Podcasts about introns

  • 15PODCASTS
  • 17EPISODES
  • 41mAVG DURATION
  • ?INFREQUENT EPISODES
  • Aug 14, 2024LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about introns

Latest podcast episodes about introns

Absolute Gene-ius
Now that's what I call a high-quality viral vector

Absolute Gene-ius

Play Episode Listen Later Aug 14, 2024 32:33


Viral vectors are a cornerstone of gene therapy and many employ experts in the viral vector services space to help design and produce their specialty vectors. These service providers are experts at making sure you get the vector you want with a titer and purity you need for your application. We're joined in this episode by Dr. Cliff Froelich, Head of Analytical Development for a viral vector services provider. Cliff and his team work with AAV, lentivirus, and other vectors to support multiple, and simultaneous, client projects. Specifically, we dive into how they use various analytical and molecular methods to monitor and assess identity, strength, purity, impurities, potency, efficiency, empty/full ratios, safety, and more. As you might expect, it's not a one-method-does-it-all approach or solution. Yes, digital PCR is in the mix here, and Cliff does a great job of outlining where it shines relative to the other methods they use regularly in their GMP practice. In our career corner portion, you'll hear about Cliff's circuitous career path, which includes stints in the poultry industry and time as a clinical dietitian. Through it all, and into his current role, Cliff brings a passion and genuine interest for the science and its potential to affect lives. Visit the Absolute Gene-ius pageto learn more about the guests, the hosts, and the Applied Biosystems QuantStudio Absolute Q Digital PCR System. 

The Interactome
Episode 22: Lightning McDNA (Genetics)

The Interactome

Play Episode Listen Later Aug 24, 2023 47:32


In this episode, Joe, Maia, and Natalie talk about genetics. They start with the basics, and then delve into how we get our DNA and how it can change over many many years. You're bound to learn something new with this episode of the interactome! Links: Our Website: https://interactomemedia.wixsite.com/website Twitter: https://twitter.com/theinteractome  Instagram: https://www.instagram.com/interactome_media/ Mastodon: @interactome@universeodon.com Credits: Audio/Video Editing: Sam Pickell Artwork: Maia Reyes Transcript: Margaret Downs Intro/Outro Music: Geovane Bruno - Dancing In The Future Timestamps: 0:00 Intro 2:27 What is DNA? 11:59 What is a genome? 12:59 What is a gene? 15:53 Introns and Exons 19:18 Promoters and Terminator Sequences 21:54 How you get your DNA 23:51 Genomes Across Species: Plants 29:05 Story time: Where did you first hear about DNA? 30:45 Genomes Across Species 2: Bacteria 34:00 Can genes change? 37:50 How gene mutations play into evolution 46:34 Outro

Intelligent Design the Future
Powerful Protein Folding Algorithm AlphaFold Foiled by Singletons

Intelligent Design the Future

Play Episode Listen Later Nov 14, 2022 29:43


Today's ID the Future spotlights AlphaFold, an artificial intelligence program in the news for its impressive breakthroughs at predicting a protein's 3D structure from its amino acid sequence. Philosopher of Biology Paul Nelson walks listeners through the importance of this “amazing breakthrough,” as he describes it in a recent Evolution News article; but don't uncork the champagne bottles just yet. The reason, according to Nelson, is that while proteins, protein sequences, and protein folding promise to reveal much that is still mysterious in molecular biology, we now know that biological information involves far more than just an organism's proteome—that is, far more than the full suite of proteins expressed by an organism. Nelson uses analogies to manmade machines and cognates Read More › Source

State of the Arc Podcast
Xenogears Story Analysis (Ep.17) | State of the Arc Podcast

