POPULARITY
Die 5b in Wald in der Schweiz hat mit ihrer Lehrerin Chiara Keist eine tolle Frage geschickt. Die Kinder wollen wissen, warum Menschen im Lauf der Zeit älter werden. Olaf recherchiert und weiß die Antwort.
Die Fotografin Libuše Jarcovjáková hält das Leben und seine Spuren fest wie kaum eine andere. Sie erzählt in dieser Folge, wie sie mit dem Altern umgeht und welche Rolle die Fotografie und das Schreiben dabei spielt. Aber was bedeutet Altern eigentlich? Und warum altern wir überhaupt?In dieser Folge geht's um biologische Seneszenz und um die älteste dokumentierte Person der Welt: Jeanne Calment. Anna stellt dir "Don't Die: Der Mann, der unsterblich sein will”, eine Netflix-Doku über einen Mann, der das Altern unbedingt aufhalten will.Wie gefällt dir Jeannes Varieté? Wie gehst du mit dem Altern um?Schreib mir per E-Mail an jeanne@ohwow.eu oder auf Instagram an @jeanne_drach! Abonniere den Jeannes Varieté Newsletter: ohwow.eu/newsletter.Links zur FolgeWebsite von Libuše JarcovjákováLibuše Jarcovjáková auf InstagramI'M NOT EVERYTHING I WANT TO BE von Karla Tašovská auf MUBIKIDS N CATS – “Germany” auf Youtube“Dont Die: Der Mann, der unsterblich sein will” auf NetflixWie die Enden der Chromosomen die Zellalterung beeinflussen – Uni HeidelbergHundert wird bald jeder – Max Planck GesellschaftJeanne Calment: Validation of the Duration of Her LifeWas Jeanne Calment the Oldest Person Who Ever Lived—or a Fraud? – New YorkerIn dieser Folge haben mitgewirkt: Jeanne Drach, Anna Muhr, Livia Heisz, Hanna Bergmayr, Ariel Verderber; Trompete: Almut Schäfer-Kubelka. Foto: Christian Zagler. Grafik: Catharina Ballan. Strategische Beratung: Milo Tesselaar.Dieser Podcast wird präsentiert von OH WOW.Ach, und übrigens: wir machen jetzt kurz Pause – weil ich mit Band auf Japan-Tournee bin und dort für dich dann ganz viel Inspiration sammeln werde. Hosted on Acast. See acast.com/privacy for more information.
In dieser Folge spreche ich mit Professor Dr. Lenhard Rudolf vom Leibniz Institut für Altersforschung über die neuste Entdeckung in der Telomerforschung: Das Molekül TAC. In dieser Folge sprechen wir über: Was sind Telomere und wie können sie unsere Chromosomen schützen? Wie hängt die Telomerlänge mit dem biologischen Alter und der Lebenserwartung zusammen? Warum werden die Telomere im Alter kürzer und betrifft das alle Telomere? Wie könnte das neu entdeckte Molekül nun helfen, die Telomere zu verlängern und so die Chromosomen zu schützen? Weitere Informationen zu Prof. Dr. Rudolf und seinem Forschungsteam findest du hier: https://www.leibniz-fli.de/de/forschung/forschungsgruppen/rudolph Du interessierst dich für Gesunde Langlebigkeit (Longevity) und möchtest ein Leben lang gesund und fit bleiben, dann folge mir auch auf den sozialen Kanälen bei Instagram, TikTok, Facebook oder Youtube. https://www.instagram.com/nina.ruge.official https://www.tiktok.com/@nina.ruge.official https://www.facebook.com/NinaRugeOffiziell https://www.youtube.com/channel/UCOe2d1hLARB60z2hg039l9g Disclaimer: Ich bin keine Ärztin und meine Inhalte ersetzen keine medizinische Beratung. Bei gesundheitlichen Fragen wende dich bitte an deinen Arzt/deine Ärztin. STY-131
Kürzlich wurde bekannt: Die Schweizer Regulierungsbehörde will offenbar noch keine höheren Mobilfunkfrequenzen wie 6G. Die Kantone hatten vor Experimenten mit der Gesundheit von Menschen gewarnt. Der Schweizer Raumplaner und Mobilfunk-Experte Daniel Laubscher hatte zuvor mit dem „Schweizerischen Verein WIR“ zahlreiche baupolizeiliche Anzeigen gegen 5G-Antennen eingereicht. Doch wie ist der plötzliche Sinneswandel der Behörden zu bewerten? Und wie unterscheidet sich 6G von der 5G-Strahlung?
In der Reihe "Evolution & Sex" hörst du die besten BiOfunk-Folgen zu den Themen Evolution und sexuelle Fortpflanzung.Männer und Frauen werden über ihre Chromosomen definiert. XY bedeutet männlich, XX dagegen weiblich. Doch manchmal stimmt diese Regel nicht. Es gibt zum Beispiel auch Männer mit der Kombination XX. Wissenschaftler wollten herausfinden, wie das möglich ist. Und sie beantworteten nicht nur diese Frage, sondern auch eine der großen Fragen der Biologie: Was macht den Mann zum Mann?
#istdochwurschtwiederpodcastheisst #produktivität #biohacking #biohack #corona #coronavirus #biotech #mainz #chicago #filme #serien #buecher #fürimmerschuldig #olympia #olympischespiele #TCR #unsupported #dolceviata #olympia #moneymonster #marcuwekling #ageofadeline
DNA-materiaal kan ontzettend lang bewaard blijven, mits de omstandigheden precies goed zijn. De meest intacte vondsten worden bijvoorbeeld vaak gedaan op plekken waar het materiaal lange tijd onverstoord in extreme kou bewaard is gebleven. Als het goed genoeg bewaard is gebleven kan dat materiaal iets zeggen over de drager ervan, zelfs als diegene, dat plantje, of het dier, tienduizenden jaren geleden leefde. Je kunt het bijvoorbeeld vergelijken met moderne verwanten en kijken wat er evolutionair veranderd is. Nu hebben onderzoekers wel een hele bijzondere ontdekking gedaan: DNA van een mammoet, in 3D vastgevroren op zo'n manier dat de structuur van het chromosoom bewaard is gebleven. En dat geeft ze veel meer informatie dan anders. Weet je de vorm van de chromosomen, dan kun je het hele DNA van een organisme in kaart brengen en zelfs iets zeggen over welke genen er actief waren. In dit geval ging het om DNA uit de huid van een mammoet die zo'n 50.000 jaar geleden moet hebben geleefd in Siberië. Ze konden al snel zien dat het dier evenveel chromosoom paren had, 28, als de moderne olifant. Dat was te verwachten, maar toch: nooit eerder bevestigd op deze manier. De meeste gen-activiteit in de huid van de mammoet leek ook op die van olifanten. Maar niet altijd. Het ging namelijk om een wolharige mammoet. Voor het eerst konden ze precies zien welke genen er verantwoordelijk waren voor het vormen van die haren. Iets anders interessants dat ze konden zien was dat deze oeroude chromosomen qua vorm heel erg lijken op moderne chromosomen. Bijvoorbeeld de ring van DNA en eiwitten in de celkern van bepaalde cellen, een structuur niet groter dan 50 nanometer, pas 10 jaar geleden voor het eerst is gezien in mensen. Einstein voorspelde ooit dat materiaal van deze grootte nooit bewaard zou kunnen blijven, natuurkundig gezien. De onderzoekers wilden dan ook maar al te graag een verklaring vinden voor dit intact gebleven materiaal. Het lijkt erop dat het in een staat verkeert die lijkt op glas. Maar hoe is het in die staat terechtgekomen? Vermoedelijk dankzij onze voorouders. Toen al werd eten soms bewaard voor later. Door een combinatie van uitdrogen en bevriezen. Het stukje huid waar dit DNA uit is gehaald, was waarschijnlijk een stukje mammoet-beef jurky. Iemand was zo slim deze snack te bewaren, zodat wij er nu, tienduizenden jaren later, mee terug in de tijd kunnen kijken. Lees hier meer over het onderzoek: Fossils of ancient chromosomes discovered. See omnystudio.com/listener for privacy information.
Eine Reise ins All ist für Astronaut*innen eine enorme gesundheitliche Belastung. Nun wurde die größte Datensammlung zu den gesundheitlichen Folgen der astronautischen Raumfahrt vorgestellt: Veränderungen gibt es sogar in den Chromosomen der Astronaut*innen.
Zu einer Zeit, als Frauen kaum eine Aussicht auf eine wissenschaftliche Ausbildung hatten, schaffte Nettie Stevens einen wissenschaftlichen Durchbruch in der Biologie. Sie entdeckte um 1905 anhand von Experimenten mit Insekten, dass sich männliche und weibliche Tiere in der Zusammensetzung ihrer Chromosomen im Erbgut unterscheiden. Es war der erste Nachweis, dass die DNA das Geschlecht eines Lebewesens bestimmt. Dabei fand sie heraus, dass das Y-Chromosom das männliche Geschlecht festlegt. Ruhm sollte sie dafür aber nie bekommen. Im Weg stand ihr diese eine Sache: Ihr zweites X-Chromosom! Hier gibt's, kurz erklärt die Mendelschen Regeln: https://bit.ly/3Uitk7E Willkommen zu unserem True Science-Podcast! Wir reden über die absurden, irren, romantischen und verworrenen Geschichten hinter Entdeckungen und Erfindungen. Denn in der Wissenschaft gibt es jede Menge Gossip! Wir erzählen zum Beispiel, wie die Erfinderin des heutigen Schwangerschaftstests mit Hilfe einer Büroklammerbox den Durchbruch schaffte, oder wie eine Hollywood-Schauspielerin den Grundstein für unser heutiges WLAN legte. Immer samstags - am Science-Samstag. Wir, das sind Marie Eickhoff und Luisa Pfeiffenschneider. Wir haben Wissenschaftsjournalismus studiert und die Zeit im Labor schon immer lieber zum Quatschen genutzt. Schreibt uns: podcast@behindscience.de I Instagram: @behindscience.podcast Hinweis: Die Werbung in dieser Folge erfolgt automatisiert. Wir haben keinen Einfluss auf die Auswahl. Vermarktung: Julep Media GmbH | Grafikdesign: Mara Strieder | Sprecherin: Madeleine Sabel | Fotos: Fatima Talalini
Was macht körperliche Fitness mit der eigenen Identität und warum ist „Lifestyle Modification“ ein so mächtiger Bestandteil körperlicher Gesundheit? Diese Folge dreht sich um Fitness, Ernährung und Lifestyle. Lukas's Achillessehne (nicht die Ferse!) ist angeschlagen und Isabel macht sich auf zu Ihrem ersten Tennisturnier nach Kitzbühel! Lukas meint, dass übergewichtige Menschen eigentlich immer am Abnehmen sind und die Beiden unterhalten sich angeregt über Zellteilung, Chromosomen und ob es sich lohnt für Lebenslänge oder Lebensqualität im Leben zu optimieren.
Was taugen Solar-Autos? Und: Strapazierte Astronauten. Ausserdem: Suizide bei Männern verhindern. (0:35) Solar-Autos: Verschiedene Start-Ups versuchen Strom vom Autodach direkt in die Batterie zu bringen. Was bei Solar-Rennautos kein Problem mehr ist, stellt die herkömmliche Autobranche noch vor einige Herausforderungen. Trotz wirtschaftlich schwierigem Umfeld ist die Branche stark in Bewegung. (7:20) Meldungen: Phosphate auf Enceladus. Neue Impfstoffe gegen Kinderlähmung. Steinkauz wieder in der Nordwestschweiz. (12:35) Strapazierte Astronauten Die happigen Gesundheitsrisiken von Astronautinnen und Astronauten werden selten thematisiert. Viele kämpfen gegen den Verlust von Knochen- und Muskelmasse, manche leiden an Anomalien etwa in Chromosomen und eine neue Studie weist nun bei Langzeitaufenthalten auch auffällige Veränderungen im Gehirn nach. Wie verträgt sich das mit monatelangen Einsätzen im All? (18:30) Suizide bei Männern verhindern Drei Viertel aller Menschen, die durch Suizid versterben sind Männer. Sie sprechen selten offen über ihre Probleme und Absichten und lassen sich viel seltener helfen als Frauen. Ein neues Online-Hilfsangebot speziell für Männer soll das nun ändern.
In den Chromosomen sind alle Erbinformationen gespeichert. Mehrere Tausend Gene stecken in ihren Zellkernen. Das ist bei allen Lebewesen so. Der Mensch hat insgesamt nur 46 Chromosomen - eine Krabbe bringt es auf 254. Was macht den Menschen eigentlich zum Menschen? Autorin: Veronika Bräse
Männer und Frauen werden über ihre Chromosomen definiert. XY bedeutet männlich, XX dagegen weiblich. Doch manchmal stimmt diese Regel nicht. Es gibt zum Beispiel auch Männer mit der Kombination XX. Wissenschaftler wollten herausfinden, wie das möglich ist. Und sie beantworteten nicht nur diese Frage, sondern auch eine der großen Fragen der Biologie: Was macht den Mann zum Mann? Weitere Infos auf www.BiOfunk.net
Sie hat die Genforschung vorangebracht wie nur wenige Menschen: In einer Zeit, als die klassische Genetik annahm, dass sich Gene auf Chromosomen aufreihen wie Perlen auf einer Schnur, fand die Forscherin heraus, dass es mobile Gene gibt, die ihre Position im Erbgut verändern können. Barbara McClintock erntete für ihre Entdeckung der "springenden Gene" zunächst eisiges Schweigen. Erst viel später bekam sie 1983 den Nobelpreis. Autorin: Steffi Tenhaven Von Steffi Tenhaven.
