POPULARITY
Zu Ehren Rudolf Virchows - Wir alle sind aus Zellen gemacht. Genau um diese kleinste Einheit unseres Körpers dreht sich die folgende Quadrologie. In dieser Folge soll es quasi um die wichtigste Zutat zur Zellneuschöpfung gehen: Die Verdopplung der DNA. Wie viele Seiten ihr pro Stunde kopieren müsstet, um diesen Prozess zu vollziehen und viele spannende, wie auch witzige Facts gibts hier! (00:00) - Einführung und Grundlagen (12:11) - Initiation (17:14) - Elongation und Termination (35:48) - Hemmstoffe Für die Inhalte in diesem Podcast übernehmen wir keine Gewähr. Der Podcast kann den Besuch von Vorlesungen nicht ersetzen. Wir empfehlen das Studium von einschlägiger Fachliteratur über den Inhalt des Podcasts hinaus.
Turtlezone Tiny Talks - 20 Minuten Zeitgeist-Debatten mit Gebert und Schwartz
Mit enormen Investoren-Geldern arbeiten weltweit zahlreiche Unternehmen an der Forschung zum Homo Sapiens 2.0 - insbesondere in der Neurotechnologie und an Brain-Machine-Interfaces. Eines der Unternehmen gehört Elon Musk, der sich durchaus auch über ethische Aspekte Gedanken macht. Dennoch entstehen bereits Verschwörungstheorien, die ihn in eine Reihe mit Gates und Soros stellen und die Neurotechnologie als Teil eines gefährlichen Masterplanes sehen. Aber auch auch ganz ohne "Aluhut" bleibt die Frage: Münden die verschiedenen, kommerziell getriebenen Entwicklungen zu BMIs oder auch zu Gen-Manipulation und DNA-Replikation in ein Horrorszenario oder überwiegt der Vorteil für den Mensch und lassen sich rechtzeitig ethische und rechtliche Rahmenbedingungen schaffen? Eine spannende Debatte, die aktueller ist als es scheint. Denn die Forschung am Homo Sapiens 2.0 ist längst kein Science Fiction mehr.
Nach der Schule weiß man zwar wie die DNA- Replikation funktioniert und wie man Gedichte auf 3 verschiedenen Sprachen analysiert- doch weiß man überhaupt wie leben funktioniert ?
Folge 037 - DNA Replikation | Terminationsphase | Genetik Teil 9 Show Notes: Bitte unterstützt den Biologie Passion Podcast finanziell ➤ paypal.me/biologiepassionpdcst Hier gehts zum zugehörigen Blogartikel auf meiner Webseite. Wenn dir die Podcastfolge gefallen hat, würde mich eine kurze Bewertung auf iTunes freuen. Trag dich in meinen Newsletter ein, wenn du über neue Podcastfolgen informiert werden willst. Vielen Dank fürs Zuhören!
Folge 037 - DNA Replikation | Terminationsphase | Genetik Teil 9 Show Notes: Trag dich in meinen Newsletter ein, wenn du über neue Podcastfolgen informiert werden willst!
Folge 036 - DNA Replikation | Elongationsphase | Genetik Teil 8 Show Notes: Trag dich in meinen Newsletter ein, wenn du über neue Podcastfolgen informiert werden willst!
Folge 036 - DNA Replikation | Elongationsphase | Genetik Teil 8 Show Notes: Bitte unterstützt den Biologie Passion Podcast finanziell ➤ paypal.me/biologiepassionpdcst Hier gehts zum zugehörigen Blogartikel auf meiner Webseite. Wenn dir die Podcastfolge gefallen hat, würde mich eine kurze Bewertung auf iTunes freuen. Trag dich in meinen Newsletter ein, wenn du über neue Podcastfolgen informiert werden willst. Vielen Dank fürs Zuhören!
Folge 035 - DNA Replikation | Initiationsphase | Genetik Teil 7 Show Notes: Bitte unterstützt den Biologie Passion Podcast finanziell ➤ paypal.me/biologiepassionpdcst Hier gehts zum zugehörigen Blogartikel auf meiner Webseite. Wenn dir die Podcastfolge gefallen hat, würde mich eine kurze Bewertung auf iTunes freuen. Trag dich in meinen Newsletter ein, wenn du über neue Podcastfolgen informiert werden willst. Vielen Dank fürs Zuhören!
