POPULARITY
In dieser Folge sprechen wir über Träume, Wünsche und Zukunftspläne. Es gibt ein Beispiel für einen Dialog und wir erzählen von unseren eigenen Träumen, Wünschen und Plänen für die Zukunft. Die Transkription und die Vokabelliste findet ihr auf unserer Webseite. Instagram: podcast.plauderrunde E-Mail: plauderrunde@gmail.com
In dieser Folge sprechen wir über Ausflüge in deutsche Städte. Von Berlin bis München teilen wir Empfehlungen für spannende Reiseziele, geben praktische Tipps und diskutieren kulturelle Highlights. Die Transkription und die Vokabelliste findet ihr auf unserer Webseite. Instagram: podcast.plauderrunde E-Mail: podcastplauderrunde@gmail.com
In dieser Folge erklären wir in leichtem Deutsch (A1/A2), wie man sich auf Deutsch vorstellt und andere Menschen kennenlernt. In einem einfachen Dialog zeigen wir, wie man Fragen nach dem Namen, dem Alter, den Hobbys, dem Studium oder der Arbeit stellt. Die Transkription und die Vokabelliste findet ihr auf unserer Webseite. Instagram: podcast.plauderrunde E-Mail: podcastplauderrunde@gmail.com
In dieser Folge sprechen wir über Urlaub und Erholung. Wir teilen unsere eigenen Vorlieben und Erfahrungen und diskutieren darüber, wie wir unseren Urlaub am liebsten gestalten. Die Transkription und die Vokabelliste findet ihr auf unserer Webseite. Instagram: podcast.plauderrunde E-Mail: podcastplauderrunde@gmail.com
In dieser Folge sprechen wir über verschiedene Freizeitaktivitäten. Wir teilen persönliche Erlebnisse und diskutieren verschiedene Unternehmungen, von kulturellen Ereignissen über sportliche Aktivitäten bis hin zu Ausflügen in die Natur. Die Transkription und die Vokabelliste findet ihr auf unserer Webseite. Instagram: podcast.plauderrunde E-Mail: podcastplauderrunde@gmail.com
Egal ob beruflich oder privat, wie viele Stunden am Tag verbringst du vor deinem Smartphone? Wie viele Stunden verbringst du in sozialen Netzwerken, insbesondere auf Instagram, Twitter oder Ähnliches? Diese Folge erfolgt komplett auf Deutsch und richtet sich an Hörer*innen, die sich aktuell auf einer höheren Niveaustufe befinden. Ich habe die Gelegenheit genutzt, um ein wenig über die Rolle des Internets in unserem Leben zu philosophieren. Die Transkription heutiger Folge findest du unter folgendem Link: https://deutschgues.com.br/episodio-30/
Was heißt pura vida? Wer sagt das und warum? Das können Sie in dieser Lektion erfahren. Die Transkription mit dem Vokabular erhältlich: charlaconmaria@gmail.com, www.spanisch-in-dortmund.de Wenn Sie mich unterstützen möchten, teilen Sie den Podcast in den Social Media und empfehlen Sie ihn. Sie können auch eine Bewertung und einen Kommentar hinterlassen. ¡Muchas gracias! --- Send in a voice message: https://anchor.fm/maria1769/message
Doktor Michael Scholze ist vom Beruf her Physiker und vom Herzen Forscher. Sein Interesse an den Berührungspunkten von Spiritualität und Wissenschaft haben dazu geführt, dass er sich ausführlich mit dem Thema Trinkwasser beschäftigt hat. Doktor Michael Scholze hilft den Lesern seines Blogs dabei, ihren Weg zu gesundem Wasser zu finden. Außerdem bietet er detaillierte Bauanleitungen von hochwertigen Osmosefilter-Systemen an. Dies ist die günstigste Weise an hervorragend Wasserfilter zu kommen. Da ja nicht jeder einige Tausend Euro für ein gutes Filtersystem ausgeben will oder kann. Mehr darüber was gesundes Wasser ausmacht, wieman es überprüfen und herstellen kann, findest Du im Podcast. Die Transkription und alle weiterführenden Links findest Du unter: https://hamburg-kettlebell-club.de/podcast/145-podcast-32-dr-michael-scholze-trinkwasser-osmosefilter.html Weiterführende Literaturempfehlung: Wasser - viel mehr als H2O: Bahnbrechende Entdeckung: Das bisher unbekannte Potenzial unseres Lebenselements https://amzn.to/2qgwtp4 (Amazon Partner Link) #Trinkwasser, #Osmosefilter, #Wasser, #Doppelosmosefilter, #Keimbelastung, #Schwermetalle, #Hormone, #Wasser, #Quellwasser, #natürlichesWasser, #Podcast, #H2O