Schmude, Magdalenawww.deutschlandfunk.de, Forschung aktuellDirekter Link zur Audiodatei
Buddhismus im Alltag - Der tägliche Podcast - Kurzvorträge und meditative Betrachtungen - Chan - Zen
Spermidin Spermidin ist ein natürlich vorkommender Stoff, es wurde erstmals in männlicher Samenflüssigkeit entdeckt, woher der Stoff seinen Namen hat. Spermidin ist in allen Körperzellen zu finden ist, es soll nach verschiedenen Forschungen besonders das Altern der Zellen verlangsamen, es trägt dazu bei die Zellen vor Überbeanspruchung zu schützen. Über unsere Nahrung nehmen wir Spermidin hauptsächlich aus Käse oder aus Pilzen auf, aber auch in Sojabohnen und Sprösslingen findet sich ein hoher Spermidin-Anteil, Hülsenfrüchte sind ebenfalls verlässliche Lieferanten. Auch kann Spermidin im Darm von besonderen Bakterien ausgestossen werden. Andere Forschungen haben ergeben, dass Spermidin Haarausfall mindert und das Herz schützt. Wenn wir Menschen altern werden zelluläre Reinigungsprozesse nicht mehr richtig durchgeführt, da diese in fortgeschrittenem Alter nicht mehr aufgeräumt werden, was die Zellen "vermüllen" läßt, aber durch Zugabe der Substanz Spermidin wieder in Schwung gebracht werden kann. Da im Alter die Konzentration von Spermidin in den Zellen abnimmt muss es künstlich zugefügt werden, um diesen Aufräumvorgang zu gewährleisten. Besonders die bei älteren Menschen angegriffenen Organe lassen sich so wieder regenerieren, was sich gerade durch Tierversuche mit Mäusen zeigte (ich lehne jede Art von Tierversuch im Übrigen strikt ab). Forscher haben die Wirkung von Spermidin an älteren Mäusen untersucht, den Tieren über Monate Spermidin verabreicht, die im Vergleich zu unbehandelten Tieren auffällige Anti-Aging-Effekte zeigten. Besonders Tiere mit angegriffenen Herzen konnten sich zum Teil vollständig erholen, auch hatten die Tiere seltener Schädigungen der Nieren und der Leber. Da unsere Funktionen den Mäusen sehr ähnlich sind drängen sich jedenfalls Vergleiche zur Alterung des Menschen auf. Ausserdem war auffällig, dass die für ältere Mäuse typischen kahlen Stellen auf dem Rücken seltener wurden, was darauf hinweist, dass der Haarausfall mit einer Unterversorgung mit Spermidin einhergeht. Gerade Männer (aber auch betroffene Frauen) sollten ab ca. 50 Lebensjahren schon der Glatzenbildung vorbeugend Spermidin als Nahrungsergänzungsmittel einnehmen. Ausserdem soll nach diesen Forschungen Spermidin vor zu starkem Abbau an den Enden der Chromosomen bewahren, was ansonsten (ohne Zufuhr von Spermidin) zu einem übermäßigen Verlust von Körperzellen führen würde. Mit Spermidin läßt sich der sogenannte programmierte Zelltod (die Zellen teilen sich nach einer bestimmten Zeit nicht mehr) hinausschieben, durch die Zugabe von Nahrungsergänzungsmittel kann der Alterungsprozess hinausgeschoben werden. Es stellt sich immer die Frage, in welcher Qualität das Leben gelebt wird. Nach Buddha haben wir die gefühlte Notwendigkeit, den Körper als unser Vehikel anständig zu behandeln. Durch die Zugabe von Spermidin lassen sich altersbedingte Krankheiten verringern oder verschieben (Lebensqualität). Der Weg ist das Ziel! Alles Geschaffene ist vergänglich - Buddha - Ehrenname des Siddharta Gautama - 560 bis 480 vor dem Jahr Null Copyright: https://shaolin-rainer.de Bitte laden Sie sich auch meine App "Buddha-Blog" aus den Stores von Apple und Android.
Katja de Bragança verteilt Ohrenküsse. Besser gesagt die Menschen, mit denen sie arbeitet. Sie alle haben das Down-Syndrom und schreiben über ihre Welt und ihre Erfahrungen. In die taucht Katja de Bragança ein, wenn sie mit ihnen am Magazin "Ohrenkuss" arbeitet - und wenn sie als Humangenetikerin über die Menschen forscht, die statt 46 Chromosomen 47 haben. "Eins zu Eins. der Talk" zum Welt-Down-Syndrom-Tag. Moderation: Anja Scheifinger
In der dritten Folge zu Evolution geht es um Sex, oder besser gesagt um sexuelle Fortpflanzung. Wir klären warum sich diese im Laufe der Evolution entwickelt hat, welche Vorteile und auch Nachteile Sex haben kann. Am Schluss gibt es noch einen bunten Exkurs in die Welt der Geschlechtsbestimmung und erklären was den Clownfisch und das Schnabeltier so besonders machen.
Heute gehen wir noch einmal ganz viele Schritte zurück und werfen einen Blick auf die Chromosomen und die DNA.
Gesund, schlank, entspannt, erfolgreich. Dein Podcast für ein erfülltes und erfolgreiches Leben.
In diesem Podcast geht es um das „Altern“ der Zellen. In Deinem 25. Lebensjahr befindest Du Dich auf dem Gipfel Deiner Zellgesundheit. Ab dem Zeitpunkt geht es stetig „bergab“, WENN Du nicht gegensteuerst. Krankheit im Alter ist kein Zufall. Biologen sprechen hier vom Verlust der Zellfunktion. Diesem Verlust kannst Du entgegenwirken. Es gibt ganz viele verschiedene Möglichkeiten: Ein Punkt ist z.B. die körpereigenen Telomere (sind die Schutzkappen unserer Chromosomen und spielen im Alterungsprozess eine zentrale Rolle) zu erhalten, durch weniger freie Radikale im Körper. Weniger freie Radikale bedeutet u.a.: kein Rauchen, weniger bis gar kein tierisches Eiweiß, kein Zucker, keine Medikamente, keine Gifte etc. Des Weiteren kann man seine Sirtuine stimulieren und für ausreichend Spermidin sorgen, um so den Alterungsprozess aufzuhalten. Was genau Du alles gegen Dein Altern tun kannst und welche Rolle Resveratrole spielen, das erfährst Du heute in dieser spannenden neuen Folge. #
Jung, frisch und fit bleiben bis ins hohe Alter. Davon träumt wohl jeder. Dieser Traum rückt nach neuesten Studien ein ganzes Stück weit näher. In unserem Körper gibt es nämlich ein bestimmtes Enzym (Telomerase), dass die Chromosomen auch im reiferen Alter noch einmal wachsen lässt. Klingt erst mal kompliziert, ist aber ganz simpel, wie Du in dieser Folge lernen wirst. Durch die richtige Ernährung können wir das "Jungbrunnen-Enzym" aktivieren. Neugierig geworden? Dann höre jetzt unsere neue Folge!
Zum „Welt Down Syndrom Tag“ am 21.03. kommt eine besonders tolle Folge. Im Gruppenchat mit Sascha sind Lea und Fredi. Ist das Mamasein anders wenn der Sohn oder die Tochter das Down-Syndrom haben? Als Inkluencerinnen zeigen die Zwei auf Instagram (Lea.hubertus & triplepower_lion) dass Liebe keine Chromosomen zählt und dass das Leben mit einem Kind mit Down-Syndrom wunderschön ist. Auf ihren Profilen klären sie nicht nur auf, sondern liefern fast täglich Storys und Bilder, die einem das Herz aufgehen lassen. Auch im Podcast kommt die Liebe sofort rüber! Neues zu erfahren und zu lernen gibt es in dieser Folge natürlich auch.
Wissensreise für (angehende) Heilpraktikerinnen und Heilpraktiker
In Folge 3 klären wir, wie das Geschlecht eines Kindes bestimmt wird und was passiert, wenn Form oder Anzahl der Chromosomen verändert sind. Beispielhaft betrachten wir hier die Trisomie 21 (Down-Syndrom), das Klinefelter-Syndrom und das Turner-Syndrom. Hier kannst du mich und den Podcast unterstützen: https://steadyhq.com/wissensreise
Wissensreise für (angehende) Heilpraktikerinnen und Heilpraktiker
In dieser Folge starten wir mit den Grundlagen und erlernen dafür den Aufbau der eukaryotischen Zelle. Als Ergänzung gibt es ein Video, indem wir das Erlernte gemeinsam wiederholen und vertiefen: https://youtu.be/zGAoSZywOEc Hier kannst du mich und den Podcast unterstützen: https://steadyhq.com/wissensreise
In dieser Folge geht es um 1) eine Studie, die untersucht, welche Bedeutung Schüler der Sexualität, Rekombination und Meiose zuschreiben (bitte nicht als "Diss" verstehen:) Es ist in den Lehrplänen (noch) nicht anders verankert...@Bildungsministerium...) 2) wie man die Bedeutung der Phänomene aus Sicht der Evolution erweitern sollte 3) folgende Übungsaufgaben: 1. Zeichne schematisch eine diploide Zelle mit dem Chromosomensatz 2n=6 2. .Beschrifte ein homologes Chromosomenpaar und markiere Chromosomen mütterlichen Ursprungs rot, väterlichen Ursprungs grün. 3.Zeichne diese Zelle im Stadium der Metaphase I der Meiose und stelle dabei ein Crossing over dar. 4.Gib alle möglichen Keimzellen an, die aus dieser Zelle entstehen könnten. 5.Was sind Allele? 6.Zähle alle Mutationstypen auf, die du kennst. Fachbegriffe: Meiose, Rekombination, Crossing over, Mutation, Reifeteilung I, Metaphase I, Variationen (ursprünglich erbliche Varietäten), 2n, diploid, 1n, haploid, Äquatorialebene, Allel (angedeutet auch bei Minute ...), interchromosomale und intrachromosomale Rekombination. PS: Das X-Chromosom ist übrigens heterlog zu dem Y-Chromosom:) PPS: Korrektur: Das Crossing over findet meist schon in der Prophase I statt. Schicke dein Feedback an biologopodcast@googlemail.com Hinterlasse eine Bewertung bei iTunes, wenn dir der Podcast etwas bringt.
Normalerweise haben wir Menschen 46 Chromosomen, davon legen zwei unser Geschlecht fest: Bei Frauen sind das zwei X-Chromosomen, bei Männern sind es das X- und das Y-Chromosom. Beim Klinefelter-Syndrom hat der Mann ein zusätzliches X-Chromosom. Früher wurde das Syndrom kaum diagnostiziert oder therapiert, werdenden Eltern sogar nach der Diagnose empfohlen, abzutreiben - obwohl man ohne große Einschränkungen damit leben kann. Woran man das Syndrom erkennt und wie es behandelt wird, erklärt der Urologe Dr. Sven Scheuering.
Wann ist ein Mann eigentlich ein Mann? Und wann eine Frau eine Frau? Wer oder was entscheidet das? Chromosomen, Genitalien, Hormone, ein rosa oder ein blauer Strampelanzug – oder irgendwelche random Leute, denen wir auf der Straße begegnen? Wie werden wir geboren? Zu was werden wir gemacht? Und warum sollten das überhaupt andere Menschen für uns entscheiden? Darüber redet Theresa in der letzten Folge von Staffel 1 mit dem trans Mann Linus Giese. Linus Giese: Ich bin Linus – erschienen im Rowohlt Verlag https://www.rowohlt.de/paperback/linus-giese-ich-bin-linus.html Theresa Lachners: Lvstprinzip https://www.genialokal.de/Produkt/Theresa-Lachner/Lvstprinzip_lid_40257689.html Denkt daran: #SupportyourlocalBookstore ! Wir danken unserem Sponsor FUN FACTORY für die Unterstützung zu dieser Staffel. Der Auflegevibrator „LAYA2“ ist genderneutral und fühlt sich beispielsweise an Nacken, Brüsten, Klitoris, Hoden oder Perineum ziemlich fantastisch an. Mit dem Code LVSTPRINZIP20 erhaltet ihr auf FUNFACTORY.com 20% Rabatt – und zwar nicht nur auf dieses Toy, sondern auf alle. Außerdem danken wir POOL ARTISTS, besonders Maria Lorenz und Konstanze Teschner, die uns bei der Aufnahme Produktion dieser Folge in ihrem Studio in Berlin unterstützt haben. Ein paar Definitionen: Transgender, von lateinisch trans „jenseits von, darüber hinaus“, und englisch gender „soziales Geschlecht“ ist eine Bezeichnung für Personen, deren Geschlechtsidentität nicht oder nicht vollständig mit dem nach der Geburt anhand der äußeren Merkmale eingetragenen Geschlecht übereinstimmt. Transgeschlechtlichkeit ist unabhängig von sexueller Orientierung. Das Gegenteil von Transgender ist Cisgender (von lateinisch cis „diesseits“, als gegensätzliche Präposition zu trans). Die Bezeichnung Cisgender-Personen, oder kurz cis- beschreibt Personen, deren Geschlecht oder Geschlechtsidentität und Geschlechtsausdruck mit dem Geschlecht übereinstimmt, dem sie bei der Geburt zugewiesen wurden. (Quelle: Wikipedia) Credits: Moderation: Theresa Lachner, Linus Giese, Jeanne Drach (OH WOW) Produktion: Jeanne Drach (OH WOW) Redaktion: Theresa Lachner & Jeanne Drach (OH WOW), Pamela Rußmann (OH WOW) Jingle & Sounddesign: Jeanne Drach (OH WOW) mit Maximilian Atteneder & Mathieu Nickels Grafik: Zsa Zsa @zsazsawegor Lvstprinzip: www.lvstprinzip.de OH WOW: www.ohwow.eu
Wir lassen uns einfach in "männlich" und "weiblich" einteilen? Das denken wir – stimmt aber nicht! Was unser Geschlecht ausmacht, ist vielfältig: Hormone, Chromosomen, Anatomie, Geschlechtsorgane oder unser Gehirn. Dabei gibt es Variationen – so häufig, dass immer mehr Forscher das Geschlecht als Kontinuum betrachten, auf dem "weiblich" und "männlich" nur die Endpole sind. Aber was bedeutet das für uns?
Alles wat je ooit wilde weten over DNA, Chromosomen en nog meer uitgelegd op een begrijpelijke manier.
Inzwischen ist das Thema sogar in der breiten Öffentlichkeit angekommen beispielweise im "neo magazin royale" von Jan Böhmermann. In der medizinischen Lehre ist das Thema aber laut einer Studie des deutschen Ärztinnenbundes immer noch krass unterrepresäntiert und wird nur an einer deutschen Uni ausreichend beachtet. Wir reden deswegen in dieser Folge ausführlich über die verschiedenen wichtigen Aspekte von Geschlecht in der Medizin und wollen damit euer Interesse wecken und ein paar Anregungen für weitere Recherche bieten. Wie viele Geschlechter gibt es eigentlich aus biologischer Sicht? Wie wird das Geschlecht eigentlich festgelegt? Wie behandelt die medizinische Forschung das Thema und was kommt von diesem Wissen aktuell in der Lehre eigentlich an? Das sind nur einige der Fragen, die wir mit Dr. Amma Yeboah, Fachärztin für Psychiatrie und Psychotherapie und Gastdozentin an der Uni Köln für Gender Studies in Köln (GeStiK), für die Medizinische Fakultät und das ceres (cologne center for ethics, rights, economics and social sciences of health) besprechen werden.
Beim Menschen wird bei der Befruchtung festgelegt, welches Geschlecht das heranwachsende Leben bekommt. Sind bei Tieren und Pflanzen auch die Chromosomen verantwortlich? Brigitte Osterath hat eine Antwort darauf. Von Brigitte Osterath.
In dieser Folge von ADG‘s Talk werde ich meine Schulreihe für das mündliche Abitur weiterführen und das Fach Biologie einführen, da es mein zweites Prüfungsfach ist. Es geht in dieser Folge speziell um die Erklärung verschiedener und wichtiger Fachbegriffe im Bereich DNA. Was ist die DNA? Was ist ein Gen? Und was sind Chromosomen? Hört gut zu, lernt und was und seit immer dankbar
Folge 031 - Der Ablauf des Zellzyklus | Genetik Teil 3 Show Notes: Bitte unterstützt den Biologie Passion Podcast finanziell ➤ paypal.me/biologiepassionpdcst Hier gehts zum zugehörigen Blogartikel auf meiner Webseite. Wenn dir die Podcastfolge gefallen hat, würde mich eine kurze Bewertung auf iTunes freuen. Trag dich in meinen Newsletter ein, wenn du über neue Podcastfolgen informiert werden willst. Vielen Dank fürs Zuhören!