Folge 035 - DNA Replikation | Initiationsphase | Genetik Teil 7 Show Notes: Trag dich in meinen Newsletter ein, wenn du über neue Podcastfolgen informiert werden willst!
In der heutigen Folge beschäftigen wir uns mit Immunerkrankungen, Ratten auf Drogen, der Geschwindigkeit der DNA Replikation und dem Nobelpreisträger Richard Zsigmondy.
Hvad sker der med DNA, når cellen skal dele sig? Bliv klogere på det og de processer, der ligger bag når der skal syntetiseres nyt DNA: Den proces vi kalder DNA-replikation. På ca. et kvarter når Katrine og Kim omkring nukleotider, Okazakifragmenter, lagging- og leading strand syntese.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06
Durch Fehler entstandene tetraploide Zellen sind chromosomal instabil und können zu Zelltransformation führen. Die Beweise verdichten sich, dass die Propagation von tetraploiden Säugetierzellen durch einen p53-vermittelten Arrest eingeschränkt wird; jedoch ist weiterhin unklar, was die Ursache dieses p53-vermittelten Arrests ist. Um die Ursache des p53-vermittelten Arrests zu identifizieren, wurden individuelle Zellen mittels zeitraffender Mikroskopie in Echtzeit verfolgt. Neu entstandene tetraploide Zellen können einen Zellzyklus vollenden, aber die Mehrzahl der Zellen starb oder verharrte in einem Arrest in der folgenden G1-Phase, abhängig davon ob die vorangegangene Mitose fehlerfrei verlief oder nicht. Tochterzellen, denen eine fehlerhafte Mitose voranging, akkumulierten p53 im Zellkern, was zum Zelltod oder einem irreversiblen Zellzyklusarrest führte. Es zeigte sich durch den Anstieg von 8-OHdG, einem Indikator für oxidative DNA Schädigung, dass tetraploide Zellen durch die vermehrten fehlerhaften Mitosen höheren Konzentrationen von reaktiven oxidativen Spezien (ROS) ausgesetzt sind. Der Anstieg von 8-OHdG korrelierte mit der p53-Akkumulation im Zellkern. Da keine vermehrte Phosphorylierung des Histons H2AX (γ-H2AX), ein Marker für DNA-Strangbrüche, detektiert wurde, lässt sich schlussfolgern, dass ROS entscheidend für den p53 vermittelten Arrest verantwortlich sind. Mehrere p53-aktivierende Kinasen wurden mittels RNA Interferenz (RNAi) und chemischer Genetik untersucht, ob sie einen Einfluss auf den Zellzyklusarrest von tetraploiden Zellen haben. Von den getesteten Kinasen hatte nur ATM einen Einfluss auf die Aktivierung von p53 nach fehlerhaften tetraploiden Mitosen. Zwar wird ATM in der Regel durch DNA-Schäden aktiviert, jedoch wurde bereits zuvor gezeigt, dass ATM auch durch erhöhte ROS Konzentrationen aktiviert werden kann. Um die Zusammenhänge des Zellzyklusarrests weiter aufzuklären, wurde ein genomübergreifender esiRNA Screen etabliert, der die Zellproliferation nach induzierter Tetraploidisierung analysiert. Durch Kombination der Zellzyklusanalyse an Hand des DNA-Gehalts zusammen mit den FUCCI-Zellzyklusindikatoren, konnten tetraploide und diploide Zellen nebeneinander mikroskopisch analysiert werden, ohne zuvor tetraploide und diploide Zellen isolieren zu müssen. Dieser neue experimentelle Ansatz ermöglichte die Identifikation von Genen, die spezifisch die Proliferation von tetraploiden Zellen verstärken oder einschränken Im Primärscreen wurden 1159 Gene identifiziert, deren Inhibition die Proliferation einschränken. Weiter wurden 431 Gene identifiziert, deren Inhibition die Proliferation der tetraploiden Zellen verstärken. Von den 431 Genen, deren Inhibition die Proliferation verstärken, wurden 371 Gene einem Konfirmationsscreen unterzogen, in dem 158 der identifizierten 371 Gene bestätigt wurden. Die bioinformatische Analyse der 158 Gene zeigte eine signifikante Anhäufung von Genen, die mit