch durch biochemische Bindungsstudien in vitro dokumentiert werden, wobei jeweils Fusionsproteine der cytoplasmatischen Domäne von CD18 charakterisiert wurden. Funktionale Analysen der WKA(723-725)-Region von CD18 ergaben, daß die Mutation von WKA(723-725) nach TRG im intakten LFA-1-Molekül eine signifikante Reduktion der Integrin- Aktivität zur Folge hatte. Sowohl T-Zellklone als auch nicht hämatopoetische Zellen, wie HeLa, wiesen nach Expression von LFA-1(TRG), mit Hilfe rekombinanter Vaccinia- Viren, eine stark reduzierte Adhäsionsfähigkeit an immobilisiertes ICAM-1 auf. Ferner ergaben funktionale Studien mit HeLa-Zellen, die LFA-1 stabil exprimierten, daß Cytohesin-1 nur dann eine gesteigerte Adhäsion dieser Zellen an ICAM-1 induzierte, wenn sie Wildtyp-LFA-1 exprimierten. HeLa-Zellen, die LFA-1(TRG) exprimierten, ließen sich durch Cytohesin-1 zu keiner verstärkten Adhäsion aktivieren. Diese Ergebnisse demonstrierten die Bedeutsamkeit der Cytohesin-1/CD18-Interaktion für eine effiziente, durch LFA-1 vermittelte Zelladhäsion. Unklar war jedoch der Mechanismus, durch den Cytohesin-1 die Integrin/Liganden-Bindung regulierte. Studien mit dem Reporterantikörper 24 ließen darauf schließen, daß Cytohesin-1 durch die Bindung an CD18 eine Konformationsänderung in der extrazellulären Domäne des LFA-1-Integrins induzieren konnte, die möglicherweise die Affinität des Rezeptors modulierte. Diese Modulation der LFA-1-Konformation schien jedoch nicht hinreichend für eine stabile Bindung an ICAM-1 zu sein, wie eingehendere Analysen von Dr. W. Kolanus zeigten. Vielmehr erforderte eine effiziente Zelladhäsion zusätzlich die Guaninnukleotid-Austauschfunktion (GEF-Funktion) von Cytohesin-1, da die GEF-defekte Punktmutante, Cytohesin-1(E157K), nicht mehr in der Lage war, die Adhäsion von Jurkat E6-Zellen an ICAM-1 stabil zu induzieren. Biochemische Interaktionsstudien konnten dabei zeigen, daß die Mutante weiterhin fähig war, die cytoplasmatische Domäne von CD18 zu binden. Diese und weitere Ergebnisse von Dr. W. Nagel, die einen Zusammenhang zwischen der GEF-Funktion von Cytohesin-1 und dem „Spreading“ von adhärenten Jurkat E6-Zellen aufzeigten, legen die Vermutung nahe, daß Cytohesin-1 durch einen dualen Mechanismus in die LFA-1-Regulation involviert ist. Sowohl die direkte Interaktion von Cytohesin-1 und dem Integrin als auch seine GEF-Funktion stellen essentielle Faktoren für eine stabile Zelladhäsion, die durch LFA-1 vermittelt wird, dar. Welche funktionalen Mechanismen dabei durch den Guaninnukleotid-Austausch und der damit verbundenen Aktivierung einer GTPase induziert werden, ist noch unklar. Primär wäre eine Modulation des Aktin-Cytoskelettes und eine damit verbundene erhöhte laterale Mobilität der Integrine denkbar, die eine verstärkte Rezeptormultimerisierung und dadurch eine Aviditätsänderung des Integrins ermöglicht. Weitere Studien dieser Arbeit analysierten die Regulation von Cytohesin-1 selbst. Es konnte gezeigt werden, daß PI3-Kinase in die Kontrolle der Cytohesin-1-Funktion involviert war. Die Überexpression einer konstitutiv aktiven Form dieser Kinase (P110*) führte zu einer gesteigerten Adhäsion von Jurkat E6-Zellen an ICAM-1. Eine Inkubation dieser Zellen mit dem PI3-Kinase-spezifischen Inhibitor Wortmannin resultierte dagegen in einer signifikanten Reduktion der Zelladhäsion. Weitere funktionale Analysen, die die Zelladhäsion von Jurkat E6-Zellen nach Koexpression von P110* und der PH-Domäne von Cytohesin-1 untersuchten, sowie eingehendere Studien von Dr. W. Nagel, ermöglichten die Entwicklung eines Modells zur Regulation von Cytohesin- 1. Demzufolge führt die Aktivierung der PI3-Kinase zu einer verstärkten Rekrutierung von Cytohesin-1 an die Plasmamembran. Als Rekrutierungsmodul fungiert dabei die PHDomäne, die durch Bindung von PtdIns(3,4,5)P3, einem Produkt der PI3-Kinase, die Assoziation mit der Membran gewährleistet. Die Rekrutierung von Cytohesin-1 an die Plasmamembran führt zur Aktivierung von LFA-1 und der damit verbundenen stabilen Zelladhäsion an ICAM-1.