POPULARITY
Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 01/07
IL-12, ein heterodimeres Zytokin bestehend aus IL-12p40 und IL-12p35, wird hauptsächlich von Zellen des angeborenen Immunsystems als Antwort auf intrazelluläre Pathogene gebildet und induziert eine TH1 vermittelte Immun- reaktion. Hühner IL-12p40 wurde in einer EST-Datenbank identifziert und vollständig kloniert. Der Vergleich des Hühner IL-12p40 Gens mit verschiedenen Säugerhomologen ergab Aminosäureidentitäten von 39,7% bis 43,5%. In der Hühnergenomsequenz wurde das IL-12p40 Gen auf Chromosom 13 lokalisiert, es ist 4898bp lang und besteht aus fünf Exons und vier Introns. Der korrespondierende offene Leserahmen besteht aus 945bp und kodiert für ein 315 Aminosäuren langes Protein. ChIL-12p40 wurde sowohl in prokaryotischen als auch in einem eukaryotischen System exprimiert und unter denaturierenden bzw. nativen Bedingungen aufgereinigt. Mit Hilfe des aus E. coli gewonnen ChIL-12p40 wurde ein polyklonales Kaninchen-a-ChIL-12p40 Antiserum entwickelt, das sowohl ChIL-12p40 aus prokaryotischem Expressionssystem als auch aus dem eukaryotischen Schneider SL-3-System erkennt und im Westernblot ChIL-12p40-Mengen bis zu 7,5ng detektiert. Die Klonierung der Hühner IL-12p35 Kette mit Hilfe von PCR mit Oligonukleotiden, spezifsch für hochkonservierte Regionen in Säugerhomologen, war nicht erfolgreich. Erst nach der Veröffentlichung der Hühnergenomsequenz konnte das Hühner IL-12p35 Gen auf Chromosom 9 identifziert wer- den. Die genomische Sequenz ist 1797bp lang und besteht aus fünf Exons und vier Introns. Die kodierende Region ist 615bp lang und kodiert für ein 205 Aminosäuren langes Protein, das 26,8% bis 31,2% Identität zum Säuger aufweist. Die Gene für Hühner IL-12p40 und IL-12p35 wurden durch einen Linker hintereinander kloniert und als IL-12p40/p35 -"Flexi-IL-12" exprimiert. Zur Analyse der Expression von IL-12p40 wurde RT-PCR auf cDNA Proben durchgeführt, die von verschiedenen Zelllinien, Geweben sowie stimulierten und unstimulierten Zellen stammten. IL-12p40 Signale wurden in HD-11-, RP9-, 2D8-, T16G5-, JJ1G9-, OU2-, CEC32-Zellen und mit IL-2 stimulierten Milzleukozyten detektiert. Zur weiteren Kontrolle wurde auch IFNg und IL-18 per PCR nachgewiesen. In einem in vitro Zellsystem wurde nachgewiesen, dass das rekombinant hergestellte Hühner IL-12p40 konzentrationsabhängig Milzzellen zur Sekretion von IFNg stimuliert.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Im Unterschied zu den HLA-Klasse-Ia-Molekülen ist das nicht-polymorphe Klasse-Ib-Molekül HLA-G v.a. in der Plazenta exprimiert. Es wird postuliert, daß HLA-G die Immuntoleranz des mütterlichen Immunsystems gegen den „semiallogenen“ Fetus mitreguliert. In allen anderen Zellen und Geweben, in denen es gefunden wurde, ist die Menge im Vergleich zu klassischen Klasse-I-Molekülen um Größenordnungen geringer. Auch in der Genexpression unterscheidet sich HLA-G drastisch von allen übrigen Klasse-I-Molekülen. Am auffallendsten ist dabei das Auftreten verschiedener alternativer Spleißformen. Neben dem Volle-Länge-Transkript G1m gibt es eine Reihe verkürzter Isoformen: G2 (G2m, Da2-Domäne), G3 (Da2/Da3-Domäne), G4 (Da3-Domäne) sowie zwei Formen, die für lösliche Proteine kodieren, da die nicht-entfernte Intron-4-Sequenz zu einem vorzeitigen Translationsstop führt, G5 (G1s), G6 (G2s, Da2-Domäne, + In4). Die schwache Expression von HLA-G bestätigte sich auch für die im Rahmen dieser Arbeit untersuchten Haut- und