Maximilian Gotzler ist Deutschlands bekanntester Biohacker. Max spielte Basketball an der Boston University. Merkte jedoch nach einiger Zeit, dass sich neben dem Erfolg, auch Probleme einstellten. Warum traten sie auf und wie löst man sie? So kam er zum Thema Biohacking und Selbstoptimierung. Aus seiner Leidenschaft, entwickelten sich über die Jahre ein Blog, ein Podcast, ein Online-Shop mit eigenen Produkten und Deutschlands erste Biohacker Konferenz das FlowFest. Seit Februar 2018 ist sein Buch „Biohacking – Optimiere dich selbst: Besser schlafen. Mehr leisten. Ausgeglichener sein. Länger leben“ erhältlich, indem er die effektivsten Biohacks und Methoden zur Bewältigung von Problemen wie chronischem Stress, Stimmungstiefs, Energiemangel und Reizüberflutung vorstellt. Max‘ Ziel ist es, anderen dabei zu helfen, fitter, gesünder, ausgeglichener und produktiver zu werden – sprich im Flow zu leben. Willst Du mehr wissen, dann höre Dir den Podcast an. Die Transkription und alle weiterführenden Links findest Du unter: https://hamburg-kettlebell-club.de/podcast/140-podcast-30-maximilian-gotzler-biohacking.html Das Biohacking Buch von Max bekommst Du hier: http://amzn.to/2FlyAhx (Amazon Affiliate Link) #Biohacking #Biohacker #Biohacks #MaxGotzler #Podcast #chronischerStress #Stimmungstief #Energiemangel #Reizüberflutung #VitaminD
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 09/19
Im Escherichia coli Stamm ECOR31 konnte erstmals eine atypische Insertionsstelle der weit verbreiteten Pathogenitätsinsel Yersinia-HPI beschrieben werden. Statt dem asnT-tRNA-Gen findet sich am Integrase-Ende der HPI eine weitere, offenbar horizontal transferierte Region, die RegX genannt wurde. Diese besitzt eine Größe von 24196 Basenpaaren und unterscheidet sich mit einem G+C-Gehalt von 47,9% vom E. coli-Kerngenom. Weder auf DNA noch auf Protein-Ebene existieren höhere Homologien zu E. coli-DNA. Nach Anfertigung einer Cosmid-Bank wurde die gesamte Region sequenziert und annotiert. RegX weist eine mosaikartige Struktur auf, mit Punktmutationen, Deletionen und Insertionen. Sie besteht aus 22 offenen Leserastern und alle potentiellen Gene und deren Translationsprodukte wurden durch Vergleiche mit der NCBI-Datenbank charakterisiert. Die Transkription verschiedener Gen-Cluster und deren Operonstruktur wurde mittels RT-PCR nachgewiesen. Die DNA-Region enthält eine interessante Anhäufung von putativen Aufnahme-Systemen für divalente Metallionen, wie Eisen, Zink, Mangan. Zudem beheimatet die Region X Regulatorgene ähnlich zu Fur und Zur und Zink-abhängige Enzyme. Im Gesamtvergleich der Region X ergeben sich die höchsten Homologien zu Teilen des Plasmids pLVPK von Klebsiella pneumoniae CG43 30. Anhand der strukturellen Unterschiede der Sequenzen mit Punktmutationen und Rekombinations-Ereignissen kann der anhaltende Wandel bakterieller Genome nachvollzogen werden. Des Weiteren wurde die Verbreitung dieser Region unter klinisch relevanten Enterobacteriaceae und Pseudomonaceae untersucht. Von 530 gescreenten Bakterien konnte ein Klebsiella pneumoniae Stamm isoliert werden, der in der groben Struktur identisch zu der untersuchten Region von ECOR31 ist. In diesem Isolat, das aus der Blutkultur eines Patienten mit Sepsis stammt, konnte sowohl die gesamte Region X, als auch die benachbarte Yersinia-HPI und die atypische Insertionsstelle der HPI nachgewiesen werden. Es ist davon auszugehen, dass die untersuchte Region auf einem konjugativen Klebsiella-Plasmid lokalisiert ist und so zusammen mit der HPI horizontal zwischen verschiedenen Spezies übertragen werden kann.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
