POPULARITY
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06
Durch Fehler entstandene tetraploide Zellen sind chromosomal instabil und können zu Zelltransformation führen. Die Beweise verdichten sich, dass die Propagation von tetraploiden Säugetierzellen durch einen p53-vermittelten Arrest eingeschränkt wird; jedoch ist weiterhin unklar, was die Ursache dieses p53-vermittelten Arrests ist. Um die Ursache des p53-vermittelten Arrests zu identifizieren, wurden individuelle Zellen mittels zeitraffender Mikroskopie in Echtzeit verfolgt. Neu entstandene tetraploide Zellen können einen Zellzyklus vollenden, aber die Mehrzahl der Zellen starb oder verharrte in einem Arrest in der folgenden G1-Phase, abhängig davon ob die vorangegangene Mitose fehlerfrei verlief oder nicht. Tochterzellen, denen eine fehlerhafte Mitose voranging, akkumulierten p53 im Zellkern, was zum Zelltod oder einem irreversiblen Zellzyklusarrest führte. Es zeigte sich durch den Anstieg von 8-OHdG, einem Indikator für oxidative DNA Schädigung, dass tetraploide Zellen durch die vermehrten fehlerhaften Mitosen höheren Konzentrationen von reaktiven oxidativen Spezien (ROS) ausgesetzt sind. Der Anstieg von 8-OHdG korrelierte mit der p53-Akkumulation im Zellkern. Da keine vermehrte Phosphorylierung des Histons H2AX (γ-H2AX), ein Marker für DNA-Strangbrüche, detektiert wurde, lässt sich schlussfolgern, dass ROS entscheidend für den p53 vermittelten Arrest verantwortlich sind. Mehrere p53-aktivierende Kinasen wurden mittels RNA Interferenz (RNAi) und chemischer Genetik untersucht, ob sie einen Einfluss auf den Zellzyklusarrest von tetraploiden Zellen haben. Von den getesteten Kinasen hatte nur ATM einen Einfluss auf die Aktivierung von p53 nach fehlerhaften tetraploiden Mitosen. Zwar wird ATM in der Regel durch DNA-Schäden aktiviert, jedoch wurde bereits zuvor gezeigt, dass ATM auch durch erhöhte ROS Konzentrationen aktiviert werden kann. Um die Zusammenhänge des Zellzyklusarrests weiter aufzuklären, wurde ein genomübergreifender esiRNA Screen etabliert, der die Zellproliferation nach induzierter Tetraploidisierung analysiert. Durch Kombination der Zellzyklusanalyse an Hand des DNA-Gehalts zusammen mit den FUCCI-Zellzyklusindikatoren, konnten tetraploide und diploide Zellen nebeneinander mikroskopisch analysiert werden, ohne zuvor tetraploide und diploide Zellen isolieren zu müssen. Dieser neue experimentelle Ansatz ermöglichte die Identifikation von Genen, die spezifisch die Proliferation von tetraploiden Zellen verstärken oder einschränken Im Primärscreen wurden 1159 Gene identifiziert, deren Inhibition die Proliferation einschränken. Weiter wurden 431 Gene identifiziert, deren Inhibition die Proliferation der tetraploiden Zellen verstärken. Von den 431 Genen, deren Inhibition die Proliferation verstärken, wurden 371 Gene einem Konfirmationsscreen unterzogen, in dem 158 der identifizierten 371 Gene bestätigt wurden. Die bioinformatische Analyse der 158 Gene zeigte eine signifikante Anhäufung von Genen, die mit DNA-Replikation, dem kanonischen Wnt-Signalweg oder mit Tumorsignalwegen assoziiert sind. Unter letzteren ist CCDC6 sehr interessant, da dessen Genprodukt durch ATM phosphoryliert wird und nachgeschaltet den Tumorsuppressor 14-3-3σ reguliert. Des weiteren wurden mittels einer Meta Analyse der Ergebnisse des Primärscreens, zusammen mit den Daten aus dem “Project Achilles”, welches genomweit den Effekt von shRNA-vermittelter Geninhibition auf die Proliferation von 108 Krebszelllinien untersuchte, 18 Gene identifiziert, deren