USA erheben Anklage gegen Huawei Die USA gehen massiv gegen Chinas Telecom-Konzern Huawei vor. Dem weltgrößten Telekomausrüster und zweitgrößten Handyhersteller werden Verstöße gegen Iran-Sanktionen, Geldwäsche, Betrug, Verschwörung zur Behinderung der Justiz und Industriespionage vorgeworfen. Unmittelbar vor den neuen Verhandlungen über eine Beendigung des Handelskrieges zwischen den USA und China verschärft die Anklageerhebung des US-Justizministeriums die Spannungen zwischen den beiden größten Volkswirtschaften. Studie zu Hotel-Buchungsportalen Die Methoden großer Hotelbuchungsportale sorgen für Unmut bei Verbraucherschützern und Hoteliers. Laut einer Studie des Zentrums für Europäische Wirtschaftsforschung erhalten Hotels schlechtere Positionen in den Suchergebnissen, wenn sie zum Beispiel auf der eigenen Website günstigere Preise angeben. "Nicht jede Positionierung und Empfehlung bei großen Buchungsportalen wie Booking.com und Expedia ist daher im Interesse der Nutzer", heißt es in der Studie. Wie Raumfahrt das Erbgut verändert Scott Kellys letzte Mission auf der Internationalen Raumstation ISS dauerte fast ein Jahr – so lange wie eine Reise zum Mars und zurück. Dabei haben Forscher untersucht, welchen Einfluss die lange Schwerelosigkeit auf den Körper hat, berichtet Technology Review. Als „Kontrollgruppe“ diente Scotts eineiiger Zwillingsbruder Mark, der ebenfalls Astronaut ist. Der erstaunlichste Befund war, dass sich die sogenannten Telomere im All verbessert haben. Dies sind die Enden der Chromosomen, die für das Altern der Zellen verantwortlich sind. Scott ist im All also in gewisser Hinsicht biologisch jünger geworden. Bill Gates macht Wind für Atomkraft Bill Gates wirbt bei US-Kongress-Abgeordneten für die Atomkraft. Der Microsoft-Mitgründer ist schon länger davon überzeugt, dass die Nuklearenergie wichtig sei, um dem Klimawandel entgegenzuwirken. Nun wolle er selbst eine Milliarde US-Dollar in die Entwicklung neuer Atomreaktoren investieren und obendrein eine weitere Milliarde von Investoren einsammeln, berichtet die Washington Post. Diese und alle weiteren aktuellen Nachrichten finden Sie auf heise.de
Wie funktioniert FSHD? In dieser Folge erklären wir euch die Mechanismen von FSHD im Detail. Was ist DUX4 und wie zerstört es die Muskeln? Was sind Gene und Chromosomen? Wo ist der Unterschied zwischen FSHD 1 und FSHD 2? Folge direkt herunterladen
Männlich oder weiblich? Unsere Gesellschaft teilt Menschen gerne in eine dieser beiden Kategorien ein. Dabei gibt es viele biologischen Merkmale, die Geschlecht definieren: Neben den Chromosomen spielen die Hormone, die Ausprägung der Geschlechtsmerkmale und auch das Gehirn eine Rolle – und das kann alles variieren.
Männlich oder weiblich? Unsere Gesellschaft teilt Menschen gerne in eine dieser beiden Kategorien ein. Dabei gibt es viele biologischen Merkmale, die Geschlecht definieren: Neben den Chromosomen spielen die Hormone, die Ausprägung der Geschlechtsmerkmale und auch das Gehirn eine Rolle – und das kann alles variieren.
"Wir müssen unsere Männlichkeit zurückgewinnen", ruft Björn Höcke vor Gleichgesinnten ins Mikrophon. Und er ist nicht der einzige. Allerorts beklagen Autokraten und Nationalisten mal wieder die Feminisierung, die Verweichlichung von Gesellschaft und Kultur. Feministen, Liberale, Linke, Pazifisten – sie alle beraubten den Mann seiner natürlichen Rolle. In The crisis in modern masculinity (deutsch im Lettre International) rekonstruiert Pankaj Mishra eine Geschichte dieser Geschlechtlichkeit, die so gar nichts mit Chromosomen zu tun hat. Männlichkeit zeigt sich dabei ebenso als eine Funktion der Industriegesellschaft wie als ein koloniales Beschreibungsmuster. Zugleich wird sie zur Identitätsstrategie, wenn der Fabrikjob unsicher wird, wenn die Frau mehr Geld verdient, wenn die Tradition sich verflüssigt. Unter der brutalen Eindeutigkeit der Geschlechterdichotomie müssen nicht nur Frauen, Homo- und Transsexuelle leiden. Auch die Männer haben für ihre Herrschaft einen hohen Preis zu zahlen. In seinem Aufsatz Männerpolitik zeigt Thomas Gesterkamp, dass Geschlechterpolitik eine Angelegenheit für alle sein muss. So wird dann die Krise der Männlichkeit zu einer Chance: Was fällt, das soll man auch noch stoßen!
Folge 029 - Der Aufbau der Chromosomen | Genetik Teil 1 Show Notes: Bitte unterstützt den Biologie Passion Podcast finanziell ➤ paypal.me/biologiepassionpdcst Hier gehts zum zugehörigen Blogartikel auf meiner Webseite. Wenn dir die Podcastfolge gefallen hat, würde mich eine kurze Bewertung auf iTunes freuen. Trag dich in meinen Newsletter ein, wenn du über neue Podcastfolgen informiert werden willst. Vielen Dank fürs Zuhören!
Folge 029 - Der Aufbau der Chromosomen | Genetik Teil 1 Show Notes: Trag dich in meinen Newsletter ein, wenn du über neue Podcastfolgen informiert werden willst!
Was lässt unseren Körper altern, unsere Haut faltig, unsere Haare weiß und unser Immunsystem schwach werden? Die Biologin Elizabeth Blackburn erhielt anteilig den Nobelpreis für ihre Suche nach der Antwort auf diese Frage, für die Entdeckung der Telomerase. Dies ist ein Enzym, dass die Kappen an den Enden der Chromosomen auffüllt, die sich bei der Zellteilung abbauen. Lernen Sie Blackburns bahnbrechende Forschung kennen -- und nebenbei, wie man den Alterungsprozess mehr kontrollieren kann, als Sie denken.
Evolution Radio Show - Alles was du über Keto, Low Carb und Paleo wissen musst
In Folge #124 Mein heutiger Gast ist Dr. Jens Pohl. Er ist Diplombiologe, hat am Deutschen Krebsforschungszentrum in Heidelberg promoviert und danach mehrere Jahre in den USA und dann auch in Deutschland geforscht. Dr. Jens Pohl hat in den letzten 20 Jahren als Geschäftsführer verschiedene Biotechnik-Firmen in Heidelberg geleitet und besitzt ein breites Wissen im Bereich Pharmazie und klinischer Forschung. Er hat zahlreiche Fachartikel veröffentlicht und beschäftigt sich besonders mit dem Einfluss der Darmbakterien auf die Gesundheit des Immunsystems und mit mitochondrialer Gesundheit. Seit arbeitet Herr Dr. Pohl als Heilpraktiker und führt zusammen mit seiner Frau eine Praxis in der Nähe von Heidelberg. Wir sprechen über die Mitochondrien, die Kraftwerke der Zelle. Warum die Erhaltung Ihrer Funktionsfähigkeit ganz zentral ist, wenn es um die Erhaltung der Gesundheit geht. Warum diese kleinen Zellbestandteile so empfindlich sind, Welche Umweltfaktoren schädigend auf Mitochondrien wirken und was du tun kannst um deine Mitos gesund zu erhalten. "Wir sind überzeugt davon, dass für das Wohlergehen des ganzen Menschen, die Gesundheit seiner Zellen ausschlaggebend ist. Demzufolge war es ein logischer Schritt, Patienten dabei zu helfen, ihre Gesundheit zu erhalten – also in der Prävention, bevor sich Krankheitssymptome zeigen, und bei der Wiedererlangung der Gesundheit zu helfen. Die Aufgabe besteht darin, durch geeignete Diagnostik die Ursachen von Dysbalancen zu finden, und den Körper bei der Regeneration optimal zu unterstützen." Bitte beachten Sie auch immer den aktuellen "Haftungsausschluss (Disclaimer) und allgemeiner Hinweis zu medizinischen Themen" auf https://paleolowcarb.de/haftungsausschluss/ #geNUSS[explosion] von [næhr:sinn] - das low carb knusper nuss müsli [næhr:sinn] geNUSS[explosion] ist ein hochwertiges low-carb* Müsli und besteht zu 100% aus natürlichen Zutaten. Es ist gut als Frühstück und Snack und hat nur 13,7g verwertbaren Kohlenhydraten auf 100g. Es ist getreidefrei und sojafrei. Perfekt für den Start in den Tag. Wir verarbeiten nur hochwertigste, nährstoffreiche Zutaten, die dich länger satt machen und nachhaltig mit Energie versorgen. Wir nutzen ballaststoffreiche Kokosnuss, Erdmandel und heimische Nüsse. Mehr darüber erfährst du auf lowcarbmüsli.at oder auf Amazon.de. Das Video der aktuellen Folge direkt auf Youtube öffnen Und nicht vergessen: Wenn du uns auf Youtube siehst, und wenn du es noch nicht getan hast, dann abonniere unseren Kanal „Evolution Radio Show“ Wenn du das Podcast hörst, dann findest du die Links für Apple iTunes und Android hier auf unserer Homepage Transkript Über Dr. Jens Pohl Funktion und Bedeutung der Mitochondrien Warum Mitochondrien für den Menschen so wichtig sind Problem verursachende Umweltfaktoren für Mitochondrien Unterschied zwischen problematischen Einflüssen mit Anstieg chronischer Erkrankungen gegenüber normalen Stressoren Auswirkungen der größten negativen Umweltfaktoren auf Mitochondrien Chronic Fatigue Syndrome und Burnout Schädigung der Netzhaut – Retinopathie und Mitochondriopathie Mitochondrienanteil beim Training erhöht sich: Bewegung hilft Ernährungsempfehlungen Wichtige Cofaktoren für gesunde Mitochondrien Behandlungsmethoden mit Rotlicht Die wichtigsten 3 Dinge zur Gesunderhaltung der Mitochondrien Kontaktmöglichkeiten zu Jens Julia: Ja, lieber Jens, Herzlich Willkommen zur Evolution Radio Show! Jens: Hallo Julia! Julia: Ich freue mich, dass du heute zu Gast bist, und bevor wir jetzt so richtig losstarten mit unserem Thema, nämlich den Mitochondrien und wie man sie gesund erhält oder welche Umweltfaktoren ein Problem darstellen, vielleicht kannst du dich ganz kurz bissel vorstellen, weil es kennen dich vielleicht nicht alle von den Zuhörern und Zuschauern. Was ist deine Ausbildung und was hat dich dazu gebracht, dich genau mit dem Thema zu beschäftigen? ##Über Dr. Jens Pohl Jens: Also ich bin von Hause aus Biologe, Molekularbiologe und habe das vor vielen Jahren mal studiert, habe dann eine Doktorarbeit im Bereich der Tumorimmunologie gemacht, bin dann für ein paar Jahre zur Forschung in die USA gegangen, habe dort an Steroidrezeptoren, hauptsächlich auch Vitamin-A-Rezeptoren gearbeitet, dann noch ein bisschen in Deutschland dann nachher wieder weitergeforscht und bin dann in die Biotech-Industrie gegangen. Dort habe ich dann viele Jahre als Geschäftsführer so kleine Biotech-Unternehmen geleitet und habe mich jetzt vor ein paar Jahren mit meiner Frau zusammen selbständig gemacht, und wir haben jetzt eine Naturheilpraxis, also so ein kleines bisschen ein Paradigmenwechsel, praktisch von der Pharmaindustrie rüber in die Naturheilkunde. Das klingt auf den ersten Blick vielleicht ein bisschen widersprüchlich, auf der anderen Seite ist es aber sehr gut ergänzend würde ich mal so sagen, ja. Das heißt also, sie verteufelt die Pharmaindustrie definitiv nicht. Ich weiß, dass viele Produkte die dort hergestellt werden und dann auch am Patienten angewandt werden, durchaus ihren Stellenwert haben und ihre Berechtigung, sehe aber parallel auch in unserer jetzt Praxis speziell, dass viele Patienten damit eben nicht gesunden. Das heißt also, die haben meistens schon eine gewisse Odyssey an Fachärzten hinter sich und wenn sie dann beim Heilpraktiker aufschlagen, haben die meistens dann doch irgendwo noch ein Defizit und da gibt’s dann doch noch eine Welt nebendran, mit der man dann diesen Patienten helfen kann. Julia: Ja. Es hat sicherlich beides seine Daseinsberechtigung und man darf natürlich das auch nicht verteufeln… Jens: Genau. Julia: …weil auch Antibiotika haben ihren Sinn in manchen Bereichen, dass man vielleicht so bei einer schweren Lungenentzündung da nicht dran stirbt. Jens: Ja, es ist gerade das Antibiotikum ist jetzt so ein schönes Stichwort. Wir reden heute ja auch über die Mitochondrien, und wir werden jetzt gleich auch vielleicht ein bisschen beleuchten den Zusammenhang eben von Mitochondrien und das Erbe, wo diese Mitochondrien herkommen macht gerade diese kleine Organelle auch extrem empfindlich auf Antibiotika. Die werden dann so quasi durch Querschläger mit verletzt. Das Problem, das wir dann haben ist, wenn die dann ihren Geist aufgeben, dann leidet dann halt auch wieder der Körper und da sieht man ein schönes Beispiel, dass ein Medikament, das auf der einen Seite wirklich wichtig ist und hat auch mit Sicherheit schon viele Menschenleben gerettet, auf der anderen Seite aber auch langfristige Probleme verursachen kann, wenn man es eben zu lange oder falsch dosiert. ##Funktion und Bedeutung der Mitochondrien Julia: Du hast jetzt gerade schon diese schöne Einleitung zu den Mitochondrien gemacht und es ist ein langes kompliziertes Wort. Manche sind vielleicht schon drüber gestolpert, aber vielleicht erzählst du mal ganz kurz, was sind Mitochondrien eigentlich? Wie kommen die in unseren Körper? Was machen die dort überhaupt? Und warum sind die so zentral? Jens: Also für mich ist das schon fast wie so ein Märchen, ein Biologiemärchen kann man fast sagen. Es war einmal…, damit müsste man eigentlich anfangen, ja. Das Leben auf unserer Erde ist ja vor 4 Milliarden Jahren entstanden, und ganz am Anfang gab es eigentlich nur Einzeller. Es ist halt in der Biologie oft so, dass in so einer Nahrungskette es Abkürzungen gibt und dass dann irgendwo immer wieder versuchen verschiedene Lebewesen auf andere zurückzugreifen, ohne dass sie sich Arbeit machen müssen. Das ist jetzt so, dass wir dann halt Räuber haben, Parasiten haben und ein Parasit ist normalerweise eben ein anderes Lebewesen, das von einem Lebewesen durch schädliche Aktionen die Lebensenergie abzapft, ja. Häufig wird dabei auch dann der Wirt getötet und in der Urzeit war es dann halt irgendwann einmal so, dass sich quasi eine Verbindung ergeben hat. Es gibt kleine Bakterien, die in große Zellen hineinkriechen können, und das gibt es auch heute noch, also z. B. Borrelien, die kennst du ja, die im Prinzip durch Zecken verbreitet werden. Das sind Zellen, bakterielle Zellen, die in unsere Säugerzellen hineinkriechen können, und so etwas gab es auch damals schon, also vor knapp 3,5 Milliarden Jahren sind irgendwelche Bruttobakterien in Bruttozellen hineingekrochen und eigentlich im Endeffekt nur um an deren Nährstoffe heranzukommen. Es hat sich dann aber irgendwann so im Laufe der Evolution herausgestellt, dass das für beide ein Vorteil sein kann, weil nämlich damals auf der Erde Bedingungen geherrscht haben, die natürlich anders sind als heute, um zu sagen es gibt Gebiete in denen herrscht