State of the Arc Podcast

Play Episode Listen Later Nov 2, 2021 94:47


QUICK UPDATE: We have fallen below our funding goal for the podcast. This means that unless we can get it back up, the show will go back to a monthly release schedule rather than weekly. If you appreciate the work we're doing, and would like for the podcast to remain a weekly show, please support us on Patreon or SubscribeStar. Patreon: https://www.patreon.com/resonantarc SubscribeStar: https://www.subscribestar.com/resonant-arc For the next episode, play up through Razael's Tree! In today's episode of our deep-dive analysis of Xenogears, Citan unbetrays us and helps us escape from Solaris, but not before we are betrayed by Hammer and confronted by Grahf. Time Codes: 1. Intro (0:00) 2. Krelian Discovers The Uroborus Ring In Elly's Introns (3:53) 3. Citan Patronizes Fei (28:12) 4. Ramsus Threatens Elly (40:01) 5. Citan Wields A Sword Now (46:21) 6. Escaping Solaris Hammer's Betrayal (51:08) 7. Battle Against Grahf and Destruction of Solaris (1:03:23) 8. Elly Confronts Id (1:17:29) 9. Back To Shevat/Citan Explains Fei's Disassociative Identity Disorder (1:19:33) 10. Shevat's Leaders Vote To Put Fei In Carbon Freeze (1:29:56)

Generation Zed Podcast
S.A.T.A.N: Harvesting Loosh To Reverse Eco-Atmospheric Introns Via "Their" Gang-Stalking Satellite

Generation Zed Podcast

Play Episode Listen Later Oct 19, 2021 27:38


S.A.T.A.N: Harvesting Loosh To Reverse Eco-Atmospheric Introns Via "Their" Gang-Stalking Satellite.

Die Sendung mit der Ziege
Ordnung ist das ganze Leben

Die Sendung mit der Ziege

Play Episode Listen Later Oct 1, 2021 23:26


Die Sendung mit der Ziege - Folge 68:Was können wir von der Natur in Sachen “Ordnung halten” lernen? Eine ganze Menge! Während einer Aufräumaktion nach der KonMarie-Methode fielen mir drei Parallelen zur Natur auf. 1. Alles hat seine Funktion 2. Dinge mit der gleichen Funktion finden sich zusammen. 3. Alles zurück an seinen Platz! Was das alles mit der DNA, der Körpertemperatur und Muskelzellen zu tun hat, erfahrt Ihr in dieser Folge. Viel Spaß!Mehr über Marie Kondo:https://utopia.de/ratgeber/minimalismus-marie-kondo-magic-cleaning/Link zum Videocast: https://youtu.be/wbD0DOUaBIU-----------Alle Pod- und Videocastfolgen auf einen Blick:https://madlenziege.com/die-sendung-mit-der-ziege Website: https://www.madlenziege.com Email: kontakt@MadlenZiege.com