Inhibition sowohl die Proliferation von tetraploiden Zellen einschränkt, als auch die Proliferation von Zelllinien hemmt, welche von Krebsarten stammen, die zu meist chromosomale Instabilitäten (CIN) aufweisen. Damit bilden die präsentierten Daten nicht nur eine gute Basis zur Aufklärung des Zellzyklusarrests tetraploider Zellen, sondern auch für die Identifikation neuer potentieller Zielmoleküle, welche benutzt werden können um Tumorerkrankungen mit chromosomaler Instabilität zu behandeln, welche häufig resistent gegen die bislang verfügbaren Behandlungen sind.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
Akkurate Verteilung der Chromosomen während der Zellteilung ist eine fundamentale Voraussetzung für den Erhalt der genetischen Information eines Organismus. Durch Fehler innerhalb dieses Prozesses resultieren Aneuploidien, die wiederum zur Entstehung von Krebs oder Trisomien (z.B. Down-Syndrom) führen können. Es überrascht daher nicht, dass die Chromosomensegregation einen der am höchsten regulierten Vorgänge innerhalb des eukaryotischen Zellzyklus darstellt. Die Schwesterchromatide eines jeden Chromosoms werden in S-Phase synthetisiert und gleichzeitig von einem sie ringförmig umschließenden Multi-Proteinkomplex, Kohäsin genannt, miteinander verpaart. Ihre Trennung in der nachfolgenden Kernteilungsphase (Mitose) erfolgt bei Vertebraten in zwei Stufen. Während Kohäsin von den Chromosomenarmen bei Phosphorylierung in Prophase dissoziiert, wird zentromerisches Kohäsin von der später aktiv werdenden Separase proteolytisch gespalten, wodurch die Anaphase ausgelöst wird. Shugoshine (SGOs) schützen die Schwesterchromatidkohäsion im Bereich der Zentromeren, indem sie durch Rekrutierung von Protein-Phosphatase 2A (PP2A) der Phosphorylierung von Kohäsin entgegenwirken. In Säugern schützt Sgo1 mitotisches Kohäsin in der Prophase, während Sgo2 meiotisches Kohäsin vor der phosphorylierungsabhängigen Spaltung durch Separase während der ersten Reifeteilung bewahrt. Sowohl Mitose als auch Meiose werden maßgeblich durch den Spindle Assembly Checkpoint (SAC) reguliert. Dieser lässt Anaphase grundsätzlich erst dann zu, wenn alle Chromosomen über ihre Kinetochore mit Mikrotubuli des Spindelapparates in einer Weise wechselwirken, dass Zugspannung entsteht. Solange dies nicht der Fall ist, katalysiert ein kinetochorständiger Mad1-Mad2-Komplex die konformationelle Umwandlung von löslichem Mad2 hin zu einer Form, in der es über Bindung an Cdc20 die Aktivierung von Separase und den Austritt aus der Mitose blockiert. In der vorliegenden Arbeit wird durch funktionelle Charakterisierungen in Krebszelllinien gezeigt, dass Sgo2 keine essentielle mitotische Funktion ausübt. Ein bislang in der Literatur bestehender Widerspruch wird hierdurch geklärt. Die RNAi-vermittelte Depletion von Sgo2 führt zwar zu einem Verlust des Mikrotubuli-depolymerisierenden Kinesins MCAK von den Zentromeren, entsprechende HeLa-Zellen zeigen bei fehlender Zugspannung aber weiterhin einen mitotischen Arrest, der von Aurora B abhängig ist. Die Funktion dieser mitotischen Kinase innerhalb des SAC beruht demzufolge nicht auf der Erzeugung freier Kinetochore durch die Rekrutierung von MCAK sondern auf einem alternativen Signalweg. Weiterhin wird eine unerwartete, direkte Bindung von humanem Sgo2 an Mad2 beschrieben. Biochemische Experimente machen deutlich, dass Sgo2 genauso mit Mad2 interagiert, wie dies Mad1 und Cdc20 tun. Gleichzeitig wird gezeigt, dass die Wechselwirkung zwischen Sgo2 und Mad2 konserviert ist und in Organismen, denen