Sauerstoff und es gibt Gebiete in denen herrscht kein Sauerstoff. Und wenn du jetzt einen Organismus hast, der in beiden Lebensbedingungen überleben kann, ist das halt für so einen Organismus ein Vorteil. Und im Endeffekt war das so quasi die Keimzelle, der Sinn für beide. Das heißt also der Wirt konnte in der einen Umgebung leben und das Bakterium in der anderen. Die haben dann quasi ihre Fähigkeiten zusammengeworfen und konnten dann auf der jungen Erde halt gemeinschaftlich einen Vorteil haben und haben dann Lebensräume erschlossen. Nur durch diesen Vorgang ist es schließlich und endlich dann auch möglich geworden, dass wir Mehrzeller bekommen. Das heißt also, im Endeffekt hat mal irgendwann ein Bakterium einen großen Wirt überfallen und wurde dann im Laufe der Zeit zu so einem Symbionten. Ein Symbiont ist jetzt also ein Lebewesen, das nicht mehr parasitär ist. Das nutzt nicht nur einseitig, sondern bei der Symbiose haben beide Partner etwas voneinander. Und es ist jetzt aber so, wir wissen heute noch, wenn wir uns Mitochondrien anschauen, da kann man ganz klarsehen, dass sie dieses bakterielle Erbe immer noch mit sich tragen. Im Laufe der Jahrmilliarden im Endeffekt hatten – also ein normales Bakterium hat ganz viele Gene. Sagen wir mal zwischen 1500 bis 2000 Gene, und das hatte auch damals dieses Pro-Bakterium, aus dem dann die Mitochondrien wurden. Die Mitochondrien haben im Zuge der Arbeitsteilung innerhalb dieser Zelle dann sich entschlossen, einen Großteil ihrer Gene in den Zellkern abzugeben. Das heißt also, die menschliche DNA, die wir in unserem Erbgut haben, besteht tatsächlich zu einem nicht unerheblichen Anteil aus bakteriellen Genen und ein paar wichtige Gene haben jetzt die Mitochondrien zurückbehalten. Darüber gibt es jetzt viele Spekulationen, welche sie aus welchem Grund eben zurückbehalten haben. Aber Fakt ist, sie haben immer noch eben dieses mikrobielle Erbe und aus dem Grund sind sie halt auch sehr sensibel auf viele Chemikalien, die eben Bakterien abtöten können, wie jetzt eben auch die Antibiotika. ##Warum Mitochondrien für den Menschen so wichtig sind Julia: Hm, wirklich spannend, ja. Und in unserer Zelle, warum sind jetzt die Mitochondrien so wichtig, also für uns als Menschen? Jens: Also im Zuge dieser Arbeitsteilung zwischen dem kleinen Organell, also ein Organell ist ein Organismus, der innerhalb einer großen Zelle jetzt halt relativ selbständig noch agieren kann, und diese Mitochondrien haben z. B. immer noch die Fähigkeit, sich allein auch zu verdoppeln, zu vermehren. Also wie ein Bakterium haben die tatsächlich noch sehr viele Fähigkeiten, und sie haben quasi die Energieversorgung der Zelle an sich gerissen oder vielleicht behalten. So kann man es vielleicht eher sagen. Die sind also insgesamt für die Energieversorgung unserer Zellen verantwortlich. Wir benötigen tagtäglich sehr viel Energie, um uns zu bewegen und um unseren Körper mit Temperatur zu versorgen quasi. Ja wir sind ja mit 37 °C Körpertemperatur wärmer normalerweise als unsere Umgebung, wenn wir jetzt nicht in der Wüste leben. Das heißt also, unser Körper strahlt permanent Energie ab, wird permanent auf 37 °C gehalten, und diese Wärmeenergie plus die Energie, die wir benötigen, um uns zu bewegen, die wird eben in diesen Mitochondrien hergestellt. Keine Mitochondrien - keine Energie – wir sind tot. Das ist also ganz schnell erklärt. Julia: Ok, also Mitochondrien sind mal zentral dafür, dass überhaupt ausreichend Energie gemacht werden kann. Jens: Genau. Julia: Die können sich teilen. Die können sich vermehren, ja. Und sie haben einen bakteriellen Ursprung kann man sagen. Jens: Ganz genau! Julia: Ihre Wurzeln waren mal Bakterien, die sozusagen eingewandert sind in diese anderen Zellen. Wir wissen ja, dass – oder es kommt jetzt immer mehr, dass uns klar wird, dass wahrscheinlich fast alle chronischen Erkrankungen auch irgendwo einen Ursprung, oder zumindest einen Zusammenhang auch mit geschädigten Mitochondrien haben, oder dass die einfach nicht mehr so richtig funktionieren. Jetzt ist die Frage einmal, welche Faktoren schädigen Mitochondrien? Man denkt ja, die sind ja super verpackt da, geschützt in den Zellen, und ich denke auch, die waren jetzt da seit vielen Millionen Jahren und erst jetzt haben wir all diese Probleme, auch all diese chronischen Erkrankungen. Also, welche Veränderungen, welche Sachen in unserer Umwelt machen jetzt diese Probleme? ##Problem verursachende Umweltfaktoren für Mitochondrien Jens: Also, da muss man jetzt doch wieder ein kleines bisschen in die Biologie zurückschauen und auch ein bisschen auf die Gene schauen, die in den Mitochondrien noch verblieben sind. Also in Mitochondrien befinden sich Genabschnitte für 37 verschiedene Dinge. Dinge sage ich deswegen, weil die sehr heterogen sind. Es gibt RNA die da drauf codiert wird. Das ist eine andere Art von Erbgut, die benötigt wird, um aus dem Erbgut Protein herzustellen. Und dann werden tatsächlich noch 13 Gene innerhalb der Mitochondrien codiert, heißt also, das ist also wie ein Bauplan. Das heißt also in unseren Chromosomen liegt Erbinformation. Das ist wie die Blaupause. Das ist ein Bauplan, mit dem quasi alles innerhalb der Zelle gebaut wird. Im menschlichen Erbgut gibt es so 20-/25000 – das ist nur eine Schätzung – Gene, und 25000 und noch deutlich mehr, weil es ja noch Kombinationen gibt, Proteine die damit hergestellt werden können. Und 13 davon haben sich quasi die Mitochondrien zurückbehalten, 13 Proteine. Und die liegen alle in komplexen, das nennt man die Atmungskette. Die Atmungskette ist eigentlich so das Kernelement der Energieversorgung die wir haben. Atmungskette hat was mit Sauerstoff zu tun, im Großen und Ganzen mit Sauerstoff und Wasserstoff. Alles was wir an Sauerstoff einatmen landet mehr oder minder im Endeffekt nachher in den Mitochondrien und wird zur Energieherstellung verwendet. Im Endeffekt aus Wasser, Wasser wir gespalten in Sauerstoff und Wasserstoff und im Endeffekt die beiden können dann quasi wieder zusammenfinden. Im Chemieunterricht hat man früher mal was von der Knallgasreaktion gehört. Da macht’s, wenn ich Sauerstoff und Wasserstoff zusammenbringe irgendwann einmal einen dicken Knall. Das passiert in unseren Zellen sehr dosiert und gedrosselt. Also so, die Energie ist vorhanden, wir spalten das und dann führt man das wieder zusammen und diese Energie, die da frei wird, die kann genutzt werden, entweder zur Bildung von kleinen Trägermolekülen - wie Batterien kann man sich das vorstellen- das ATP ist wichtig und dann halt noch in Wärme. Und das wird halt fein dosiert, wo halt was notwendig ist. Das Kuriose ist jetzt, dass die Atmungskette elementar wichtig für uns ist. Also wenn wir keine Energie herstellen können, sind wir relativ schnell tot. Und jetzt fragt man sich, warum ausgerechnet so wichtige zentrale Proteine wie die Atmungskette in den Mitochondrien drin sind. Das ist jetzt tatsächlich so, dass Gene die in unserem Zellkern drin liegen, in den richtigen schönen großen Chromosomen, die sind dort relativ gut geschützt. Das heißt, sie sind natürlich erstmal, weil sie im Zellkern sind, schon ein bisschen weiter von der Oberfläche der Zelle weg. Darum ist noch ein Zytoplasma, ist auch noch ein bisschen ein Schutz. Dann kommt noch mal die Hülle vom Zellkern und innen drin wird diese DNA, das ist also das Molekül in dem unsere Erbinformation codiert wird, ganz eng noch mal um Proteine drum herumgewickelt und ist dann noch mal geschützt. Und im Zellkern gibt es noch jede Menge Proteine, die sogar DNA-Defekte wieder reparieren können. Auch die gibt es eigentlich in den Mitochondrien nicht. Das heißt also, aus irgendeinem Grund – das klingt jetzt absurd, aber aus irgendeinen Grund muss es einen Sinn machen, dass ausgerechnet wichtige Gene in der Atmungskette in den Chromosomen drinbleiben, wo sie eigentlich recht ungeschützt sind, wo sie wesentlich schneller mit Chemikalien und Strahlung zerstört werden können und wo sie eigentlich relativ schnell Defekte erleiden können. Das ist auf den ersten Blick ein Paradoxon, ja. Jetzt gibt es aber viele Modelle und Erklärungsmöglichkeiten dafür, und ich sag mal jeder findet ein Modell, das ihm selber am besten passt. Es gibt in den USA einen Wissenschaftler. Der heißt Doug Wallis. Da würde ich sagen, das ist Moment vielleicht der Mitochondrien-Experte schlecht hin, der auch sehr viele evolutionsbiologische Aspekte in seine Forschung hineingebracht hat. Eine seiner Theorien, die ich sehr gut nachvollziehen kann, ist, dass die Mitochondrien quasi so eine Art Sensor darstellen. Das heißt, sie sind tatsächlich exponiert, um eben durch Umwelteinflüsse – ich will jetzt mal nicht den Begriff Schädigung verwenden, aber sie verändern sich durch Umwelteinflüsse und das erhöht den Selektionsdruck. Selektion ist für das Individuum oft nicht gut, für eine Population, für eine Menge von Individuen kann es ein Vorteil sein, dass quasi die Individuen, die durch so eine Mutation die da stattfinden kann einen Vorteil haben, setzen sich durch. Und so ist das halt bei den Mitochondrien auch. Sie sind ein Sensor. Sie fühlen in der Umwelt was passiert. Es passieren Veränderungen im mitochondrialen Erbgut, und diese Veränderungen können vorteilhaft oder negativ sein. Und sind sie vorteilhaft, können sie sich relativ schnell auch durchsetzen. Das heißt also, die Mitochondrien haben eine gewisse Anpassungsmöglichkeit auf die Umwelt. Und das ist der Grund, warum sie auf der einen Seite jetzt schnell geschädigt werden können. Aber eine Schädigung für eine Population kann ein Vorteil sein. Das klingt absurd. Also wenn man selber betroffen ist, wird man ausgemerzt. Das ist nicht schön. Aber wenn man eine Mutation in einem Individuum hat, die vorteilhaft ist, kann sich die in einer Population durchsetzen, und die kann einer Population jetzt wieder helfen. Das heißt also, Chemikalien in der Umwelt, ich sag jetzt mal es sind nicht nur die Chemikalien, sondern es sind die Temperaturbedingungen, es ist wie gesagt viel Sauerstoff, wenig Sauerstoff. Die Menschheit hat sich ja irgendwann mal auf der Erde verbreitet und hat Gegenden bevölkert, in denen sie vorher nicht war, und im Zuge dieser Adaption auf gewisse Umweltbedingungen haben sich auch die Mitochondrien verändert. Und die Individuen, die dann eben Mitochondrien hatten, die für die Gegend einen Vorteil brachten, die haben sich dann durchsetzen können, so ein Evolutionsvorteil, den du dadurch hast. Aber Individuen die natürlich betroffen werden durch eine Schädigung, die haben auch dann Nachteile. Das ist also im Prinzip jetzt ein zweischneidiges Schwert, was da im Prinzip existiert. ##Unterschied zwischen problematischen Einflüssen mit Anstieg chronischer Erkrankungen gegenüber normalen Stressoren Julia: Nur in Bezug z. B. auch auf chronische Erkrankungen gesehen, könnte man ja sagen, ist ja alles super, weil das ist ja Selektion und wir müssen uns halt anpassen. Aber wie siehst du das, oder wie erklärst du das, den Unterschied zwischen diesen modernen Problemstoffen oder Problemeinflüssen - ich möchte es jetzt eher breiter fassen – die einfach diesen wirklich exorbitanten und sehr auffallenden Anstieg an diversen chronischen Erkrankungen zeigt und die heißen ja auch nicht nur umsonst Zivilisationskrankheiten, gegenüber jetzt diesen würde ich jetzt fast sagen normal auftretenden Veränderungen, die sicherlich auch einen Stressor darstellen können und teilweise zur Vernichtung ganzer Populationen oder Spezies beitragen kann. Aber, da ist ja schon ein Unterschied zwischen diesen beiden Stressoren. Jens: Absolut! Also wenn du dir chronische Krankheiten anschaust die wir heute haben und es gibt also auch aus der Arbeitsgruppe von Wallis viele Publikationen die sagen, eigentlich sind alle chronischen Erkrankungen irgendwo mit den Mitochondrien zusammenhängend. Ob das jetzt Diabetes ist, ob das die ganzen Kreislauferkrankungen, Herzerkrankungen sind. Es geht in die Richtung auch der Autoimmunerkrankungen usw. Also alles was chronisch ist, ist irgendwo mit den Mitochondrien zusammenhängend. Jetzt muss man sich natürlich vorstellen, dass wir eine schnellere Adaption unserer Umwelt haben als eine Adaption unserer Körper. Wenn wir uns mal anschauen wie ein Kleinwarenhändler sein Sortiment noch vor 200 Jahren vielleicht bestückt hat im Vergleich zum Supermarkt heute, da ist fast nichts mehr identisch. Die heutigen Chemikalien, mit denen wir uns auseinandersetzen müssen, die sind mit Sicherheit eins, der viele Zucker ist ein anderes, die künstlichen Lebensbedingungen in denen wir uns bewegen ist noch mal ein Punkt. Ein ganz wesentliches Ereignis kann man immer wieder sehen, wenn eine Ernährungsart aus einer Gegend auf eine Population aus einer anderen Gegend trifft, sagen wir es mal so. Also diese Schönheit bringenden amerikanischen Produkte, die nach und nach die ganze Welt beglücken. Die Inuit (Eskimos) z.B. die früher eine Adaption hatten auf kaltes Wetter und Umgebung mit wenig Grünzeug und die einfach einen Stoffwechsel haben der mit viel Fleisch und viel Fett gut zurechtkommt. Und die kommen dann plötzlich in den „Genuss“ von viel Zucker. Was das dann macht, das kann man häufig sehen. Wenn die Polynesier mit Cola in Konfrontation, und Cola steht jetzt nur pars pro toto für viele kohlenhydrathaltige Lebensmittel, dann gehen die auch auseinander. Was sich hier zeigt ist, dass du eigentlich im Laufe der Evolution Populationen hast, die Mitochondrien entwickelt haben, die sich sehr gut auf die Umgebung eben adaptiert haben, und wenn sich deren Lebensstil dann signifikant ändert, du hast einfach andere Energieträger, du lebst dann anstatt draußen viel mehr drinnen. Du hast andere Umgebungstemperaturen. Du veränderst deine Lichtzyklen, deine zirkadianen Rhythmen. Du veränderst eben durch die Heizung deine Wintertemperatur im Gegensatz zu eigentlich dem Normalfall, der in Westeuropa stattfände, dass man im Winter einfach eine kühlere Umgebung hat. Dann entgleist das Ganze, ja. Und dann kann auch