DNA-Replikation, dem kanonischen Wnt-Signalweg oder mit Tumorsignalwegen assoziiert sind. Unter letzteren ist CCDC6 sehr interessant, da dessen Genprodukt durch ATM phosphoryliert wird und nachgeschaltet den Tumorsuppressor 14-3-3σ reguliert. Des weiteren wurden mittels einer Meta Analyse der Ergebnisse des Primärscreens, zusammen mit den Daten aus dem “Project Achilles”, welches genomweit den Effekt von shRNA-vermittelter Geninhibition auf die Proliferation von 108 Krebszelllinien untersuchte, 18 Gene identifiziert, deren Inhibition sowohl die Proliferation von tetraploiden Zellen einschränkt, als auch die Proliferation von Zelllinien hemmt, welche von Krebsarten stammen, die zu meist chromosomale Instabilitäten (CIN) aufweisen. Damit bilden die präsentierten Daten nicht nur eine gute Basis zur Aufklärung des Zellzyklusarrests tetraploider Zellen, sondern auch für die Identifikation neuer potentieller Zielmoleküle, welche benutzt werden können um Tumorerkrankungen mit chromosomaler Instabilität zu behandeln, welche häufig resistent gegen die bislang verfügbaren Behandlungen sind.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Wed, 11 Feb 2009 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/9762/ https://edoc.ub.uni-muenchen.de/9762/1/Baltin_Jens.pdf Baltin, Jens ddc:570, ddc:500, Fakultät für Biolo
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Während der Zellproliferation müssen Zellwachstum und Zellteilung koordiniert werden. Die Kopplung erfolgt in der Hefe durch einen Komplex aus Nop7p, Erb1p und Ytm1p, der sowohl an der Ribosomenbiogenese als auch an der Kontrolle der DNA-Replikation beteiligt ist. Die homologen Proteine Pes1, Bop1 und WDR12 werden in Säugern von Zielgenen des Transkriptionsfaktors c-Myc, einem zellulären Onkoprotein, kodiert. In dieser Arbeit wurde die Existenz eines evolutionär konservierten Komplexes aus Pes1, Bop1 und WDR12 (PeBoW-Komplex) in Säugern belegt. Dabei wurde gezeigt, dass Bop1 als zentrales Protein des Komplexes agiert und die Interaktion von Pes1 und WDR12 vermittelt. Die Integrität des Komplexes ist wesentlich für seine Funktion. Die Depletion einzelner Komponenten sowie die Überexpression des integrierenden Proteins Bop1 hemmen die Reifung der Vorläufer-rRNA der großen ribosomalen Untereinheit sowie die Proliferation der Zellen. Bop1-Überexpression führt zur Ausbildung von zwei Subkomplexen aus Bop1 und Pes1 bzw. Bop1 und WDR12. Während der Bop1/Pes1-Subkomplex als Teil der pre-Ribosomen im Nukleolus lokalisiert, wird WDR12 durch Bop1-Überexpression im Zytoplasma gehalten und fehlt im Nukleolus zur Ausbildung eines funktionellen PeBoW-Komplexes. Pes1 und WDR12 können unabhängig in den Nukleolus translozieren, während Bop1 dafür die Interaktion mit Pes1 benötigt. Untersuchungen zur Stabilität der einzelnen PeBoW-Komponenten zeigten, dass monomeres Bop1 extrem instabil ist, durch Inkorporation in den PeBoW-Komplex aber vor Abbau geschützt wird. Möglicherweise werden hierdurch interne PEST-Sequenzen in Bop1 maskiert. Die Menge an Bop1 ist somit abhängig von der Anwesenheit von Pes1 und WDR12. Die gegenseitige Abhängigkeit der Stabilität aller drei PeBoW-Komponenten konnte in weitergehenden Experimenten gezeigt werden. Schließlich wurde untersucht, ob der PeBoW-Komplex die Ribosomenbiogenese mit der DNA-Replikation über Interaktion mit dem ORC-Komplex, wie in der Hefe beschrieben, koordiniert. Mit Hilfe der BiFC-Methode konnte eine Interaktion von Pes1 mit Orc6, eines Faktors des ORC-Komplexes, gezeigt werden. Die koordinierende Funktion des PeBoW-Komplexes für Zellwachstum und Zellproliferation scheint von der Hefe bis zum Menschen stark konserviert zu sein.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