CNG-Kanäle sind elementare Bestandteile der Seh- und Riechkaskade. Es existieren sechs verschiedene Gene, die für unterschiedliche CNG-Untereinheiten kodieren. Im Rahmen dieser Arbeit wurde zunächst die Expression und Funktion der CNG-Kanäle im ZNS der Maus untersucht. RT-PCR-Untersuchungen zeigten, dass CNGA3 in der Amygdala, dem Cerebellum und dem Hippocampus die am stärksten exprimierte CNGA-Untereinheit war. Auch mittels in situ-Hybridisierung und Immunhistochemie konnte CNGA3 im Hippocampus der Maus nachgewiesen werden. Um zu untersuchen, ob CNGA3 eine funktionelle Rolle im Hippocampus der Maus besitzt, wurde die synaptische Plastizität in der CA1-Region des Hippocampus CNGA3-defizienter Mäuse gemessen. Bei CNGA3 -/- Mäusen konnte eine signifikant erhöhte Langzeitpotenzierung bei normal erhaltener Langzeitdepression beobachtet werden. Mit zwei unabhängigen Lernversuchen wurde untersucht, ob dieser Befund Auswirkungen auf die Funktion des Hippocampus für das räumliche Lernvermögen dieser Mäuse besitzt. Die Leistungsfähigkeit sowohl bei einem water-maze Versuch als auch bei der kontextuellen Angstkonditionierung zeigte sich jedoch durch die Deletion von CNGA3 nicht beeinträchtigt. Da CNGA3 auch in der Amygdala nachgewiesen werden konnte, wurden die CNGA3 -/- Mäuse auf eine Beeinträchtigung der physiologischen Funktion dieser Gehirnregion getestet. Zu diesem Zweck wurde eine akustische Angstkonditionierung durchgeführt. Bei diesem klassischen Test der Amygdalafunktion zeigten die CNGA3-defizienten Mäuse überraschenderweise ein signifikant weniger stark ausgeprägtes Angstverhalten. Detailliertere Untersuchungen sind notwendig, um die genaue Funktion von CNG-Kanälen in der Amygdala aufzuklären. Im zweiten Teil der Arbeit sollte die bei CNGA3-defizienten Mäusen zu beobachtende retinale Degeneration untersucht werden. Die Konsequenzen der Deletion von CNGA3 sollten auf molekularer Ebene beschrieben werden. Interessanterweise zeigte die Degeneration der Seh-Zapfen keine gleichmäßige Verteilung über die gesamte Netzhaut. Im oberen Teil der Netzhaut war ein verlangsamter Verlauf des Seh-Zapfen-Verlustes zu erkennen. Selbst bei über 1 Jahr alten CNGA3-defizienten Mäusen war in der dorsalen Retina eine Persistenz von etwa 50 % der Seh-Zapfen zu beobachten. Dagegen waren in der unteren Retina viel früher schon fast keine Zapfen-Außensegmente mehr zu sehen. Auf molekularer Ebene zeigte sich schon während der ersten Wochen der postnatalen Entwicklung ein Verlust elementarer Proteine der Phototransduktionskaskade. Sehr früh war für die zwei Zapfen-Opsine der Maus, wie für die meisten weiteren untersuchten Proteine der Seh-Kaskade der Zapfen, ein Verlust der Immunreaktivität in den Zapfen-Außensegmenten zu beobachten. Die Transkription der untersuchten Gene war, mit Ausnahme des SWS-Opsins, bei 3 Monate alten CNGA3 -/- Mäusen vergleichbar der bei Wildtyp Mäusen. Das Ausmaß und der Beginn des degenerativen Prozesses in der CNGA3 -/- Retina wurde durch den Nachweis einer sehr früh beginnenden und stark ausgeprägten Induktion von Müller-Gliazellen deutlich. Charakteristische Merkmale die für die Aktivierung einer Apoptose in Photorezeptoren sprechen konnten bei CNGA3 -/- Mäusen ausgemacht werden. Mittels TUNEL-Analyse konnte eine erhöhte DNS-Fragmentation beobachtet werden mit einem Maximum zwischen der dritten und vierten postnatalen Woche. Im gleichen Zeitraum war ebenfalls eine Aktivierung der Caspase 3 und eine Freisetzung von Cytochrom c zu erkennen. Zusätzlich zu den Veränderungen in den Photorezeptoren konnten subtile Veränderungen in der inneren Netzhaut der CNGA3 -/- Mäuse gezeigt werden. Zum einen entwickelten die Horizontalzellen neuronale Ausläufer, die in die äußere Körnerschicht hineinwuchsen. Zum anderen wurde ein Verlust der Immunreaktivität für das G-Protein Goa in ON-Bipolarzellen CNGA3-defizienter Mäuse festgestellt.
Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 01/07
Neisseria meningitidis, ein Gram negatives pathogenes Bakterium ist eine der Ursachen für schwere Septikämie und Meningokokkenmeningitis. Nach Besiedelung des menschlichen Nasopharynx und Übertritt in die Blutbahn besteht ein zentraler Schritt in der Pathogenese der durch N. meningitidis verursachten bakteriellen Meningitis in der Interaktion der Bakterien mit Zellen der Blut-Hirn-Schranke. Die Schwere der Erkrankung scheint direkt mit der Produktion proinflammatorischer Zytokine, Chemokine und Wachstumsfaktoren zu korrelieren. Daher wurde in der vorliegenden Studie mit Hilfe eines Zellkulturmodells die Freisetzung von Tumornekrosefaktor alpha (TNF-a), Interleukin-1b (IL-1b), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Monocyten-attrahierendem Protein-1 (MCP-1) und transformierendem Wachstumsfaktor beta (TGF-b) durch Gehirnendothelzellen nach Infektion mit Meningokokken analysiert. Mit ELISA und RT-PCR wurde die Freisetzung von Zytokinen und die Transkription der Zytokin-codierenden Gene von humanen Gehirnendothelzellen (HBMEC) nach Infektion mit dem Meningokokkenstamm MC58* und seiner unbekapselten isogenen Mutante MC58 siaD der Serogruppe B nachgewiesen. In Übereinstimmung mit der Zytokinfreisetzung wurde dabei ein typisches Genexpressionsmuster festgestellt. Beide Bakterienstämme beeinflußten die Transkription der Gene, die für IL-6 und IL-8 kodieren, wobei die Transkription bei den Zellen, die mit dem unbekapselten Stamm infiziert wurden, früher nachzuweisen war. Die Transkription des TNF-a Gens wurde nur nach der Infektion mit der unbekapselten Mutante nachgewiesen. Für IL-1b und MCP-1 wurde keine verstärkte Transkription festgestellt, wogegen das Gen, welches für TGF-b codiert, von infizierten wie uninfizierten Zellen gleichermaßen exprimiert wurde. Neben den intakten Bakterien führte auch die Stimulation mit Außenmembranproteinen zu einer Induktion der Zytokinfreisetzung. Die Verhinderung der Internalisierung der Bakterien in die Zellen bzw. die Blockade des a5b1 Integrin Rezeptors reduzierte die Freisetzung von IL-8 und TNF-a, nicht jedoch die Freisetzung von IL-6. Während durch die IL-6 oder IL-8 Prästimulation der HBMEC keine Veränderung des Invasionsverhaltens der Meningokokken beobachtet werden konnte, führte eine Prästimulation mit TNF-a zu einer deutlich gesteigerten Invasion der Bakterien in die Zellen. Diese Ergebnisse machen deutlich, daß der Entzündungsprozeß im Gehirn eine komplexe Interaktion zwischen Bakterium und Wirtszelle erfordert. Dabei spielen die Gehirnendothelzellen offensichtlich eine wichtige Rolle in der interzellulären Kommunikation der beteiligten Zellen, indem sie Zytokine als Immunmodulatoren freisetzen, die ihrerseits zu veränderter Expression von Adhäsionsmolekülen führen könnten.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Die Transkription von proteincodierenden Genen wird in Eukaryonten durch RNA-Polymerase II und die Generellen Transkriptionsfaktoren, die an den Promotor eines Klasse II Genes binden, bewerkstelligt. Eine Regulation der Aktivitaet dieser molekularen Maschine erfolgt durch Aktivator- und Repressorproteine, die sequenzspezifisch an regulatorische Sequenzen dieser Gene binden. Fuer die Funktion von Aktivatoren ist nicht nur die Interaktion derselben mit der Transkriptionsmaschine sondern auch die Wechselwirkung mit akzessorischen Proteinen (Cofaktoren) essentiell. Diese fungieren als eine Art Transmitter fuer regulatorische Signale, welche den Zusammenbau bzw. die Aktivitaet der Maschine steuern. Die RNA-Polymerase II Transkription laesst sich in einem zellfreien in-vitro-System unter Verwendung einfacher Modellgene rekonstituieren. Dieses Testsystem wurde zur Identifizierung und Reinigung neuer Cofaktoren verwendet, von denen zwei in dieser Arbeit kloniert und naeher charakterisiert wurden. Einer dieser Faktoren (PAQ) ist Teil eines Multiproteinkomplexes, der Mediator genannt wird, und, wie in dieser Arbeit gezeigt, eine generelle regulatorische Funktion in der Zelle aufweist. Das zweite klonierte Protein (VACID) vermittelt spezifisch die Wirkung des Herpes simplex Virus Aktivators VP16, indem es sowohl an VP16 als auch an Mediator bindet und dessen Aktivitaet reguliert, was letztlich zu einer drastischen Stimulation der RNA-Polymerase II-Transkription fuehrt.