dieser permanent gleich hoch energetische Energieträger, deine Ernährung kann dazu führen, dass du dann halt auch schlicht weg z. B. Übergewicht entwickelst. Das heiß, wir leben einfach gegen unsere Natur. Das ist sehr oft dann eben das Ergebnis, an dem dann die Mitochondrien dann auch leiden. Auswirkungen der größten negativen Umweltfaktoren auf Mitochondrien Julia: Was sind jetzt deiner Meinung nach so die allergrößten Faktoren in unserer Umwelt, die negativ auf die Mitochondrien wirken und wenn’s geht, vielleicht auch kurz wieso wirkt sich das so aus, oder wie reagieren halt die Mitochondrien drauf? Jens: Also fangen wir mal einfach mit Chemikalien an die z. B. in Medikamenten sind, ja. Also eben hatten wir ja schon mal die Antibiotika angesprochen. Das Ciprofloxacin z. B. das ist ein recht häufig eingesetztes Antibiotikum, das bei Darmerkrankungen eingesetzt wird. Und wenn eben solche Antibiotika im Darm wirken, dann ist das, wenn du eine infektiöse Darmerkrankung mit bakteriellem Ursprung hast, durchaus das Mittel zur Wahl, um dann eben diese Schadbakterien loszuwerden. Leider nietest du damit aber deine guten Bakterien um, und es wird zum Teil in den Blutkreislauf übernommen, dringt auch in eukaryotische, also in Säugerzellen, in unsere lebenden Zellen ein und kann dort auch die Mitochondrien schädigen. Das heißt also hier, die Querschläger, die dann das Hauptziel durchaus treffen, aber „casualties of war“ wie man so schön sagt. Das sind dann einfach friendly fire - Kollateralschaden. Also die Amerikaner haben immer so schöne Begriffe und das heißt also, durch einen Angriff auf die Feinde werden dann auch deine Freunde mit umgebracht. Das ist leider mit den Mitochondrien auch der Fall. Das Glyphosat ist auch so ein schönes Beispiel, das wir heutzutage ja verbreitet immer mehr weltweit in der Agrarindustrie einsetzen. Das hat auch einen Effekt auf unsere Mitochondrien, auf die Atmungskette. Wir lagern solche Gifte ein und wir vergiften uns mit Pflanzengiften auch langsam. Das sind natürlich Sachen wo wir zunehmend Probleme mitbekommen, ob das jetzt die Schwermetallbelastungen sind usw. Neurologische Störungen können damit entstehen. Jede Zelle hat Mitochondrien und gerade die Zellen, die die meisten Mitochondrien haben, sind auch die die natürlich die meiste Energie benötigen und am ehesten dann natürlich auch betroffen sind. In der Leber haben wir z. B. pro Zelle wesentlich mehr Mitochondrien und im Herzmuskel viel mehr Mitochondrien als in anderen Geweben. Und deswegen kannst du dir vorstellen, dass diese Umweltgifte, ganz explizit natürlich jetzt auch die Leber betreffen können und dann auch den Herzmuskel irgendwann schädigen. Die Folgeerscheinungen sind dann sehr oft wieder chronische Erkrankungen, Herz-Kreislaufsystem und über die Leber brauchen wir gar nicht lange diskutieren. Das ist so ein zentrales Organ für uns. Wenn die geschädigt wird, da haben wir viele Probleme. Julia: Hm. Jetzt hast du ja gesagt, wir können mal davon ausgehen, dass praktisch jeder der eine chronische Erkrankung hat sicherlich ein Problem mit den Mitochondrien hat, oder? Könnte man das so pauschaliert sagen? Jens: Ja, pauschaliert. Chronic Fatigue Syndrome und Burnout Julia: Und ich denke auch da fällt auch rein dieser ganz große Bereich von diesen vielen Menschen, die so ganz diffuse Symptome haben, die einfach so müde sind und so. Weil du auch gesagt hast, ich meine das hat mit Energiegewinnung zu tun und es macht ja Sinn, wenn die Mitochondrien nicht funktionieren habe ich wenig Energie. Ich bin nicht leistungsfähig. Jens: Also z. B. CFS, dieses Chronic Fatigue Syndrome, das geht in den Burnout über. Das ist nicht ganz identisch, aber ich würde mal sagen, das ist ein schleichender Übergang. Du hast eine Erschöpfung. Die Erschöpfung führt langfristig dann irgendwann zu diesen Burnout-Symptomen und im Endeffekt ist diese Energielosigkeit ganz eng zusammenhängend mit der Energieleistung deiner Mitochondrien. Es gibt natürlich gewisse Cofaktoren, von denen man weiß, dass sie in der Atmungskette eine Rolle spielen und eins der Hilfsmittel ist natürlich jetzt hier auch, die Mitochondrien wieder so ein bisschen anzufüttern, dass sie die Bausteine dann wiederbekommen, die sie benötigen um eben ihren Job zu machen. Es ist nicht ganz so einfach. Also es gibt mitochondriale Schädigungen, Mitochondriopathie heißt das Ganze, und da gibt es zwei verschiedene. Die muss man auch voneinander unterscheiden. Vielleicht auch mal noch einen kurzen Sprung zurück zur Herstellung, wo die Mitochondrien mal herkommen und wie sie sich verbreiten oder vermehren. Die Mitochondrien die wir in unseren Zellen haben, bekommen wir nur durch unsere Mütter. Das ist eine ganz wichtige Information. Das heißt also, man kann heutzutage sagen, jeder weiß wo er seine Mitochondrien herhat. Definitiv nicht vom Vater, also immer nur die mütterlichen Linien. Die sind also jetzt was die Mitochondrien betrifft tatsächlich viel wichtiger. Es gibt jetzt vererbbare mitochondriale Erkrankungen, primäre und es gibt sekundäre. So unterscheidet man das eigentlich. Das sind die primären, das heißt aus irgendeinem Grund kann sich so ein Mitochondrium nachdem es eine Mutation hat die eigentlich schädlich ist trotzdem noch durchsetzen. Das heißt der Träger stirbt dadurch nicht, und deswegen kann sich so eine Mutation verbreiten. Es kann aber sein, dass du dann nach kurzer Zeit deines Lebens vielleicht nach 4, 5 Jahren blind wirst. Julia: Ok. ##Schädigung der Netzhaut – Retinopathie und Mitochondriopathie Jens: Solche Erkrankungen gibt es tatsächlich. Das heißt also auch hier, dort wo wir dann Defekte haben, das können Herzprobleme sein, also Retinopathien, dass die Netzhaut im Auge eine Schädigung hat, weil auch die sehr stark mit Energie versorgt werden muss durch den Stoffwechsel. Das heißt, da gibt es dann Defekte und die zu heilen ist verdammt schwer. Machen wir uns da jetzt nichts vor. In England gibt’s ja mittlerweile sogar neue Gentherapien, Drei-Eltern-Kinder nennt man das Ganze. Das heißt, es wird tatsächlich die Eizelle einer Frau mit dem Zytoplasma einer anderen Frau miteinander fusioniert. Das heißt man nimmt die Eizelle einer Mutter und packt die quasi in den Restzellteil aus dem der Kern entnommen wurde von einer gesunden Frau, weil die Mitochondrien ja im Zytoplasma schwimmen und nicht im Zellkern. Und das wird dann befruchtet mit dem Vater. Also so ein Kind hat tatsächlich dann genetisch gesehen drei verschiedene Eltern. Und das ist in England jetzt vor ein paar Jahren zugelassen worden. Da gibt es auch die ersten Kinder, die aus dieser Methode geboren wurden. Das ist eine Methode, wie du diese Mitochondriopathie loswirst. Das ist eine genetische Angelegenheit, ja. Und dann haben wir eben die erworbene Mitochondriopathie, und das ist eben das, was wir durch Umweltprobleme bekommen. Da können Traumata entstehen. Du kannst nach einem Unfall kannst du tatsächlich im Endeffekt eine Mitochondriopathie erleiden. Das heißt, das ist ein ganz feines Wechselspiel zwischen unserem Körper und den Zellen, in denen die Mitochondrien sitzen. Die Mitochondrien können dem Körper Probleme machen, und unser Körper kann den Mitochondrien Probleme machen. Wenn das entgleitet, das ist ein Bereich, da kann man dann wieder eingreifen. Du hast keine genetische Problematik, die jede Körperzelle betrifft, sondern du versuchst dann, die Gewebe wieder so ein bisschen auf die Beine zu bringen, die eben durch so eine Mitochondriopathie leiden. Die Mitochondrien haben, weil sie Bakterienursprung haben auch die Fähigkeit, viele Sachen zu machen die Bakterien können. Sie können sich relativ flott auch z. B. wieder vermehren. Jeder Sportler weiß das, wenn du ein Sportler bist und du trainierst, erhöhst du a) deinen Sauerstoffbedarf. Das merkt das Gewebe. Es muss mehr Sauerstoff, also den Sauerstoff benötigst du, um natürlich Energie zu liefern. Dein Bedarf ist nicht der Sauerstoff, es ist indirekter Sauerstoff. Du brauchst den Sauerstoff, um Energie zu produzieren. Damit du das aber kannst, erhöht sich der Anteil deiner Mitochondrien beim Training. Und wenn jemand tatsächlich jetzt eine sekundäre, eine erworbene Mitochondriopathie hat, das Beste was er tun kann ist im Endeffekt, wenn er es schafft, du musst ihn unterstützen. Wenn du jetzt ein Fatigue-Syndrom hast, also du hast ein Erschöpfungssyndrom, ist das mit dem Training natürlich eine sehr schwierige Sache. Aber rein tendenziell: Bewegung hilft. Julia: Ja. ##Mitochondrienanteil beim Training erhöht sich: Bewegung hilft Jens: Ergo, die Anzahl deiner Mitochondrien, die guten Bakterien, die guten Mitochondrien können sich schneller vermehren als Geschädigte und du hast dann wieder im Körper eine Selektion. Das heißt, du kannst durch die Zulieferung von genügend Nährstoffen für die Mitochondrien und die Kombination mit dem richtigen Training, kannst du dann die Mitochondrienanzahl der Guten vermehren und dich dann auch wieder heilen. Julia: Hm. Also das heißt, Bewegung wäre jetzt, wenn man eben jetzt noch nicht gerade in so einem Erschöpfungszustand ist, eines der besten Dinge wahrscheinlich, um die Mitochondrien mal gesund zu erhalten bzw. viele Mitochondrien zu haben. Jens: Richtig. Also wie gesagt, wenn du natürlich jetzt eine Erschöpfung hast, kann’s natürlich der Sargnagel sein. Also das soll jetzt nicht so die core message sein, dass es für jeden richtig ist. Wenn du wirklich total erschöpft bist, dann musst du erst mal langsam dich dann wieder aufbauen. Das kann man u. a. mit den Nährstoffen machen, die eben wieder selektiv für die Mitochondrien ein Vorteil halt sind. Also die Mitochondrien benötigen z. B. das Co-Enzym Q10 oder viele B-Vitamine. Also ich würde jetzt einer Person die ein chronisches Erschöpfungssyndrom hat mit Sicherheit nicht gleich raten, jetzt hier auch wieder 5 km zu laufen. Aber eine leichte Bewegung würde schon helfen. Also der berühmte Waldspaziergang der hilft auch bei einer Erschöpfung. Du musst dich damit ja nicht überanstrengen. Sauerstoff, frischer Sauerstoff, frisches Licht, dann im Wald, kein künstliches Licht würde dir helfen. Und das kannst du dann so ein bisschen untermauern mit der richtigen Ernährung. Also jetzt weniger Zucker, vielleicht ein bisschen mehr Kohlenhydrate mit Eiweiß und Fett usw. Du kannst auch durch die Ernährung natürlich die Energiegewinnung der Mitochondrien beeinflussen. Mitochondrien sind so quasi Allesbrenner. Ja, also es gibt so Motoren die alles schlucken. Da kannst du quasi alles reinstopfen. Die verwerten mehr oder minder alles. Aber manche der Produkte, die du benötigst um sie anzuwerfen, die bringen dann auch mehr Schadstoffe dann wieder. Das heißt, es gibt ja Motoren, wenn du da Schweröl reinmachst, dann kommt mehr Ruß aus dem Auspuff. Und so kannst du dir das bei den Mitochondrien vorstellen. Es gibt verschiedene Lebensmittel, wenn du die Mitochondrien damit befeuerst, gibt es mehr Abfallprodukte, und ein Abfallprodukt das Mitochondrien herstellen bringt jetzt wieder Mitochondrien um. Julia: Ja. Jens: Die stellen die Reactive oxygen species, ROS hat man das genannt, her. Das ist zum Teil sinnvoll, also die müssen das können. Unter anderem helfen Mitochondrien mit diesen ROS, mit diesen aggressiven Sauerstoffmolekülen auch im Immunsystem Schadkeime zu zerstören. Mitochondrien sind in der Lage, einen Selbstmord der Zelle zu verursachen. Das klingt jetzt auch wieder grauselig, aber eine Tumorzelle z. B. die in deinem Körper entsteht, wenn die das Signal bekommt, bring dich selber um, du hältst dich nicht an die Spielregeln im Organ – das ist sehr gut, ja. Das heißt also, solche Zellen, die neben der Spur laufen quasi dann eben auszumerzen, da helfen auch wieder unsere Mitochondrien dabei. Und wenn jetzt aber auf der anderen Seite in einem gesunden Gewebe zu viel von diesen ROS entstehen, dann kann ich wieder eine dauerhafte Entzündung damit verursachen. Dann entwickelt sich sogar eine chronische Erkrankung aus einer Fehlproduktion aus unseren Mitochondrien heraus. Also das ist schon ein feines Wirksystem, dass man sehr stark mit Ernährung beeinflussen kann. ##Ernährungsempfehlungen Julia: Ja. Und was würdest du jetzt, also was empfiehlst du von der Ernährung her jetzt, also konkret, wenn jetzt jemand zu dir kommt. Was ist empfiehlst du da als Ernährungsstrategie? Jens: Also ich würde sagen, das ist jetzt nicht so eine One-for-all-Antwort die du hier geben kannst, weißt du. Ich schau mir natürlich jetzt auch erst mal die unterschiedlichen Individuen an, ja. Wenn du jetzt kommst und bist gesund und willst eine Performance-Steigerung als Sportler haben, ist das eine ganz andere Fragestellung als du bist jetzt der CFS, Chronic Fatigue Syndrome-Patient, der wirklich auf dem komplett anderen Ende des Spektrums sich befindet. Dann musst du aber auch schauen, dass jeder Mensch, jeder einen individuellen Stoffwechsel hat, ja. Julia: Ja klar. Jens: Es gibt da unterschiedliche Muskelarten, mehr lange Fasern, mehr kurze Fasern. Es gibt die Athleten die mehr geeignet sind für den Marathon. Es gibt die Sprinter. Die alleine brauchen schon einen unterschiedlichen Ratschlag. Und so ähnlich kannst du es auch bei den Individuen anschauen, die als Patienten dann eben aufschlagen, ja. Wenn du eine Stoffwechselerkrankung hast und du hast jetzt eine sehr starke Fettleibigkeit, ist die Zielvorgabe eine komplett andere, als jetzt bei einem Untergewichtigen. Es gibt auch untergewichtige Personen, die durchaus eine andere Fragestellung dann haben. Ich würde prinzipiell sagen, dass alles was an schnell verwertbaren Zuckern heutzutage in der Ernährung ist reduziert werden sollte. Das ist auch mein Ratschlag eigentlich für Sportler. Sehr häufig kriegen ja Sportler gesagt, sie sollen jetzt hohe Mengen an Kohlenhydraten verwenden, um mit diesen Kohlenhydraten noch mehr Energie leisten zu können. Ich habe selber ein paar Mal Marathon gelaufen, und am Abend vor dem Marathon da gibt’s die guten Pasta-Partys, ja. Auch in Berlin oder wo auch