Für den antiproliferativen Effekt der Kombinationstherapie aus UVA-Strahlung mit dem Furocoumarin Psoralen (PUVA) wird die Ausbildung von Doppelstrangvernetzungen (Interstrand Cross Links, ICL) verantwortlich gemacht. Unklar war, ob der PUVA-induzierte Zellzyklusarrest durch Doppelstrangvernetzungen, die die Replikationsgabeln mechanisch behindern, oder durch die Aktivierung von Zellzykluscheckpoints ausgelöst wird. Zellzykluscheckpoints garantieren die Stabilität des Genoms, indem sie die Zellzyklusprogression soweit verlangsamen oder anhalten, dass die Replikation von aufgetretenen DNA-Schäden oder Fehlverteilungen von Chromosomen verhindert werden kann. Die vorliegende Arbeit zeigt, dass HaCaT-Keratinozyten durch PUVA-Exposition mit S-Phase-DNA-Gehalt arretiert werden. Zellen, die die DNA-Replikation bereits abgeschlossen hatten, waren von der PUVA-Exposition unbeeinträchtigt und durchliefen die Mitose. Zellen, die während der G1-Phase PUVA exponiert worden waren, durchquerten die G1-Phase und arretierten erst in der frühen S-Phase. PUVA induzierte eine schnelle Phosphorylierung der Chk1-Checkpointkinase an Serin 345, die mit einer Abnahme von Cdc25A einherging. Die Chk1-Phosphorylierung, die Abnahme von Cdc25A und der S-Phase-Arrest konnten durch Koffein aufgehoben werden. Dies lieferte den Beweis, dass die Aktivierung von Checkpointsignalkaskaden und nicht eine passive, mechanische Blockierung durch DNA-Doppelstrang-vernetzungen für den PUVA-induzierten Replikationsarrest verantwortlich ist. Die Überexpression von Cdc25A konnte den S-Phase-Arrest nur zum Teil aufheben, woraus sich folgern lässt, dass die Aktivierung von zusätzlichen Signalwegen an der Ausbildung des PUVA-induzierten S-Phase-Arrests beteiligt ist.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Die plastidäre DNA höherer Pflanzen wird allgemein als zirkuläres Molekül von der Größe eines Monomers beschrieben. Die DNA-Replikation soll von einem Paar Replikationsursprünge ausgehen. Mittels theta- (displacement loop) und sigma-Replikation (rolling circle) würden aus zirkulären Ausgansprodukten erneut zirkuläre Produkte entstehen. In Nicotiana tabacum sollen diese Mechanismen auf zwei beschriebenen Replikationsursprüngen beruhen: oriA und oriB. In früheren Arbeiten wurde bereits gezeigt, dass oriA nicht essentiell ist, aber vermutet, dass eine Kopie des oriB unverzichtbar sei. Mittels Plastidentransformation wurde jetzt auch gezeigt, dass plastidäre DNA-Replikation auch erfolgt, wenn beide Kopien des oriB inaktiviert sind. In weiteren Experimenten konnten in einer Linie drei der vier Ori deletiert werden. Untersuchungen mittels Pulsfeldgelelektrophorese und Southern-Analysen zum Replika-tionsmechanismus wiesen auf lineare ptDNA-Moleküle mit definierten Enden hin. Eine mögliche Erklärung für diese Enden wäre, dass diese an der Position von Replikationsursprüngen liegen. Tatsächlich wurde eine entsprechende Korrelation mit oriA – und weniger deutlich – mit oriB gefunden. Andere Enden liegen auf Positionen, auf denen in Chlamydomonas reinhardtii, Glycine max, Oenothera elata ssp. hookeri, Oryza sativa und Zea mays Replikationsursprünge beschrieben wurden. Dazu kommen noch weitere mögliche Replikationsursprünge. Die Mechanismen der plastidärer DNA-Replikation werden basierend auf diesen neuen Ergebnissen und neuen Erkenntnissen in der Literatur diskutiert.