My AP Biology Thoughts
Transcription & RNA Processing

My AP Biology Thoughts

Play Episode Listen Later Jun 2, 2021 4:46


My AP Biology Thoughts  Unit 5 HeredityWelcome to My AP Biology Thoughts podcast, my name is Chloe McGregor and I am your host for episode #107 called Unit 6 Gene Expression and Regulation: transcription and RNA processing. Today we will be discussing the process of transcription, and how MRNA is processed on its way to the ribosomes.  Segment 1: Introduction to Transcription and RNA Processing The central dogma is the process by which the genetic information stored in DNA is converted into functional products such as proteins. This process consists of 3 steps: transcription, translation, and protein synthesis. In this episode, I will specifically discuss transcription, the process of transcribing shorter segments of DNA into mRNA strands. However, once these mRNA strands are created, there are still steps that take place to ensure that the strand is mature and ready to be translated. This is called RNA processing. The mRNA strand is manipulated into a mature strand through a series of processes, and is then ready to travel to the ribosomes for translation and protein synthesis. Segment 2: More About Transcription and RNA Processing As I mentioned earlier, transcription is the first step and this is when the DNA strand is read, and a new complementary mRNA strand is synthesized. DNA is composed of different nitrogenous bases compared to RNA. DNA consists of adenine, thymine, cytosine, and guanine. However, RNA contains uracil instead of thymine. Base pairing rules are used by RNA polymerase to synthesize a new strand using the information on the unzipped DNA strand. Transcription is very important because DNA is very unique and one of a kind, so this single strand of RNA makes it possible for the genetic information to stay safe, but also be used for protein synthesis outside of the nucleus. Following transcription, RNA processing occurs. Premature mRNA strands contain both introns and exons that are transcribed from the DNA, however, the introns are spliced out to create a concise and mature strand of RNA that is ready to be translated. Introns are removed to ensure that the correct protein is being created during protein synthesis because a mistake in the RNA strand can cause mistakes during translation. Also, if introns are kept on accident, the wrong protein can be produced which will disrupt many different cellular processes. RNA splicing is also the reasoning behind one strand of DNA coding for so many different proteins depending on which introns are spliced out, and which exons are kept in the sequence.  Segment 3: Connection to the Course Transcription and RNA processing play a major role in healthy cellular function and bodily function in general. Because specific proteins and enzymes are so vital to so many different processes that are happening simultaneously, it is important that transcription and RNA processing are happening precisely and efficiently to keep the body functioning. The idea of RNA processing is also important because it can provide different proteins from the same gene depending on what the body is in need of. Overall, these processes may seem small, but they play such a large role in kickstarting protein synthesis and making sure that the RNA strands are accurate and ready to be converted into proteins.  Thank you for listening to this episode of My AP Biology Thoughts. For more student-ran podcasts and digital content, make sure that you visit http://www.hvspn.com (www.hvspn.com).  Music Credits: "Ice Flow" Kevin MacLeod (incompetech.com) Licensed under Creative Commons: By Attribution 4.0 License http://creativecommons.org/licenses/by/4.0/ Subscribe to our Podcast https://podcasts.apple.com/us/podcast/my-ap-biology-thoughts/id1549942575 (Apple Podcasts) https://open.spotify.com/show/1nH8Ft9c9f6dmo75V9imCk (Spotify) https://podcasts.google.com/search/my%20ap%20biology%20thoughts (Google Podcasts )  ...

Biochemistry (BIO/CHEM 4362) - Winter 2016
21b. RNA Processing: How Introns Know When to Leave

Biochemistry (BIO/CHEM 4362) - Winter 2016

Play Episode Listen Later Mar 4, 2016 20:28


processing introns
Biochemistry (BIO/CHEM 4362) - Winter 2016
21b. RNA Processing: How Introns Know When to Leave

Biochemistry (BIO/CHEM 4362) - Winter 2016

Play Episode Listen Later Mar 4, 2016 20:29


processing introns
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 13/19
MiRNA Bioinformatik als Werkzeug medizinischer Forschung – Etablierung eines Datenbank- und Zielvorhersagesystems zur Bearbeitung von miRNA-bezogenen Fragestellungen