immer, da sind dann tausende Leute. Am Tag vorher stopfen die sich dann am Abend vorher die Nudeln rein. Das ist im Prinzip ein typisches Essen, was für untrainierte Sportler entwickelt ist, ja. Du wirst kein Kenianer sehen, der bei einer Nudelparty mitmacht, ja. Jetzt ist es so, dass du eben durch das Training in der Lage bist, deine Mitochondrien eben zu verändern. Die Anzahl der Mitochondrien kannst du ändern. Du kannst in gewissem Maße auch die Biochemie deiner Mitochondrien mit beeinflussen. Und wenn du jetzt viel trainierst, dann brauchst du nicht so viele Kohlenhydrate. Die Kohlenhydrate sind eben diese Moleküle, die schnell verfügbar sind. Und im Körper hast du relativ wenig Speicher für Kohlenhydrate. Das ist also das Glykogen in deiner Leber. Und das hält bei einem Langstreckenläufer bis Kilometer 25 – 30 und dann sind die dann am Zusammenbrechen. Und da hilft dann auch die Pastaparty vorne dran nichts. Das unterscheidet dich vielleicht, du schaffst anstatt 25 deine 30 km. Aber es bringt dich dem Ziel nicht unbedingt näher. Und wenn du ein wirklicher Sportler bist der trainiert, dann machst du ein anderes Training und du machst eine andere Ernährung. Der richtige Sportler der braucht tatsächlich weniger Kohlenhydrate. Der kann auch Fettverbrennung machen. Deswegen wäre meine Empfehlung jetzt auch normalerweise, du benötigst also nicht viele Kohlenhydrate, wenn Kohlenhydrate eben nicht die schnell verwertbaren und mein Tipp, um auch deine Mitochondrien gesund zu halten und auch zu gesunden, wäre tatsächlich diese LowCarbHighFat (LCHF)-Ernährung, die sich ja immer durchsetzt. Das muss jetzt nicht in die Keto-Ernährung reingehen. Also das ist schon eine ganz spezielle Sonderernährung, die in manchen Fällen ihre Berechtigung hat. Aber ich würde mal sagen, im Verhältnis zu dem was Jahrzehnte lang propagiert wurde, viele Kohlenhydrate und wenig Fett, ist das was ich empfehle eigentlich genau das Gegenteil, was auch den Mitochondrien guttut, wenn sie auch dementsprechend trainiert werden, nicht. Also auch das musst du natürlich dann immer in einem Zusammenhang sehen, richtige Ernährung, richtiges Bewegungsprofil, abgestimmt auf denjenigen. Wer jetzt also 80 kg Übergewicht hat, und so etwas gibt es, dem würde ich jetzt auch ein langsames Heranarbeiten an das Ziel dann erst mal raten. Man kann es nicht übertreiben. Julia: Die andere Frage ist auch, ich meine du hast das vorhin schon angesprochen ein bissel, Nährstoffe, also du brauchst Cofaktoren, damit die Atmungskette, damit das überhaupt funktioniert und jetzt ist natürlich die eine Möglichkeit, dass man eben die Ernährung jetzt nicht nur als Energielieferant sieht, sondern ja eigentlich auch als Baustofflieferant für die Mitochondrien und für den Körper, sind aber in der Richtung optimiert. Jens: Absolut, ja. Julia: Da kann man sicherlich viel machen. Aber es ist ja dann doch oft so, wenn man schon in so einer Situation drin ist, dass es dann glaube ich auch oft schwer ist, dass nur über die Ernährung zu machen bzw. sind jetzt auch nicht mehr so viele Vitamine und all diese Sachen in den Lebensmitteln selbst drin. Das heißt, wo würdest du sagen was sind so die wichtigsten Vitamine oder andere Faktoren, auf die du achten würdest oder die für dich zentral sind? ##Wichtige Cofaktoren für gesunde Mitochondrien Jens: Also wenn ich jetzt eine erworbene Mitochondriopathie habe, ich kann das also klar schon sehen, dass es nicht eine genetische Ursache hat, sondern es geht jetzt halt wieder um die erworbene und ich sehe, dass es auch jetzt hier eine Erschöpfungsproblematik gibt, die verschiedene Organe betreffen kann, dann würde ich jetzt tatsächlich auch mit einer Supplementierung rangehen. Eben haben wir das Coenzym Q10 ja schon mal kurz erwähnt. Es gibt eine Reihe von B-Vitaminen die eine wichtige Rolle spielen. Du kannst auch mit Glutathion kannst du die Mitochondrien ein bisschen pushen, aber du musst immer wieder vorsichtig sein mit dem Einwerfen von Supplements. Also es gibt bei den Supplementen immer das Problem, dass du erst mal gucken kannst, warum hast du das Defizit, ja. Also viele Personen die eine Mitochondriopathie haben, haben aber auch ein Darmproblem. Chronische Erkrankungen haben sehr oft ein Darmproblem, und wenn du eine Darmschleimhaut hast, die nicht optimal ist, dann wird auch die Resorption der Supplements (NEM – Nahrungsergänzungsmittel) und auch der Ernährungsbestandteile eingeschränkt sein. Da kannst du oben reinwerfen wie du willst, es rutscht durch und da haben wir vor kurzem Mal drüber gejuxt, es ist ein teurer Stuhl den du dann hast. Das möchten wir natürlich vermeiden. Das heißt also, im Endeffekt in eine gute Diagnose gehört nicht nur die Untersuchung rein was fehlt, sondern auch den Grund herauszufinden, warum etwas fehlt. Julia: Ja. Jens: Und wenn ich eine Darmentzündung habe, muss ich mich auch um eine Darmentzündung kümmern. Wenn ich irgendein Resorptionsproblem habe, dass kann auch sein, dass ich im Aufschließen meiner Ernährung ein Problem habe. Das heißt also, du kannst ein Problem mit der Galle haben, dann klappen die Lipasen nicht so. Du kannst die Gallensäure nicht ordentlich produzieren. Du kannst ein Leberproblem haben, das zu einem Gallenproblem führt. Du kannst ein Pankreasproblem haben, wo dir dann einige Enzyme fehlen. Du kannst ein Magensäureproblem haben, wo du nicht genügend Salzsäure produzierst, die hilft dein Eiweiß aufzuschließen. Wenn du jetzt dann das ersetzen möchtest durch Proteindrinks, dann ist das nicht zielführend. Ich meine dann soll man sich erst mal darum bemühen, zu gucken warum gibt es ein Magensäureproblem. Und wenn du dann Pantoprazol-Patienten vor dir sitzen hast, die eben noch mal diese ganzen Puffer bekommen, die verhindern, dass du Magensäure produzierst, dann haben die sehr oft so einen Rattenschwanz an Zusatzproblemen. Die haben dann eine Blinddarmfehlbesiedlung. Dann kommen dann Resorptionsprobleme mit und im Endeffekt ist das Defizit dann nicht durch Nahrungsergänzungsmittel zu schließen, ja. Julia: Ja. Jens: Worüber du dir auch Gedanken machen musst ist, es gibt eine Menge Chemikalien, die werden vor Ort in der Zelle auch produziert und wenn die Zelle es vor Ort erst produziert, ist das nicht das Gleiche wie wenn du jetzt eine Tablette oder ein Pulver nimmst. Das muss jetzt nicht in der gleichen Menge wie du es oben reinfütterst dann auch in der Zelle landen. Und es wird natürlich dann auch im Körper stark verdünnt. Du hast einen Körper, der hat 60 – 70 kg, oft auch mehr, und dann verteilst du jetzt so ein Löffelchen von irgendetwas, das landet nicht unbedingt im Herzmuskel, ja. Und jetzt z. B. das Glutathion ist auch so eine Substanz. Darüber kann man jetzt lange spekulieren. Es gibt einige Firmen, die aus diesem Grund z. B. auch jetzt Varianten von dem Glutathion hergestellt haben, die eine höhere Bioverfügbarkeit, bessere Resorptionsfähigkeit besitzen. Ich würde also jetzt z. B. auch eher die Einzelbausteine vom Glutathion, du kannst also Glutamin und Cystein, also diese Aminosäuren die würde ich gezielt einnehmen, damit der Körper vor Ort das baut, was er benötigt. Es gibt da unterschiedliche Ansätze, aber einfach nur das, was dem Mitochondrium fehlt oben reinstopfen muss nicht der richtige Weg sein. Also sehr oft muss man sich wirklich angucken Ursache und Wirkung, ja. Wo liegt das echte Problem. Julia: Ja, wie man sieht, es ist wieder mal nicht so einfach wie man sich das so vorstellt. Und es ist klar, es sind immer viele Faktoren. Man kann einfach nicht nur an einem, ja isoliert die Sache betrachten und denken, so da gebe ich jetzt einfach mal ein bisschen Glutathion oder eben bissel Q10 und dann ist alles gut, sondern wie du eben gesagt hast, es gibt so viele Umweltfaktoren. Du hast das eben nur ganz kurz angesprochen, einfach so etwas wie Licht natürlich, aber auch Bewegung, der Darm usw. und sofort. Das sind einfach eben, natürlich muss man auf all diesen Ebenen ansetzen, ja. ##Behandlungsmethoden mit Rotlicht Jens: Ganz genau. Ein interessanter Punkt: Du hast gerade das Wort Licht noch mal erwähnt. Etwas was man in der letzten Zeit auch häufiger sieht, sind jetzt Behandlungsmethoden mit Rotlicht, ja. Die Mitochondrien haben in der Atmungskette Moleküle drin, die eine gewisse Resonanz auf Lichtenergie haben. Das heißt also, jeder Körper hat irgendwo eine gewisse Frequenz mit der er eine Resonanz erzeugt. Und bei den Zytochromen, das sind also spezielle Teile innerhalb der Atmungskette, also die Atmungskette ist sehr komplex. Das sind glaube ich 83 verschiedene Proteine zusammengebaut in relativ komplexe Strukturen. Und einige davon, die sind nun mal interaktiv mit Rotlicht. Das heißt, wenn ich Rotlicht in den Körper hinein strahle, und das ist jetzt eher in dem Bereich jetzt auch noch infrarot, das Infrarot-A-Licht, das dringt schon ein bisschen tiefer ins Gewebe ein. Damit kriege ich eine Resonanz von den Zytochromen und ich kann damit tatsächlich die Mitochondrien anregen und die fangen auch an, sich damit zu vermehren. Also Rotlichtbehandlung ist etwas wo du auch einen Heilungsprozess mit anregen kannst. Das ist eine interessante Sache. Es gibt Methoden wo du tatsächlich auch Schilddrüsen wieder aktivieren kannst, indem du eine Schilddrüse – die sollte jetzt nicht Tumor-gefährdet sein, auch da muss man wieder vorsichtig sein, also das Anregen von Gewebe ist immer eine zweischneidige Sache. Aber sagen wir mal eine Schilddrüse, die ein bisschen lahm ist, die ein bisschen wenig produziert und die relativ klein ist, kann man tatsächlich mit Rotlicht behandeln, und die wird damit auch wieder ein bisschen nachwachsen. Also dazu gibt es interessante Studien. Und genauso gibt es also auch viele mittlerweile Laserbehandlungen, wo man mit Rotlicht selektiv eben die Mitochondrien anregen kann. Das ist ein spannendes Feld noch mal, ja. Julia: Ja, wirklich sehr spannend. Ja, ich meine wir kommen jetzt so langsam zum Ende. Das ist so spannend und immer wieder schade, wie schnell die Zeit vergeht. Wenn du sagen wir mal 3 Dinge raussuchen müsstest, wo du sagen würdest, die 3 Dinge sind wichtig oder sollte man machen, um seine Mitochondrien gesund zu halten, was würdest du sagen, was wären diese 3 Dinge? ##Die wichtigsten 3 Dinge zur Gesunderhaltung der Mitochondrien Jens: Also ich würde mal sagen, das Leben im Einklang mit den Jahreszeiten, das halte ich für sehr wichtig. Und das sind die Mitochondrien mit Sicherheit zentral, aber nicht das einzige. Und wenn ich sage mit den Jahreszeiten, dann meine ich die jahreszeitliche Ernährung und die jahreszeitliche Lichthygiene und die jahreszeitliche Temperaturumgebung. Also im Winter ist unser Schlafzimmer nicht geheizt. Das heißt nicht, dass es friert. Aber es ist auch deutlich kälter als sonst. Und das halte ich zumindest für extrem wichtig, dass du einfach mit den Jahreszeiten lebst. Wo du lebst, das solltest du dich an deiner Umgebung auch orientieren. Das heißt also, saisonal, regional, im Einklang mit der Natur. Ich bin der Meinung, dass du sehr stark auf deine schnellen Kohlenhydrate achten solltest, also möglichst wenig Zucker, möglichst wenig von diesen Nudeln, Kartoffeln, Reis, Brot usw. essen. Das heißt nicht nein, ich sage nur weniger. Und auch da wieder regional, saisonal - darauf achten. Und dann denke ich, dass ein für deinen Körper geeignetes Bewegungsprogramm notwendig ist. Ältere Personen verlieren irgendwann auch Mitochondrien. Du verkürzt die Telomere, das sind so die Kappen auf deinen Chromosomen. Das heißt, du hast eine Zellalterung. Das ist enorm wie du aber deinen Körper aufbauen kannst durch tatsächlich jetzt wieder körperliche Bewegung. Und was ich da immer wieder gerne empfehle sind diese HIT-Programme, also so High Intensity Training, also mit den Muskeln an die Belastungsgrenze gehen. Die ist individuell, die altersbedingt natürlich individuell, und eine ältere Person die einen Liegestütz schräg an der Wand stehend macht ist immer noch deutlich besser als kein Liegestütz, ja. Also es gibt den berühmten Frauenliegestütz. Wenn du den anders nicht hinkriegst, dann so einen Liegestütz. Aber wie gesagt, 10 Liegestütze versuchen, möglicherweise täglich, ja. Und das sind also diese, den Körper an die Belastungsgrenze bringen. Das erhöht auch wieder deine Mitochondrienzahl, hält die Mitochondrien am Leben und selektioniert die Guten aus. Also die Kombination mit der richtigen jahreszeitlichen Ernährung im richtigen Umfeld mit dem richtigen Energieträger, also nicht zu viel Zucker, mit der Bewegung – ich glaube das ist ein ganz wichtiger Punkt. Julia: Super! Ja, wo finden dich jetzt die Zuhörer und Zuschauer im Internet, oder wo bist du zu Hause? Wo kann man auch mehr über dich lesen und bissel sehen was du so anbietest? ##Kontaktmöglichkeiten zu Jens Jens: Unsere Praxis findet man unter www.hygeanum.de. Wir liegen in Deutschland zwischen Karlsruhe und Heidelberg an der A5 an der Autobahn recht gut zu erreichen. Julia: Ja. Lieber Jens, herzlichen Dank für deine Zeit! Jens: Danke für dein Interesse! Julia: Es hat mich sehr gefreut, vielen Dank! Jens: Es hat mir auch Spaß gemacht und es war Klasse, dass wir endlich mal die Zeit gefunden haben, nicht?! Julia: Ja, finde ich auch. Jens: Ok, tschüß! Julia: Tschüß! Bücher ###Mitochondrientherapie - die Alternative: Schulmedizin? Heilung ausgeschlossen! von Dr. sc. med. Bodo Kuklinski, Dr. Anja Schemionek Webseiten Naturheilpraxis Hygeanum Dr. rer. nat. Adriana Radler-Pohl, Heilpraktikerin und Dr. rer. nat. Jens Pohl, Heilpraktiker Blog - My Body Science Dr. Jens Pohl - Hygeanum | (https://www.facebook.com/Hygeanum) Paleo Low Carb - JULIAS BLOG | (auf Facebook folgen)
Diesmal reden @moepern und ich über Chromosomen. Eigentlich ist das ja nur DNA mit Proteinen - oder doch nicht? Und wusstet ihr, dass man Chromosomen in der Form, wie wir sie kennen, also kleine X-e, nur kurz vor und während der Zellteilung sehen kann? In der Bio-Frage geht es um die Schildpatt-Katze. Sind das wirklich immer nur Katzen und niemals Kater?