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Eine akkurate DNA-Replikation ist notwendig, um die Stabilität der genetischen Information zu gewährleisten. Dieser Prozess wird durch DNA-Läsionen erschwert, die durch eine Vielzahl von Ursachen entstehen und häufig nicht vor dem Erreichen der S-Phase repariert werden können. Nicht nur kann durch Läsionen geschädigte DNA häufig nicht dupliziert werden, angehaltene Replikationsgabeln können auch zusammenbrechen und so zu DNA-Strangbrüchen führen. Die Funktion des RAD6-pathways liegt darin, die Umgehung (Bypass) von DNA-Läsionen während der Replikation zu ermöglichen, wodurch eine Toleranz gegenüber Schädigungen der DNA erreicht wird. In dieser Arbeit wurde die Regulation des RAD6-vermittelten Bypass von DNA-Läsionen durch posttranslationale Ubiquitin- und SUMO-Modifikationen des Replikationsfaktors PCNA untersucht. PCNA bildet einen trimeren Ring um die DNA und verstärkt durch Bindung der replikativen Polymerase deren Assoziation zur DNA und somit die Prozessivität der Replikation. Als DNA gebundener Faktor des Replikations-komplexes ohne katalytische Aktivität ist PCNA ideal geeignet, um durch seine Modifikation Replikations-assoziierte Prozesse zu regulieren. Die Ubiquitinierung von PCNA durch Enzyme des RAD6-pathways erfolgt als spezifische Antwort auf DNA-Läsionen während der Replikation und ermöglicht deren Bypass. Dabei bewirken unterschiedliche Ubiquitin-Modifikationen verschiedene Arten des Bypass. Die Mono-Ubiquitin-Modifikation führt zum Einsatz von speziellen Transläsions-Polymerasen, die eine größere Toleranz für geschädigte DNA haben, aber auch für die Entstehung von Mutationen verantwortlich sind. Einen mechanistisch anderen Bypass von DNA-Schäden bewirkt die Modifikation von PCNA mit einer Lysin K63-verknüpften Multi-Ubiquitinkette. Für diesen wird wahrscheinlich der neureplizierte, unbeschädigte Schwester-Strang als Vorlage benutzt. Unabhängig von Schädigungen der DNA wird PCNA während der S-Phase zusätzlich mit dem ubiquitin-ähnlichen Protein SUMO modifiziert. Dies führt zu einer Interaktion mit der Helikase Srs2, die als Antagonist zu dem zentralen Rekombinationsprotein Rad51 wirkt. Dadurch wird spezfisch die homologe Rekombination zwischen Schwesterchromatiden an der Rekombinationsgabel inhibiert, nicht jedoch andere Rekombinationsereignisse, wie. z.B. Rekom-bination zwischen homologen Chromosomen. Deshalb ist es wahrscheinlich, dass spezifisch die Replikationsgabel durch PCNA-SUMO-Srs2 geschützt wird, um schädliche Rekombination oder Rekombinationsstrukturen zu vermeiden, die mit Replikations-assoziierten Prozessen interferieren. Ubiquitin- und SUMO-Modifikation regulieren demnach unabhängige Prozesse. Interessanterweise haben diese aber eine verwandte Funktion im Bypass von DNA-Läsionen während der Replikation. Die Inhibition der Schwesterchromatid-Rekombination durch PCNA-SUMO-Srs2 lenkt den Bypass von DNA-Läsionen in einen durch PCNA-Ubiquitinierung gesteuerten Mechanismus.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19
Die Organisation der DNA in Nukleosomen hat einen großen Einfluss auf die Regulation von grundliegenden Prozessen wie Transkription, Replikation oder Reparatur der DNA im Zellkern. Um die hinderliche Natur des Chromatins bei diesen fundamentalen Prozessen zu überwinden, existieren mehrere verschiedene Chromatin modifizierende Proteinkomplexe im Zellkern. Chromatin Remodelling Komplexe nützen die Energie der ATP-Hydrolyse um die Position der Nukleosomen so zu verändern, dass verschiedene Abschnitte der DNA für die Interaktion mit regulierenden Faktoren zugänglich werden. Ein Klasse solcher Remodelling Faktoren beinhalten die ATPase ISWI als katalytische Untereinheit. Das Protein wurde zuerst in Drosophila entdeckt und die drei verschiedenen ISWI enthaltenden