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 13/19

Play Episode Listen Later Mar 3, 2011


Mit Beginn der Ära der Hochdurchsatz-Sequenzierung und Transkriptions-messungen ist das Angebot an genetischer Information in den letzten Jahren exponentiell gestiegen. Die Entdeckung der miRNAs als regulative Elemente mit weitreichendem Einfluss hat dabei eine Schlüsselrolle in der Erforschung von diagnostischen Möglichkeiten, pathogenetischen Prozessen und therapeutischen Konzepten vieler Krankheiten eingenommen. Mit der stetig wachsenden Informationsvielfalt steigt allerdings auch die Komplexität der Informationsverarbeitung und -aufbereitung. In der vorliegenden Arbeit wurde daher eine miRNA Datenbank konzipiert und evaluiert, die verfügbare Informationen handhabbar macht und bei der Generierung von Hypothesen hilft. Um Aussagen über die biologische Bedeutung von miRNAs treffen zu können, werden miRNA-mRNA-Interaktions-Vorhersagealgorithmen benutzt und so mögliche Ziel-mRNAs identifiziert. Aufgrund der beschriebenen Limitationen (Kapitel 2) wurde in dieser Arbeit ein Konsensusverfahren zur Ziel-Vorhersage etabliert und validiert, das das Prediction Agreement als Maß der Konfidenz einer Interaktion nutzt. Exemplarisch wurde dieses Verfahren eingesetzt, um vier miRNAs im Kontext der Apoptose-Signalkaskade zu beleuchten. Die Gene von zwei dieser vier miRNAs befinden sich in Introns proteinkodierender Gene (Host-Gene). Mithilfe der erstellten Datenbank ließen sich Charakteristika von Host-Genen extrahieren, die denen der Ziel-Gene ähneln. Die Summe der Beobachtungen erlaubt die Spekulation, dass die bislang biologisch wenig charakterisierten Host-Gene potentiell in funktionellem Zusammenhang zu den Ziel-Genen der miRNAs stehen. Am Beispiel von bei Sepsis differentiell exprimierten miRNAs konnte in der vorliegenden Arbeit gezeigt werden, wie durch die Entwicklung einer bioinformatischen Datenbank schwer handhabbare Datenmengen und –strukturen genutzt werden können, um die Entwicklung klinisch relevanter Hypothesen zu leiten. Die Möglichkeiten eines solchen Systems sind allerdings nicht ausgeschöpft. Je nach Fragestellung können weitere Daten integriert (Informationen über Promotor-Bereiche, Sequenzen, Protein-Protein-Interaktionen, weitere miRNA-/mRNA-Expressionsmessungen) und direkt analysiert werden. Mit zunehmendem Fortschritt biologischer Forschung und Methodik wird auch die informationsverarbeitende Methodik einen immer größeren Stellenwert einnehmen und der Bedarf an Datenbanksystemen und Konzepten zur strukturierten Analyse und Eingrenzung der Informationsvielfalt wird stetig steigen.

C2005.001 Intro to Cellular and Molecular Biology - Audio
18. Recombinant DNA technology II; Molecular cloning; Eukaryotic gene/genome structure. Introns and exons.

C2005.001 Intro to Cellular and Molecular Biology - Audio

Play Episode Listen Later Dec 15, 2010 72:53


Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 10/19
Der Einfluss genetischer Variationen im GAD2-Gen auf kognitive Phänotypen