ein zweites Shugoshin fehlt, von Sgo1 übernommen wird. Diese Daten stellen ein zentrales Dogma in Frage, das für den SAC beschrieben wurde und das für das aktive Checkpoint-Signal von einer „Quelle“ (kinetochorständiges Mad1-Mad2) und einem „Zielprotein“ (Cdc20) ausgeht. Die Mad2-Bindung ist für die Fokussierung von Sgo2 am inneren Zentromer erforderlich. In Abwesenheit von Mad2 oder bei mutierter Mad2-Bindestelle verlagert sich Sgo2 an Randbereiche des Zentromers. Aufgrund dieser Daten sowie publizierter Studien über die Funktion von Sgo2 in Meiose wird postuliert, dass der Sgo2-Mad2-Wechselwirkung eine Funktion in der Monoorientierung von Schwesterkinetochoren während der ersten Reifeteilung zukommt.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
In dieser Arbeit wurde die biologische Funktion der PTP-Meg2 in der zellulären Signaltransduktion untersucht. Analysen mittels c-DNA-Filter, „Real Time PCR” und Immunblot zeigen eine ubiquitäre Expression der PTP-Meg2 auf ähnlichem, jedoch geringem Niveau in fast allen untersuchten Krebszelllinien unterschiedlicher Gewebeherkunft, wobei die Expressions-stärke nicht in direktem Zusammenhang mit krebsrelevanten Eigenschaften wie Invasivität und Metastasierung steht. Die induzierte Differenzierung von MCF 7-Zellen durch Natriumbutyrat steigert die Meg2-Expression um das 5-fache, wogegen die Differenzierung von SW948- und SK-N- SH-Zellen mit TPA bzw. Retinolsäure die Meg2-Expression reprimiert. Zellfraktionierung und Immunfluoreszenz zeigen eine primär zytosolische, aber partiell auch vesikuläre bzw. strukturierte Lokalisation der PTP-Meg2, für welche die CRALBP-Domäne der PTP-Meg2 mitverantwortlich ist. Untersuchungen der endogenen Meg2-Aktivität nach Immunpräzipitation und in vitro Phosphatasetests zeigen eine erhöhte Phosphataseaktivität nach Stimulation von Zellen mit FCS, EGF und LPA, wogegen TPA stark inhibierenden wirkt. Aktivitätsstudien mit GST-Meg2-Fusionsproteinen zeigen, dass die CRALBP-Domäne die Meg2-Phosphataseaktivität negativ reguliert. Im Protein-Lipid-Overlay interagiert PTP-Meg2 mit PI(3)P, PI(4)P, PI(5)P und Phosphatidylserin. Eine Interaktion mit PI(4)P führt zu einer erhöhten Meg2 Aktivität. Pervanadat-Stimulation von Zellen führt zu einer Tyrosinphosphorylierung sowie einer Mobilitätsänderung der PTP-Meg2, was auch mit einer katalytisch inaktiven Meg2-Mutante beobachtet wurde. PTP-Meg2 interagiert in vitro und in Koexpressionsstudien mit dem EGF-Rezeptor in Abhängigkeit von dessen Aktivierung. Eine physiologische Relevanz konnte nicht gezeigt werden. Die Depletion der PTP-Meg2 durch spezifische siRNA führt zu einer erhöhten Tyrosinphosphorylierung einiger, noch zu identifizierender Proteine. PTP-Meg2 vermindert, die inaktive PTP-Meg2CS-Mutante erhöht die durch v-ErbB und EGF-Rezeptor, nicht aber die durch HER2 und v-Ki-Ras induzierte Transformation von NIH3T3-Zellen im Focusbildungstest. Zudem bewirkt PTP-Meg2CS, mit Ausnahme der v-Ki-Ras infizierten Zellen, eine leicht erhöhte ERK1/2-Aktivität. Ferner stimuliert PTP-Meg2 die Migration von NIH3T3-Zellen im Wundheilungsexperiment. Ein Einfluss auf die basale und durch Stimuli induzierte Proliferation von Zellen in Wachstumstests wurde nicht beobachtet. Ein durch siRNA-vermittelter Meg2- „knockdown“ führte zur Induktion bzw. Repression der Expression von Genen, wie z.B. einiger Liganden, Caveolin-2, Nck und Rock, was auf eine Beteiligung der PTP-Meg2 an der Regulation von Signalwegen kleiner GTPasen bzw. von endo- sowie exocytotischen Prozessen schließen lässt.