Komplexe, nämlich NURF, ACF und CHRAC, wurden ausführlich in diesem Modellorganismus untersucht. Homolog zur Fruchtfliege existieren sehr ähnliche Protein Komplexe beim Menschen. Wir haben das humane ISWI mit den Isoformen Snf2h und Snf2L im Prostatakarzinom untersucht. In einem Tissue Microarray wurden Gewebeproben mit Hilfe von polyklonalen Antikörpern gegen ISWI gefärbt. Es folgte ein quantitativer Vergleich der Färbungsintensitäten im Karzinomgewebe sowie in gutartigem Gewebe der Prostata durch Anwendung von digitaler Bildanalyse. Das Ergebnis war eine signifikant stärkere Färbung im neoplastischen Gewebe. Eine Anreicherung von ISWI in Krebszellen ist besonders interessant im Kontext der bekannten Funktionen des Proteins für DNA-Replikation, Zellproliferation und Regulation der Chromatinstruktur. In einem zweiten Projekt sind wir zum Modell der Fruchtfliege zurückgekehrt und entwickelten monoklonale Antikörper gegen Toutatis, das zu einer Proteinfamilie gehört, die auch einige bekannte Interaktionspartner von ISWI umfasst. Die Proteine dieser Familie haben vermutlich eine regulatorische Funktion in den Remodelling Komplexen, denn am Beispiel von Acf1 wurde gezeigt, dass sie die nukleosomale Bindung sowie die Effizienz und Richtung der Mobilisierung von Nukleosomen modifizieren. Unsere Antikörper wurden etabliert, um Toutatis enthaltende Komplexe durch Western Blot Analyse von gereinigten Drosophila-Extrakten und Immunfluoreszenz zu charakterisieren. Mit diesen Methoden fanden wir eine Koelution von Toutatis mit der ATPase Brahma und dem Strukturprotein Spectrin alpha sowie eine Lokalisation in der Lamina des Zellkerns. Ein mögliches Zusammenspiel dieser Proteine in einem neuen Chromatin Remodelling Komplex mit einer Beteiligung an der DNA-Reparatur wird diskutiert.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
In der vorliegenden Arbeit wurden verschiedene Fragestellungen zur funktionellen und dynamischen Organisation des Kerns von Säugerzellen untersucht. Der erste Teil der Arbeit widmete sich der Frage, in welchem Zusammenhang die Synthese naszenter RNA mit der Organisation des Chromatins im Zellkern steht. Dabei wurde speziell untersucht, ob naszente RNA bevorzugt in chromatinarmen Räumen lokalisiert, wie es das Chromosomen-Territorien/Interchromatin-Kompartiment Modell (CT/IC-Modell)(Cremer und Cremer, 2001) vorhersagt. Diese Untersuchungen wurden an HeLa-Zellen durchgeführt, die stabil eine Fusion zwischen dem „Green Fluorescent Protein” (GFP) und dem Histon H2B exprimierten (Kanda et al., 1998). Mit Hilfe dieses Fusionsproteins kann die Chromatinstruktur sehr gut dargestellt werden (Sadoni et al., 2001; Zink et al., 2003). Die naszente RNA wurde in diesen Zellen durch kurze Pulse von BrUTP markiert, das anschließend durch eine Immunfärbung nachgewiesen wurde. Die markierten Zellen wurden mit Hilfe hochaufl ösender konfokaler Laserscanning Mikroskopie aufgenommen. Für die Analyse der Bilddaten wurde eine Erosionsmethode entwickelt, welche die Auswertung der Daten unabhängig von subjektiv gewählten Schwellenwerten ermöglichte. Die Ergebnisse dieser Analysen zeigten keine bevorzugte Lokalisierung naszenter RNA in chromatinarmen Bereichen. Damit stützen die Ergebnisse nicht die entsprechenden Vorhersagen des ICD-Modells. Die hier gewonnenen Ergebnisse stehen nicht im Einklang mit den Ergebnissen anderer Studien (Politz et al., 1999; Verschure et al., 1999). Die unterschiedlichen Ergebnisse sind wahrscheinlich auf unterschiedliche Methoden zur Darstellung der Chromatinorganisation, beziehungsweise auf unterschiedliche Methoden zur Bildanalyse zurückzuführen. Eine weitere