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 10/19

Play Episode Listen Later Oct 20, 2009


Es ist anzunehmen, dass genetische Faktoren einen Großteil der kognitiven Fähigkeiten eines Menschen beeinflussen. Hereditätsschätzungen gehen von etwa 50% aus. Einzelne Polymorphismen innerhalb verschiedener Gene können dabei Auswirkungen auf die kognitive Leistungsfähigkeit haben. In dieser Arbeit wurden die Polymorphismen rs913964 und rs1330581 innerhalb des GAD2-Gens auf eine Assoziation mit Intelligenz untersucht. Das GAD2-Gen, welches für das Enzym Glutamatdecarboxylase 65 codiert, wird insbesondere in Nervenzellen des Gehirns exprimiert. Die von der Glutamatdecarboxylase 65 synthetisierte gamma-Aminobuttersäure, GABA, stellt den wichtigsten inhibitorischen Neurotransmitter im Zentralnervensystem dar und übernimmt bedeutende Aufgaben bei der Entwicklung des Nervensystems sowie bei der Weiterleitung und Regulierung von sensorischen und motorischen Signalen. Verschiedene Ergebnisse aus Tierversuchen sowie neurologische und psychiatrische Erkenntnisse lassen auf eine bedeutende Rolle der Glutamatdecarboxylase 65 im Hinblick auf GABAerge, synaptische Vorgänge im menschlichen Gehirn schließen. Eine Beteiligung des Enzyms an der Entwicklung kognitiver Fähigkeiten beim Menschen kann somit in Erwägung gezogen werden. Für Polymorphismen im GAD1-Gen, das für eine andere Isoform der Glutamatdecarboxylase codiert, wurden bereits Assoziationen zu unterschiedlichen kognitiven Phänotypen erstellt. Mit 286 neuropsychiatrisch gesunden, deutschstämmigen Probanden aus München wurde der Hamburg-Wechsler-Intelligenztest für Erwachsene – Revision 1991 durchgeführt. Die Genotypisierung der Polymorphismen erfolgte mit Hilfe eines SNP-Microarrays. Für den Polymorphismus rs913964 wurde bei den Untertests Rechnerisches Denken und Figurenlegen ein Zusammenhang mit der Allelverteilung nachgewiesen. Dem G-Allel konnten dabei jeweils bessere Ergebnisse zugeschrieben werden als dem A-Allel. Für den Untertest Rechnerisches Denken zeigte die Assoziation einen signifikanten Unterschied und für den Untertest Figurenlegen einen Trend. Die Analyse des Polymorphismus rs1330581 erbrachte einen Trend für die Assoziation der Genotypverteilung mit Werten des Handlungs-IQs und einen signifikanten Unterschied für die Rohwerte aus dem Untertest Bilderordnen. Dabei schnitten Personen mit dem heterozygoten Genotyp A/G besser ab als solche mit den homozygoten Genotypen A/A und G/G. Personen mit dem Genotyp G/G erzielten die schlechtesten Leistungen. Zudem konnte, ähnlich wie für den Polymorphismus rs913964, ein deutlicher Trend für die Assoziation der Allelverteilung mit den Ergebnissen aus dem Untertest Rechnerisches Denken ermittelt werden. G-Allelträger erzielten hierbei bessere Ergebnisse als A-Allelträger. Die Assoziation zweier Polymorphismen im GAD2-Gen mit kognitiven Leistungen in einer deutschen Stichprobe weist somit auf eine Mitbeteiligung dieses Gens an der Ausbildung von Intelligenz hin. Beide analysierten Polymorphismen liegen auf Introns innerhalb des GAD2-Gens. Folglich handelt es sich hierbei um keine funktionellen Polymorphismen. Als denkbare Ursachen für eine quantitative oder funktionelle Veränderung der Glutamatdecarboxylase 65 kommen verändertes Spleißen, die mögliche Lage in Linkage Disequilibrium zu einem bisher nicht untersuchten, funktionellen Polymorphismus oder ein unterschiedlicher Expressionsgrad durch Beeinflussung der DNA-Bindungsaffinität zu regulatorischen Proteinen in Frage. Ein Mangel oder eine Fehlfunktion von GAD65 würde in Folge einer reduzierten GABA-Synthese bzw. -Freisetzung zu einer gestörten Feinregulation der inhibitorischen Signalübertragung an sensorischen und motorischen Schaltstellen führen. Die postnatale Reifung der Gehirnwindungen, die neuronale Migration, die Zelldifferenzierung und die Synaptogenese sind ebenfalls abhängig von GAD65 bzw. GABA. Veränderungen der Expression oder der Funktion des Enzyms könnten somit Auswirkungen auf die kognitiven Fähigkeiten haben.

Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 01/07
Klonierung, Expression und funktionelle Analyse von Hühner-Interleukin-12

Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 01/07

Play Episode Listen Later Feb 11, 2005


IL-12, ein heterodimeres Zytokin bestehend aus IL-12p40 und IL-12p35, wird hauptsächlich von Zellen des angeborenen Immunsystems als Antwort auf intrazelluläre Pathogene gebildet und induziert eine TH1 vermittelte Immun- reaktion. Hühner IL-12p40 wurde in einer EST-Datenbank identifziert und vollständig kloniert. Der Vergleich des Hühner IL-12p40 Gens mit verschiedenen Säugerhomologen ergab Aminosäureidentitäten von 39,7% bis 43,5%. In der Hühnergenomsequenz wurde das IL-12p40 Gen auf Chromosom 13 lokalisiert, es ist 4898bp lang und besteht aus fünf Exons und vier Introns. Der korrespondierende offene Leserahmen besteht aus 945bp und kodiert für ein 315 Aminosäuren langes Protein. ChIL-12p40 wurde sowohl in prokaryotischen als auch in einem eukaryotischen System exprimiert und unter denaturierenden bzw. nativen Bedingungen aufgereinigt. Mit Hilfe des aus E. coli gewonnen ChIL-12p40 wurde ein polyklonales Kaninchen-a-ChIL-12p40 Antiserum entwickelt, das sowohl ChIL-12p40 aus prokaryotischem Expressionssystem als auch aus dem eukaryotischen Schneider SL-3-System erkennt und im Westernblot ChIL-12p40-Mengen bis zu 7,5ng detektiert. Die Klonierung der Hühner IL-12p35 Kette mit Hilfe von PCR mit Oligonukleotiden, spezifsch für hochkonservierte Regionen in Säugerhomologen, war nicht erfolgreich. Erst nach der Veröffentlichung der Hühnergenomsequenz konnte das Hühner IL-12p35 Gen auf Chromosom 9 identifziert wer- den. Die genomische Sequenz ist 1797bp lang und besteht aus fünf Exons und vier Introns. Die kodierende Region ist 615bp lang und kodiert für ein 205 Aminosäuren langes Protein, das 26,8% bis 31,2% Identität zum Säuger aufweist. Die Gene für Hühner IL-12p40 und IL-12p35 wurden durch einen Linker hintereinander kloniert und als IL-12p40/p35 -"Flexi-IL-12" exprimiert. Zur Analyse der Expression von IL-12p40 wurde RT-PCR auf cDNA Proben durchgeführt, die von verschiedenen Zelllinien, Geweben sowie stimulierten und unstimulierten Zellen stammten. IL-12p40 Signale wurden in HD-11-, RP9-, 2D8-, T16G5-, JJ1G9-, OU2-, CEC32-Zellen und mit IL-2 stimulierten Milzleukozyten detektiert. Zur weiteren Kontrolle wurde auch IFNg und IL-18 per PCR nachgewiesen. In einem in vitro Zellsystem wurde nachgewiesen, dass das rekombinant hergestellte Hühner IL-12p40 konzentrationsabhängig Milzzellen zur Sekretion von IFNg stimuliert.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Untersuchungen zur Charakterisierung der Zusammensetzung, Biogenese und des Mechanismus der Proteintranslokase der mitochondrialen Außenmembran von Neurospora crassa