Gleich, Gleicher, am Gleichesten... Was uns Menschen unter anderem ausmacht und wie viele Chromosomen eine Stechmuecke hat, erfaehrst du in dieser neuen Folge :-) Viel Spass beim Reinhoeren! Dein Karim Ich freue mich ueber Deine Kommentare und Erfahrungen zu diesem Thema im Kommentarfeld unter diesem Podcast, per E-Mail oder auf https://www.facebook.com/RockYourPotential Viel Spass beim Anhoeren Euer Karim winking Moderator & Herausgeber der weltbekannten Show, in der Kategorie Business News Platz 1! www.RockYourPotential.com - DER Ich-Podcast 100% Content - 100% Qualitaet - 100% FREE P.S.: Wenn Dir mein Podcast gefaellt, dann freue ich mich sehr, wenn Du mir auf iTunes eine Bewertung, gerne auch mit 5 Sternen winking hinterlaesst, damit noch mehr Menschen von diesem Podcast inspiriert werden koennen. Tausend Dank! winking P.P.S: Gerne kannst Du mir eine Mail mit einer Idee oder einem Themenvorschlag schicken. Ich freue mich immer ueber Anregungen und Ideen, die von meinen Zuhoerern kommen. Bitte schreib mir dazu eine Mail an: Redaktion (at) RockYourPotential (dot) com
Alles neu... Wird der Mai dann schon noch machen. Zum Beispiel die Telomere (Pufferzonen der Chromosomen), wenn man im Alter die richtige Portion Sport treibt! Auch neu ist eine Theorie über die Gründe für die hohe Statur niederländischer Männer, eine Erklärung ozeanographische Erklärung für das Brummton-Phänomeen, sowie neue Relevanzkriterien für Webseiten. Außerdem: Katrin stellt eines ihrer Projekte vor und erzählt, wie der Puplikationsprozess so ablief. Viel Spaß beim Hören!
Willkommen in der Welt der Biologie! Mein Name ist Alia Korth und heute geht es um Mitose. Als Mitose bezeichnet man den Vorgang der Zellteilung bei Zellen, die einen Zellkern besitzen. Aus einer Mutterzelle werden also zwei Tochterzellen. Man teilt die Mitose in die folgenden 5 Phasen ein: In der Interphase werden die Chromosomen, also die DNS, verdoppelt. Während der Prophase ziehen sich die Chromatidfäden zusammen, es entstehen Paare, die von einem sich bildenden Zentromer zusammen gehalten werden. Anschließend wandern die Zentriolen zu den Polen, also den gegenüberliegenden Seiten des Zellkerns. Nun löst sich die Wand des Zellkerns auf. Im Anschluss daran kommt die Metaphase, in welcher sich die Chromosomen an der Äquatorialebene, der Mitte des Zellkerns, ausrichten. Es bilden sich Spindelfasern, welche zu den Zentromeren wandern. In dem Moment, in dem die Chromatiden der Chromosome auseinander gezogen werden, beginnt die Anaphase. Darauf folgend, in der Telophase, bildet sich die Zellwand des Zellkerns wieder, die Zentriolen bauen sich ab und die Äquatorialebene zieht sich zusammen. Es entstehen zwei Tochterzellen. Die eigentliche Mitose ist nun abgeschlossen, nun wachsen die Tochterzellen. Dies nennt man Zytokinese. Für die Phasen der Mitose gibt es verschiedene Merksprüche. Ich finde den Spruch “Ich pauke Mitose alle Tage.” am einfachsten, die Anfangsbuchstaben der Worte sind die Anfangsbuchstaben der einzelnen Phasen. Wenn euch die vielen Fachbegriffe, die wir in dieser Folge nicht alle ausführlich erklären konnten, teilweise noch nicht klar sind, dann schaut doch einfach in unserem Glossar auf www.in2minuten.com nach. Dort haben wir alle unklaren Begriffe noch mal kurz erklärt. Wenn ihr noch Fragen oder Anregungen habt, dann schreibt mir einfach eine E-Mail an biologie@in2minuten.com. Weitere “in 2 Minuten” Podcasts findet ihr auch im Internet unter www.in2minuten.com. Vielen Dank für’s Zuhören und bis zum nächsten Mal!
Das menschliche Genom ist entschlüsselt, die Regulation aller Genaktivitäten aber noch lange nicht verstanden. Eine weitgehend ungeklärte Rolle spielt dabei die dreidimensionale Anordnung des Erbguts. Professor Thomas Cremer und seinem Team gelang es, alle menschlichen Chromosomen, also einzelne DNA-Moleküle, im Zellkern räumlich darzustellen – in verschiedenen Zelltypen, zu unterschiedlichen Zeiten und bei krankhaften Veränderungen wie Krebs.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
Akkurate Verteilung der Chromosomen während der Zellteilung ist eine fundamentale Voraussetzung für den Erhalt der genetischen Information eines Organismus. Durch Fehler innerhalb dieses Prozesses resultieren Aneuploidien, die wiederum zur Entstehung von Krebs oder Trisomien (z.B. Down-Syndrom) führen können. Es überrascht daher nicht, dass die Chromosomensegregation einen der am höchsten regulierten Vorgänge innerhalb des eukaryotischen Zellzyklus darstellt. Die Schwesterchromatide eines jeden Chromosoms werden in S-Phase synthetisiert und gleichzeitig von einem sie ringförmig umschließenden Multi-Proteinkomplex, Kohäsin genannt, miteinander verpaart. Ihre Trennung in der nachfolgenden Kernteilungsphase (Mitose) erfolgt bei Vertebraten in zwei Stufen. Während Kohäsin von den Chromosomenarmen bei Phosphorylierung in Prophase dissoziiert, wird zentromerisches Kohäsin von der später aktiv werdenden Separase proteolytisch gespalten, wodurch die Anaphase ausgelöst wird. Shugoshine (SGOs) schützen die Schwesterchromatidkohäsion im Bereich der Zentromeren, indem sie durch Rekrutierung von Protein-Phosphatase 2A (PP2A) der Phosphorylierung von Kohäsin entgegenwirken. In Säugern schützt Sgo1 mitotisches Kohäsin in der Prophase, während Sgo2 meiotisches Kohäsin vor der phosphorylierungsabhängigen Spaltung durch Separase während der ersten Reifeteilung bewahrt. Sowohl Mitose als auch Meiose werden maßgeblich durch den Spindle Assembly Checkpoint (SAC) reguliert. Dieser lässt Anaphase grundsätzlich erst dann zu, wenn alle Chromosomen über ihre Kinetochore mit Mikrotubuli des Spindelapparates in einer Weise wechselwirken, dass Zugspannung entsteht. Solange dies nicht der Fall ist, katalysiert ein kinetochorständiger Mad1-Mad2-Komplex die konformationelle Umwandlung von löslichem Mad2 hin zu einer Form, in der es über Bindung an Cdc20 die Aktivierung von Separase und den Austritt aus der Mitose blockiert. In der vorliegenden Arbeit wird durch funktionelle Charakterisierungen in Krebszelllinien gezeigt, dass Sgo2 keine essentielle mitotische Funktion ausübt. Ein bislang in der Literatur bestehender Widerspruch wird hierdurch geklärt. Die RNAi-vermittelte Depletion von Sgo2 führt zwar zu einem Verlust des Mikrotubuli-depolymerisierenden Kinesins MCAK von den Zentromeren, entsprechende HeLa-Zellen zeigen bei fehlender Zugspannung aber weiterhin einen mitotischen Arrest, der von Aurora B abhängig ist. Die Funktion dieser mitotischen Kinase innerhalb des SAC beruht demzufolge nicht auf der Erzeugung freier Kinetochore durch die Rekrutierung von MCAK sondern auf einem alternativen Signalweg. Weiterhin wird eine unerwartete, direkte Bindung von humanem Sgo2 an Mad2 beschrieben. Biochemische Experimente machen deutlich, dass Sgo2 genauso mit Mad2 interagiert, wie dies Mad1 und Cdc20 tun. Gleichzeitig wird gezeigt, dass die Wechselwirkung zwischen Sgo2 und Mad2 konserviert ist und in Organismen, denen ein zweites Shugoshin fehlt, von Sgo1 übernommen wird. Diese Daten stellen ein zentrales Dogma in Frage, das für den SAC beschrieben wurde und das für das aktive Checkpoint-Signal von einer „Quelle“ (kinetochorständiges Mad1-Mad2) und einem „Zielprotein“ (Cdc20) ausgeht. Die Mad2-Bindung ist für die Fokussierung von Sgo2 am inneren Zentromer erforderlich. In Abwesenheit von Mad2 oder bei mutierter Mad2-Bindestelle verlagert sich Sgo2 an Randbereiche des Zentromers. Aufgrund dieser Daten sowie publizierter Studien über die Funktion von Sgo2 in Meiose wird postuliert, dass der Sgo2-Mad2-Wechselwirkung eine Funktion in der Monoorientierung von Schwesterkinetochoren während der ersten Reifeteilung zukommt.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 11/19
Die einzige Möglichkeit, Patienten mit Pankreaskarzinom zu heilen, besteht in einer möglichst frühzeitigen Diagnose und Operation. Nach einer kurativen Resektion versterben dennoch über 95% aller Patienten innerhalb der folgenden fünf Jahre an einem Rezidiv, was belegt, dass nach der Operation disseminierte Tumorzellen (DTZ) im Körper des Patienten verbleiben und deren Progression zu einem Rezidiv der Krebserkrankung führt. Beim Pankreaskarzinom wurde gezeigt, dass der Nachweis von DTZ mit dem Antikörper A45-B/B3 gegen Zytokeratin im Knochenmark und mit dem Antikörper Ber-EP4 gegen EpCAM im Lymphknoten mit einer schlechteren Prognose korreliert. Das Ziel der vorliegenden Dissertation war es, Einblicke in die Biologie von hämatogener und lymphogener Disseminierung beim Pankreaskarzinom zu erarbeiten. Zunächst wurde die Prävalenz von DTZ durch immunzytochemische Färbungen gegen die oben genannten epithelialen Marker bestimmt. Anschließend wurden die Zellen isoliert, ihre DNA amplifiziert und mit der komparativen genomischen Hybridisierung (CGH) auf numerische Aberrationen hin untersucht, welche mit den chromosomalen Veränderungen des Primärtumorkollektivs verglichen wurden. Diese Gegenüberstellung sollte ergründen, ob Ähnlichkeiten zwischen hämatogen disseminierten (H-DTZ), lymphogen disseminierten Tumorzellen (L-DTZ) sowie Primärtumoren (PT) bestehen und ob charakteristische Veränderungen für H-DTZ und L-DTZ existieren, welche möglicherweise im Rahmen der Disseminierung selektiert wurden. Die Prävalenz von DTZ bei Patienten mit nicht metastasiertem Pankreaskarzinom lag im Knochenmark bei 23,0% und im Lymphknoten bei 38,1%. Dieser Unterschied war nicht signifikant. Die genomische Analyse von DTZ und PT deckte auf, dass Primärtumore die höchste Anzahl an numerischen Aberrationen aufwiesen (Mittelwert: 12,8), gefolgt von den L-DTZ (Mittelwert: 9) und den H-DTZ (Mittelwert: 4,7). Zum anderen zeigten EpCAM-positive Zellen aus den Lymphknoten häufiger abnorme Karyotypen (78,3%) als Zytokeratin-positive Zellen aus dem Knochenmark (68,8%), während alle PT numerische Aberrationen aufwiesen. Die Häufigkeit von chromosomalen Gewinnen und Verlusten war unterschiedlich in den verschieden Gruppen und betrug bei H-DTZ 3,6 DNA-Gewinne und 1,1 DNA-Verluste, bei L-DTZ 4,5 DNA-Gewinne und 4,5 DNA-Verluste und bei PT 5,6 DNA-Gewinne und 7,2 DNA-Verluste pro analysierter Probe. Die Ähnlichkeitsanalyse numerischer Aberrationen der drei Kollektive zeigte, dass PT und insbesondere DTZ untereinander sehr heterogen sind. Charakteristische Veränderungen, die möglicherweise selektiert worden waren, wurden in erster Linie in PT gefunden, in geringerem Ausmaß auch in Tumorzellen aus Lymphknoten. Es handelte sich dabei in erster Linie um DNA-Verluste, wie zum Beispiel auf Chromosom 17 und 18, welche PT und L-DTZ gemeinsam waren und eine größere Ähnlichkeit zwischen diesen beiden Gruppen im Vergleich zu PT und H-DTZ nahelegen. Andererseits konnten auch Aberrationen identifiziert werden, die charakteristisch für die jeweilige Gruppe waren. Insbesondere handelte es sich dabei bei H-DTZ um DNA-Gewinne von 5p und 15q und bei L-DTZ um DNA-Gewinne von 4p oder 19 beziehungsweise DNA-Verluste von 11q oder 12p. Häufige DNA-Gewinne und -Verluste auf den Chromosomen 1, 3 oder 22 waren kennzeichnend für die Gruppe der Primärtumore. In der Analyse gepaarter Proben desselben Patienten waren gemeinsame Aberrationen zwischen PT und H-DTZ nur in der Hälfte (3/6), zwischen PT und L-DTZ dagegen in allen der untersuchten Fälle (2/2) anzutreffen. Auch die Anzahl dieser gemeinsamen Veränderungen war bei letzteren größer (Anteil gemeinsamer Veränderungen zwischen a) PT und H-DTZ: 5,9%, 5,9%, 4,8% und b) PT und L-DTZ: 16,3%, 8,9%). Der Vergleich solcher Aberrationen zwischen den verschiedenen Patienten mit gepaarten Proben dagegen führte nicht zur eindeutigen Identifikation typischer Veränderungen, welche im Zusammenhang mit einer hämatogenen oder lymphogenen Disseminierung gesehen werden können. Eine Zunahme numerischer Aberrationen mit fortschreitender Tumorprogression im Primärtumor wurde für die meisten soliden Tumoren nachgewiesen. Auch bei der Progression der pankreatischen intraepithelialen Neoplasie zum Pankreaskarzinom ist die Akkumulation von genetischen Veränderungen zu beobachten. Vor diesem Hintergrund deuten die vorliegenden Ergebnisse daraufhin, dass die Disseminierung ein frühes Ereignis im Rahmen der Progression des Pankreaskarzinoms ist. In sehr frühen Tumorstadien, welche möglicherweise von den Genomprofilen der DTZ im Knochenmark repräsentiert werden, sind in erster Linie DNA-Gewinne anzutreffen. Interessanterweise scheinen diese DTZ im Milieu des Knochenmarks keine Deletionen zu akkumulieren. Mit fortschreitender Tumorprogression kommt dagegen DNA-Verlusten eine zunehmend bedeutende Rolle zu, was in DTZ aus Lymphknoten sowie im Primärtumor zu beobachten ist. Diese Beobachtungen bilden die Grundlage für eine Vielzahl weiterführender Fragestellungen, wie zum Beispiel die Identifikation der genetischen Veränderungen, die am Anfang der genetischen Progression stehen. Gerade diese Veränderungen könnten von allen Tumorzellen geteilt werden und somit ideale Zielstrukturen für neue Therapieansätze darstellen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 08/19