Fragestellung, die im Zusammenhang mit der dynamischen Organisation der RNA-Synthese und RNA-Prozessierung in der vorliegenden Arbeit untersucht wurde, war wie das Spleißfaktor-Kompartiment mit Chromatin interagierte. Diese Interaktion sollte in lebenden „Chinesischen Hamster Ovarien” (CHO)-Zellen untersucht werden. Speziell sollte der Frage nachgegangen werden, ob das Spleißfaktor-Kompartiment unterschiedlich mit funktionell unterschiedlichen Chromatinfraktionen assoziiert ist. Dafür wurde die DNA dieser Chromatinfraktionen mit Hilfe von Cy3-dUTP (Zink et al., 1998; Zink et al., 2003) spezifisch markiert. Das Spleißfaktor-Kompartiment der lebenden Zellen wurde simultan mit einem hier lokalisierenden GFP-Fusionsprotein dargestellt (freundlicherweise zur Verfügung gestellt von Dr. M. C. Cardoso, MDC, Berlin). Die so markierten lebenden Zellen wurden mit Hilfe der konfokalen Laserscanning Mikroskopie aufgenommen. Die Auswertung der Bilddaten ergab eine generelle enge Assoziation des Spleißfaktor-Kompartiments mit früh-replizierendem und transkriptionell aktivem Chromatin. Dagegen bestand eine solche Assoziation nicht mit spät-replizierendem und transkriptionell inaktivem Chromatin. Eine Behandlung der Zellen mit dem Transkriptions-Inhibitor α-Amanitin zeigte, dass die enge Assoziation des Spleißfaktor-Kompartiments mit früh-replizierendem und transkriptionell aktivem Chromatin direkt vom Prozess der Transkription abhängig war. Insgesamt zeigten die Daten zum ersten Mal, dass es in lebenden Zellen eine definierte Interaktion des Spleißfaktor-Kompartiments mit funktionell unterschiedlichen Chromatinfraktionen gibt, die abhängig ist vom Prozess der Transkription. Ein weiterer dynamischer Prozess im Zellkern, der in der vorliegenden Arbeit an lebenden HeLa-Zellen untersucht werden sollte, war der Prozess der DNA-Replikation. Von besonderem Interesse war hierbei die Frage, welchen dynamischen Reorganisationen die DNA während der S-Phase unterliegt. Daneben sollte auch untersucht werden, wie der spezifische zeitlich-räumliche Verlauf der S-Phase in Säugerzellen koordiniert wird. Zur Untersuchung dieser Fragen wurde die zu replizierende oder die naszente DNA lebender Zellen mit fluoreszensmarkierten Nukleotiden dargestellt. Simultan wurde die Replikationsmaschinerie mit Hilfe eines GFP-PCNA Fusionsproteins markiert (freundlicherweise zur Verfügung gestellt von Dr. M. C. Cardoso, MDC, Berlin). Diese Markierungstechniken erlaubten es zum ersten Mal, direkt die Interaktionen von replizierender DNA und der Replikationsmaschinerie zu beobachten und zu analysieren. Die Ergebnisse zeigten, dass die DNA während der S-Phase keine großräumigen Umlagerungen erfuhr. Nur einige lokal begrenzte Reorganisationen wurden beobachtet, die sich innerhalb von Distanzen von weniger als 1 µm abspielten. Die Ergebnisse zeigten ferner, dass DNA in stabile Aggregate organisiert war, die den Replikationsfoci entsprachen. 85 % dieser Aggregate, die auch als subchromosomale Foci bezeichnet werden (Zink et al., 1998), behielten ihren Replikationszeitpunkt von S-Phase zu SPhase stabil bei. Während des zeitlichen Fortschreitens der S-Phase schritt die Replikationsmaschinerie sequentiell durch benachbarte Gruppen von subchromosomalen Foci. Diese besaßen einen definierten Replikationszeitpunkt, und lokalisierten an de- finierten Positionen im Zellkern. Diese Ergebnisse legten nahe, dass die spezifische Anordnung von subchromosomalen Foci im Kern, die während der frühen G1-Phase etabliert wird (Dimitrova und Gilbert, 1999; Ferreira et al., 1997; Sadoni et al., 1999), die räumlich-zeitliche Organisation der S-Phase determiniert.