Muskelbiopsien sowie Gehirnproben. Transkripte für HLA-G und die verkürzten Isoformen waren in fast allen Proben nachweisbar, wobei das Volle-Länge-Transkript die dominante Form war. Bei den nach Krankheitsgruppen eingeteilten Hautbiopsien und den Muskelbiopsien mit definierten Diagnosen konnte keine Korrelation eines bestimmten Expressionsmusters mit einer bestimmten Krankheitsgruppe bzw. Diagnose festgestellt werden. Diese Heterogenität des Expressionsmusters sowie die selektive Hochregulation der Volle-Länge-Isoform G1m auf Transkriptions- und Proteinebene in Glioblastomzellinien und Myoblasten, die nur eine äußerst schwache konstitutive Expression von HLA-G aufweisen, nach Behandlung mit IFNg deutet auf eine differentielle Regulation hin. Um die einzelnen Isoformen getrennt voneinander untersuchen zu können, wurden Transfektanten für jede Form in der Klasse-I-negativen B-Zellinie 721.221 etabliert. Nur die Volle-Länge-Isoform G1m sowie deren lösliche Variante G1s konnten auf der Zelloberfläche bzw. im Kulturüberstand nachgewiesen werden. Von den übrigen Isoformen konnten nur EndoH-sensitive Polypeptide gefunden werden, und auch Immunofluoreszenzfärbung mit einer Reihe von Klasse-I-Ak zeigte keine Zelloberflächenexpression. Es muß daraus geschlossen werden, daß die verkürzten Isoformen in der Zelle zurückgehalten werden. HLA-G kann auf zwei Wegen die Aktivität von Immuneffektorzellen regulieren: direkt über ILT2 und indirekt über HLA-E. Das MHC-Klasse-I-Molekül HLA-E wird durch Bindung eines Nonamers (P3-11) aus dem Signalpeptid verschiedener Klasse-I-Moleküle auf der Oberfläche von Zellen stabilisiert. Aus der Interaktion dieses funktionellen HLA-E/Peptid-Komplexes mit dem inhibitorischen Rezeptorkomplex CD94/NKG2A auf NK-Zellen resultiert ein Schutz dieser Zellen vor der NK-Lyse. Auch das entsprechende Peptid aus der Signalsequenz von HLA-G ist ein Ligand für HLA-E. Allerdings wurde gezeigt, daß die Stabilisierung von HLA-E auf der Zelloberfläche durch das Peptid G311 schwächer als mit anderen Klasse-I-Peptiden und auch weniger stabil ist. Effektive Inhibition der Lyse der NK-Zellinie NKL über diese Interaktion von HLA-E mit CD94/NKG2A findet man nur bei HLA-G1m-Transfektanten. Diese werden auch durch die direkte Interaktion von HLA-G1m mit einem weiteren inhibitorischen Rezeptor auf NKL - ILT2 - geschützt. In den 721.221-Transfektanten der verkürzten HLA-G-Isoformen war eine unphysiologisch hohe Konzentrationen an HLA-G-Polypetid notwendig, um die kritische Menge an HLA-E-Ligand für den Schutz dieser Zellen vor der Lyse durch NK-Zellen liefern zu können. Das war nur für eine äußerst stark exprimierende G3-Transfektante der Fall. Der Grund dafür liegt wahrscheinlich in einer ineffizienteren Prozessierung des Signalpeptids von HLA-G und einer im Vergleich mit anderen HLA-E-Liganden geringeren Bindungsaffinität des Peptids G3-11 für HLA-E. Eine Funktion der verkürzten HLA-G-Isoformen durch die direkte Interaktion mit Rezeptoren auf NK-Zellen konnte nicht nachgewiesen werden und ist wegen ihrer intrazellulären Expression auch unwahrscheinlich. Vielmehr deuten erste Daten, die zeigen, daß die Isoformen, direkt oder indirekt, mit dem TAP-Komplex assoziiert sind, auf eine mögliche Funktion im Rahmen der Antigenpräsentation hin. Worin diese besteht, müssen weiterführende Untersuchungen zeigen. Daher ist anzunehmen, daß HLA-G in vivo hauptsächlich über HLA-G-bindende KIR immunregulatorische Funktionen wahrnimmt und durch indirekte Wirkung über HLA-E-CD94/NKG2A modulierend eingreift.