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Feb 5, 2002


Die Proteintranslokase in der mitochondrialen Außenmembran (TOM-Komplex) ist verantwortlich für die Erkennung von mitochondrialen Präproteinen und deren Translokation über die mitochondriale Außenmembran. Das Ziel dieser Arbeit bestand in der Klonierung und Charakterisierung von bislang nicht identifizierten Komponenten des TOM-Komplexes in Neurospora crassa sowie in der Charakterisierung der Bindung von Präproteinen an den isolierten TOM-Komplex. Dabei wurden folgende Ergebnisse erzielt: Es wurden zwei bislang unbekannte, ca. 6 bzw. 7 kDa grosse Komponenten des Neurospora crassa TOM-Komplexes, Tom6 und Tom7, identifiziert. Deren Gene wurden mittels Durchmusterung einer cDNA-Phagenbibliothek sowie einer sortierten genomischen DNA-Bibliothek identifiziert und sequenziert. Das TOM6-Gen umfasst drei Exons und zwei Introns, während das TOM7-Gen vier Exons und drei Introns enthält. Die Aminosäuresequenzen von Neurospora crassa Tom6 und Tom7 weisen eine hohe Ähnlichkeit zu denen von Tom6 und Tom7 aus anderen Organismen auf. Dabei erstreckt sich der homologe Bereich bei Tom7 über die gesamte Aminosäuresequenz, während er bei Tom6 auf den carboxyterminalen Bereich beschränkt ist. Für beide Proteine wurde jeweils eine potentielle Transmembrandomäne an ihrem Carboxyterminus vorausgesagt. Sowohl Tom6, als auch Tom7 sind integrale Bestandteile des TOM-Core-Komplexes und befinden sich in engem Kontakt zu anderen Komponenten des TOM-Komplexes. Es konnte mit Hilfe von chemischen Quervernetzungsexperimenten gezeigt werden, daß sich Tom6 und Tom7 im TOM-Komplex von Neurospora crassa in direkter räumlicher Nähe zu Tom 40 befinden. Außerdem konnte ein direkter Kontakt zwischen Tom6 und Tom22 nachgewiesen werden, welcher durch Bindung des Präproteins pSu9-DHFR moduliert wird. Ein weiterer Schwerpunkt bei der Charakterisierung von Neurospora crassa Tom6 und Tom7 bestand in der Untersuchung des Imports dieser Proteine in Mitochondrien sowie deren Assemblierung in bereits bestehende TOM-Komplexe. Sowohl Tom6, als auch Tom7 konnten in vitro in Mitochondrien importiert werden und in bereits bestehende TOM-Komplexe assemblieren. Dabei benutzen sie teilweise den generellen Importweg von Präproteinen in Mitochondrien. Der Import von Tom6 umfasst zwei nicht miteinander gekoppelte Schritte. Zunächst findet eine vom Carboxyterminus vermittelte Interaktion mit Komponenten des TOM-Komplexes statt, es folgt die Assemblierung in den TOM-Komplex. Die Assemblierung von Tom6 in den TOM-Komplex setzt eine spezifische Interaktion des aminoterminal an die Transmembrandomäne angrenzenden Bereichs mit anderen TOM-Komponenten voraus. Daneben ist eine Interaktion der Transmembrandomäne von Tom6 mit dem aminoterminal an die Transmembrandomäne angrenzenden Bereich von Tom6 essentiell für die korrekte Assemblierung von Tom6 in den TOM-Komplex. Im Gegensatz zu anderen Außenmembranproteinen kommt bei Neurospora crassa Tom6 positiv geladenen Aminosäuren im an die Transmembrandomäne angrenzenden Bereich keine Bedeutung für den Import zu. Ein weiterer Aspekt der vorliegenden Arbeit bestand in der Untersuchung einiger Aspekte der Bindung des mit Fluoreszenzfarbstoff markierten Präproteins pSu9-DHFR an den isolierten TOM-Komplex unter Anwendung der Fluoreszenzkorrelationsspektroskopie. Die Bindung dieses Präproteins an den TOM-Komplex ist reversibel und wird spezifisch von der Präsequenz vermittelt. Die apparenten Bindungskonstanten betragen 1,3 nM für den TOM-Holokomplex sowie 3,4 nM für den TOM-Core-Komplex. Ein wichtiges Merkmal der Bindung von pSu9-DHFR an den TOM-Komplex sind elektrostatische Wechselwirkungen, da eine Erhöhung der Ionenstärke im Reaktionspuffer eine drastische Verminderung der Bindung zur Folge hatte. Des weiteren geht die Bindung von pSu9-DHFR an den TOM-Komplex einher mit der Entfaltung der DHFR. Eine Verhinderung der Entfaltung der DHFR durch Komplexierung mit Methotrexat führte zu einer stark verminderten Bindung von pSu9-DHFR an den TOM-Komplex.

Fundación Juan March
Procesamiento del ARN (IV): RNA Splicing, Introns and Biology

Fundación Juan March

Play Episode Listen Later Mar 10, 1997 71:41


Más información de este acto

Fundación Juan March
DNA y expresión genética (III): Introns/exons: the evolution of the gene

Fundación Juan March

Play Episode Listen Later Apr 29, 1985 60:34


Más información de este acto

evolution expresi exons introns