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Im Rahmen der hier vorliegenden Arbeit über die Organisation und Regulation der Faktor HGenfamilie wurden folgende drei Themenkomplexe bearbeitet: Zur Aufklärung der genomischen Organisation der HF-Genfamilie wurden humane Mega YACund BAC-Klone mittels Restriktionsanalyse, Southernblothybridisierung, PCR und Sequenzierung analysiert. Alle Gene der Faktor H-Familie HF1- 5 konnten auf diesen Klonen lokalisiert werden, d.h. diese Genfamilie liegt zusammen auf einem DNS-Abschnitt von ca. 400 kb auf Chromosom 1q32. Weitere HF1-verwandte Genabschnitte wurde identifiziert, die in die Nähe von HF3, HF5 und F13B lokalisiert wurden. Flankierend zur Faktor H-Genfamilie wurden die Gene für F13B und PCP-2 kartiert. Die Gene können wie folgt von telomer nach zentromer angeordnet werden: PCP-2, HF1, HF4, HF2, HF5 gefolgt von HF3/HF6/F13B, deren Orientierung nicht eindeutig festgelegt werden konnte. Die Häufung der HF-Gene auf einem DNS-Abschnitt und deren Anordnung in Tandem- Orientierung läßt vermuten, daß diese Genfamilie ihren Ursprung in Genduplikation hat. In dieser chromosomalen Region werden Rekombinations-Hotspots vermutet, die eine erhöhte Rekombinationsfrequenz verursachen infolge derer Duplikationen entstehen können. Durch Fehler bei der Rekombination kann es jedoch auch zum Verlust von genetischem Material kommen. Vermutlich kann man die Deletion im Bereich des HF2- und HF4-Gens, die bei 4-5% der untersuchten Probanden gefunden werden kann, durch einen solchen Mechanismus erklären. Diese Deletion, ein genetischer Marker in dieser Region, kann nun mit einem einfachen PCR-basierenden Test, festgestellt werden. Die Isolierung und Kartierung des Faktor H-Genkomplexes erleichtert die Suche nach Kandidatengenen für das hämolytisch urämische Syndrom (HUS), da die Region als Kandidatenregion für dieses Syndrom identifiziert wurde. Es ist möglich, daß Faktor H oder die Faktor H-verwandten Proteine eine Rolle bei der Entstehung dieser Krankheit spielen. Ob die oben erwähnten HF2-Deletion eine Rolle bei der Pathogenese von entzündlichen Erkrankungen insbesondere rheumatischer Arthritis, spielt, wurde an einem großen Patientenkollektiv untersucht. Es wurde jedoch keine Korrelation zwischen Deletion und Erkrankung gefunden. Zur weiteren Untersuchung der Funktion der Faktor H-verwandten Proteine, wurde deren Expression auf Protein und mRNS-Ebene untersucht. Faktor H und die Faktor H verwandten Proteine 1 und 2 wurden im Liquor cerebralis entdeckt. Der Hauptsyntheseort im Gehirn für Faktor H scheint des Endothel des Plexus chorioideus und die Gliazellen zu sein. Die HFverwandten Transkripte sind nur auf geringem Niveau nachweisbar. Die Transkription von HF1 ist in den allen getesteten Gliomazellinien mit IFNg stimulierbar. Faktor H verhält sich also im Gehirn, ebenso wie in der Leber, als Akute-Phase-Protein und verhindert eine ungewünschte Komplementaktivierung im Zuge von Infektionen, Verletzungen und Erkrankungen des Gehirns. Durch die inflammatorischen Cytokine IL4 und IL6 wird die Transkription von HF1 nicht beeinflußt. Die HF1-verwandten Gene HF1- 5 sind in den Gliomazellinien nicht mit IFNg stimulierbar und auch IL4 und IL6 zeigen keinen Einfluß auf die Expression dieser Gene. Im Gegensatz zu Faktor H sind diese Proteine wahrscheinlich nicht an der Akute-Phase-Antwort des Gehirns beteiligt. Welche Aufgabe ihnen zufällt ist offen.