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Im Rahmen der hier vorliegenden Arbeit über die Organisation und Regulation der Faktor HGenfamilie wurden folgende drei Themenkomplexe bearbeitet: Zur Aufklärung der genomischen Organisation der HF-Genfamilie wurden humane Mega YACund BAC-Klone mittels Restriktionsanalyse, Southernblothybridisierung, PCR und Sequenzierung analysiert. Alle Gene der Faktor H-Familie HF1- 5 konnten auf diesen Klonen lokalisiert werden, d.h. diese Genfamilie liegt zusammen auf einem DNS-Abschnitt von ca. 400 kb auf Chromosom 1q32. Weitere HF1-verwandte Genabschnitte wurde identifiziert, die in die Nähe von HF3, HF5 und F13B lokalisiert wurden. Flankierend zur Faktor H-Genfamilie wurden die Gene für F13B und PCP-2 kartiert. Die Gene können wie folgt von telomer nach zentromer angeordnet werden: PCP-2, HF1, HF4, HF2, HF5 gefolgt von HF3/HF6/F13B, deren Orientierung nicht eindeutig festgelegt werden konnte. Die Häufung der HF-Gene auf einem DNS-Abschnitt und deren Anordnung in Tandem- Orientierung läßt vermuten, daß diese Genfamilie ihren Ursprung in Genduplikation hat. In dieser chromosomalen Region werden Rekombinations-Hotspots vermutet, die eine erhöhte Rekombinationsfrequenz verursachen infolge derer Duplikationen entstehen können. Durch Fehler bei der Rekombination kann es jedoch auch zum Verlust von genetischem Material kommen. Vermutlich kann man die Deletion im Bereich des HF2- und HF4-Gens, die bei 4-5% der untersuchten Probanden gefunden werden kann, durch einen solchen Mechanismus erklären. Diese Deletion, ein genetischer Marker in dieser Region, kann nun mit einem einfachen PCR-basierenden Test, festgestellt werden. Die Isolierung und Kartierung des Faktor H-Genkomplexes erleichtert die Suche nach Kandidatengenen für das hämolytisch urämische Syndrom (HUS), da die Region als Kandidatenregion für dieses Syndrom identifiziert wurde. Es ist möglich, daß Faktor H oder die Faktor H-verwandten Proteine eine Rolle bei der Entstehung dieser Krankheit spielen. Ob die oben erwähnten HF2-Deletion eine Rolle bei der Pathogenese von entzündlichen Erkrankungen insbesondere rheumatischer Arthritis, spielt, wurde an einem großen Patientenkollektiv untersucht. Es wurde jedoch keine Korrelation zwischen Deletion und Erkrankung gefunden. Zur weiteren Untersuchung der Funktion der Faktor H-verwandten Proteine, wurde deren Expression auf Protein und mRNS-Ebene untersucht. Faktor H und die Faktor H verwandten Proteine 1 und 2 wurden im Liquor cerebralis entdeckt. Der Hauptsyntheseort im Gehirn für Faktor H scheint des Endothel des Plexus chorioideus und die Gliazellen zu sein. Die HFverwandten Transkripte sind nur auf geringem Niveau nachweisbar. Die Transkription von HF1 ist in den allen getesteten Gliomazellinien mit IFNg stimulierbar. Faktor H verhält sich also im Gehirn, ebenso wie in der Leber, als Akute-Phase-Protein und verhindert eine ungewünschte Komplementaktivierung im Zuge von Infektionen, Verletzungen und Erkrankungen des Gehirns. Durch die inflammatorischen Cytokine IL4 und IL6 wird die Transkription von HF1 nicht beeinflußt. Die HF1-verwandten Gene HF1- 5 sind in den Gliomazellinien nicht mit IFNg stimulierbar und auch IL4 und IL6 zeigen keinen Einfluß auf die Expression dieser Gene. Im Gegensatz zu Faktor H sind diese Proteine wahrscheinlich nicht an der Akute-Phase-Antwort des Gehirns beteiligt. Welche Aufgabe ihnen zufällt ist offen.