Thu, 19 Jun 2008 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/8778/ https://edoc.ub.uni-muenchen.de/8778/1/Schwarz_Tobias.pdf Schwarz, Tobias ddc:600, ddc:610, Medizinische Fakultä
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 08/19
Thu, 5 Jun 2008 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/9009/ https://edoc.ub.uni-muenchen.de/9009/1/Dehning_Sandra.pdf Dehning, Sandra ddc:600, ddc:610, Medizinische Fakultät
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Verschiedene Arbeiten der letzten Jahre konnten zeigen, dass sich in vielen, verschiedenen Zelltypen genreiches, transkriptionell aktives und früh replizierendes Chromatin bevorzugt im Inneren der Zellkerne aufhält, während das genarme, transkriptionell inaktive und spät replizierende Chromatin vorrangig an der Zellkernperipherie zu finden ist. Dennoch ist bislang noch nicht wirklich verstanden, welche der Chromatineigenschaften, wie die lokale Gendichte, die Expression oder die Replikationszeit, tatsächlich einen ausschlaggebenden Einfluss auf die räumliche Anordnung im Zellkern haben und welche dieser Eigenschaften nur aufgrund ihrer Korrelation mit diesen „dominanten“ Merkmalen eine spezifische Verteilung im Interphasekern aufweisen. Um dieses Problem zu untersuchen, stellten wir Pools aus BAC Klonen von HSA 11, 12, 18 und 19 für R-und G-Banden-spezifische Regionen, genreiche bzw. genarme Segmente sowie für hoch bzw. niedrig exprimierte Gene zusammen. Mit Hilfe der multicolor 3D-FISH Technik, Bildverarbeitung und computergestützter, quantitativer Auswertungen wurde die Lage dieser BAC Pools im Zellkern sowie ihre Anordnung bezüglich ihrer Chromosomenterritorien analysiert. Sowohl in den humanen Lymphozyten wie in den humanen Fibroblasten fanden wir den R-Banden Pool, den genreichen Pool sowie den Pool, der die hoch exprimierten Gene enthielt, weiter im Zellkerninneren als ihre jeweils korrespondierenden Pools (G-Banden, genarmer Pool, bzw. niedrig exprimierte Gene). Für jeden BAC Pool wurde mittels sorgfältiger Datenbankrecherche die mittlere lokale Gendichte, der mittlere GC Gehalt, die Replikationszeit sowie das mittlere Expressionsniveau bestimmt. Anschließend wurde eine Korrelationsanalyse dieser Parameter mit der berechneten mittleren, relativen Position der Pools im Zellkern durchgeführt. Die höchste Korrelation ergab sich für die Gendichte, während wir zeigen konnten, dass das Expressionsniveau, die Zuordnung zu einer R- oder G.Bande, sowie das Replikationstiming offensichtlich so gut wie keinen Einfluss auf die radiale Anordnung des Chromatins im Zellkern hat. Diese radiale Positionierung der verschiedenen Pools spiegelte sich auch in ihrer Anordnung bezüglich der Chromosomenterritorien wieder. Diese zeigen eine polare Anordnung in Bezug auf den Zellkern: Genreiche Segmente waren zum Mittelpunkt des Zellkerns hin orientiert, während die genarmen Segmente in der Hälfte des CTs zu finden waren, die sich in Richtung der Peripherie erstreckte. Etwas weniger deutlich ausgeprägt wurde diese Anordnung auch für die R-/G-Banden Pools sowie für die von der transkriptionellen Aktivität abhängigen Pools beobachtet. Dies spricht für eine deutliche strukturelle Transformation bei der Umwandlung der Metaphasenchromosomen zu den CTs der Interphase, die Territorien haben eine hohe Plastizität. Wir konnten bestätigen, dass die extrem genreiche und hoch transkriptionell aktive Region 11p15.5 oft weit aus ihrem CT herausragt. Ein ähnliches Verhalten konnte jedoch nicht für die ebenfalls sehr genreichen und transkriptionell aktiven Segmente des Chromosoms 12 beobachtet werden, was gegen die Annahme spricht, das dieses Phänomen des „looping outs“ ein typische Anordnung für Chromatinabschnitte mit solchen extremen Eigenschaften ist. Wir konnten ebenfalls keine Unterschiede für die Verteilung der BAC Pools der Chromosomen 12, 18 und 19 bezüglich der Oberfläche der CTs finden. R- und G-Banden, genreiche und genarme Segmente sowie hoch und niedrig exprimierte Gene scheinen gleichmäßig im gesamten Territorium verteilt zu sein. Die äußere, das CT einschließende Oberfläche scheint entgegen der Erwartung offensichtlich kein wichtiger Reaktionsort für besonders genreiche bzw. hoch exprimierte Sequenzen zu sein.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 07/19
Der obere Aerodigestivtakt ist das primäre Kontaktorgan für viele inhalative Karzinogene. Dies spielt insbesondere bei der tabak-assoziierten Karzinogenese eine entscheidende Rolle. Polyzyklische Kohlenwasserstoffe und der Metabolit des Benzo[a]pyrens, das Benz[a]pyren-7,8-diol-epoxid (BPDE) sind hierbei von herausragender Bedeutung. Mutationen an der DNA sind dabei nicht gleichmäßig über die gesamte DNA verteilt, sondern auf speziellen Chromosomen bzw. Genen lokalisiert. Zur Erstellung eines individuellen Risikoprofils wurde in dieser Arbeit die alkalische Einzellzell-Mikrogelelektrophorese (Comet Assay), eine etablierte Methode zur Quantifizierung von DNA-Schäden, erstmals mit der Fluoreszenz in situ Hybridisierung (FISH) an Mucosazellen des oberen Aerodigestivtraktes kombiniert. Nach Inkubation mit BPDE konnte so eine Bestimmung der DNA-Schädigung an den Chromosomen 3,5,8 und dem Vergleichschromosom 1 durchgeführt werden. Dabei wurden frisch entnommene, makroskopisch gesunde Mukosaproben von Patienten mit Oropharynxkarzinom und tumorfreien Patienten verglichen. Es stellte sich heraus, dass Tumorpatienten eine höhere Schädigung der Chromosomen 5 und 8 im Vergleich zu Chromosom 1 aufwiesen. Bei tumorfreien Patienten konnten keine Unterschiede der einzelnen Chromosomen untereinander und im Vergleich zur Gesamt-DNA nachgewiesen werden. Neben einer quantitativen Bestimmung der DNA-Schädigung an Interphasezellen sollte in der vorliegenden Arbeit auch strukturelle DNA-Schädigungen an Metaphasechromosomen untersucht werden. Zur Einschätzung der Mutagensensitivität bei der Karzinogenese im Oropharynx wurden in multiplen Vorarbeiten Lymphozyten als Kontrollzellen herangezogen. Deshalb wurden auch in der vorliegenden Arbeit Metaphasechromosomen aus Lymphozyten präpariert und mit FISH untersucht. Zusätzlich wurde auch eine neue Methodik zur Präparation von Metaphasechromosomen aus Mukosazellen des oberen Aerodigestivtraktes etabliert. Es konnte jedoch an keinem der untersuchten Chromosomen ein statistisch signifikanter Unterschied in der Schädigung zwischen tumorfreien- und Tumorpatienten ausgemacht werden. Das in der vorliegenden Arbeit etablierte Modell zur Präparation von Chromosomen aus Mukosazellen bietet zur weiterführenden Erfassung des Risikoprofils für die Entstehung von Karzinomen des oberen Aerodigestivtraktes einen geeigneteten Ansatz. Unter Umständen lassen sich zusätzliche Gene lokalisieren, die für die Tumorentstehung im Kopf-Hals-Bereich von Bedeutung sind. Die vorliegende Arbeit zeigt, dass einige dieser Veränderungen bereits in makroskopisch gesunder Schleimhaut des oberen Aerodigestivtrakts auftreten. Weitere Untersuchungen müssen ergeben, ob spezifische Veränderungen am Genom nicht schon vor Entstehung des Tumors nachweisbar sind. Aus solchen Veränderungen ließe sich eine umfangreiche Frühdiagnostik zur Einschätzung der individuellen Mutagensensitivität entwickeln. Dies eröffnet die Möglichkeit für künftige präventive und therapeutische Strategien für die Karzinogenese des oberen Aerodigestivtraktes.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
Die Zellkernarchitektur beschreibt die räumliche Anordnung der linearen Gensequenz im dreidimensionalen Zellkern. Die Beobachtung einer geordneten räumlichen Strukturierung und radialen Verteilung der Gene und Chromosomen legt nahe, daß die Zellkernarchitektur Basis und Ausdruck von höheren Organisations- und Regulationsmechanismen ist. Chromosomen liegen im Interphasezellkern in definierten umschriebenen Regionen, sogenannten Chromosomenterritorien vor. Aus früheren Untersuchungen weiß man um die Gendichte-korrelierte radiale Anordnung dieser Chromosomenterritorien. Die vorliegende Arbeit befaßt sich mit der Frage, inwieweit die Gendichte eines subchromosomalen DNA-Bereiches (also eines Teilabschnittes eines Chromosoms) die Position dieses DNA-Abschnittes in Bezug auf das Chromosomenterritorium und den Interphasezellkern beeinflußt. Mittels Fluoreszenz-in-situ-Hybridisierung an 2D- und 3D-fixierten Zellkernen (2D/3D-FISH) und Epifluoreszenz- bzw. konfokaler Mikroskopie wurden spezifische subchromosomale Bereiche unterschiedlichen Gengehalts der Chromosomen 1 und 12 differentiell dargestellt. Beide Chromosomen zeichnen sich durch eine distinkte Gliederung in sehr genarme und sehr genreiche Areale aus. Als DNA-Sonden wurden fluoreszenzmarkierte Pools aus exakt kartierten BAC-Klonen von Chromosom 1 und 12 eingesetzt, die entweder einer R- oder G-Bande oder alternativ einem chromosomalen Abschnitt hoher oder niedriger Gendichte zugeordnet waren. Um mögliche andere, von der Gendichte unabhängige Einflüsse auf die radiale Verteilung subchromosomaler Bereiche wie z.B. die Kerngestalt zu identifizieren, wurden die Versuche an drei unterschiedlichen menschlichen Zellarten, Lymphozyten, Fibroblasten und Coloncarcinomzellen der Zellinie SW480, sowohl während der S-Phase als auch nach Verlassen des Zellzyklus in der G0-Phase durchgeführt. Die quantitative Evaluation der Anordnung und der radialen Verteilung der DNA-Segmente in Bezug auf das Chromosomenterritorium bzw. auf den Kern erfolgte an 3D-Rekonstruktionen von lichtoptischen Serienschnitten mittels zweier unabhängiger computergestützter Auswertungsprogramme. Es konnte gezeigt werden, daß in den annähernd runden Lymphozyten radiale Verteilungsunterschiede in Korrelation zur Gendichte gegeben sind: Genarme Bereiche des Chromosoms 12 ordnen sich unabhängig vom Zellzykluszeitpunkt in Bezug auf den geometrischen Mittelpunkt des Interphasekerns peripherer an als genreiche. Dieser Befund stützt die Hypothese, daß genreiche Regionen von Chromosomen eher zum Zellkernmittelpunkt hin präsentiert, genarme dagegen in die Peripherie verlagert werden. In der S-Phase konnte eine ebensolche radiale Verteilung auch in Bezug auf das Chromosomenterritorium gefunden werden. Hier wird die genarme DNA schwerpunktmäßig an den Rand des Territoriums verschoben. Anders verhält es sich bei den adhärent wachsenden, flachen humanen Fibroblasten. Hier konnte kein signifikanter Unterschied in der dreidimensionalen, räumlichen Anordnung genarmer und genreicher DNA-Abschnitte gefunden werden, und zwar weder in Bezug auf den Kern noch auf das Territorium. SW480-Tumorzellen sind rundliche bis ellipsoide Zellen. Ähnlich den Lymphozyten zeigen sie klare radiale Anordnungsunterschiede von Bereichen des Chromosoms 12, sortiert nach der Gendichte. Allerdings sind diese Unterschiede weniger stark ausgeprägt als bei den Lymphozyten. So konnte nur in Bezug auf das Chromosomenterritorium ein signifikanter radialer Verteilungsunterschied gefunden werden. In Bezug auf den Kern sieht man eine deutliche, aber statistisch nicht signifikante Tendenz, genarmes Chromatin in die Peripherie zu verlagern. Insgesamt belegen die Ergebnisse dieser Doktorarbeit, daß das Prinzip der Korrelation von Gendichte und radialer Verteilung grundsätzlich auch für subchromosomale Bereiche gilt. Es läßt sich jedoch feststellen, daß bei der radialen Verteilung von Chromosomenabschnitten weitere, noch nicht bekannte Faktoren eine Rolle spielen und sie nicht ausschließlich durch die Gendichte bestimmt wird.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Zusammenfassung Die Protease Separase trägt zur Regulation mitotischer und meiotischer Vorgänge entscheidend bei. Ihre klassische Funktion ist die Induktion der Schwesterchromosomen-trennung durch Spaltung des Cohesin-Proteinkomplexes, der die Schwesterchromatiden von der S-Phase bis zur Mitose gepaart hält. Separase wird am Ende der Metaphase durch Ubiquitin-abhängigen Abbau ihres Inhibitors Securin aktiviert. Ein zweiter Separase-Inhibitionsmechanismus ist die Hemmung durch Cyclin B1/Cdk1 („Cyclin Dependent Kinase 1“). Dafür ist Separase-Phosphorylierung durch Cdk1 notwendig (Stemmann et al., 2001). In vielen Modellorganismen hat Separase Funktionen, die über die Anaphase-Induktion hinausgehen. So trägt sie in S. cerevisiae beispielsweise zur Cdk1-Inaktivierung beim Meiose I-Meiose II-Übergang bei. Diese Separase-Funktion benötigt die proteolytische Separase-Aktivität nicht, ist jedoch abhängig vom Securin-Abbau. Für andere Funktionen der Separase hingegen könnte die Separase-abhängige Spaltung noch nicht identifizierter Substrate notwendig sein. In der vorliegenden Arbeit wird deshalb die Etablierung der IVEC-Methode („In Vitro Expression Cloning“) zur Identifizierung neuer Separase-Substrate vorgestellt. Mittels IVEC wurde - basierend auf der proteolytischen Separase-Aktivität - aus einer menschlichen cDNA-Bibliothek das In-vitro-Separase-Substrat GASP isoliert. Des Weiteren wurde die Separase-Hemmung durch Cyclin B1/Cdk1 näher untersucht. In der vorliegenden Arbeit konnte gezeigt werden, dass die Phosphorylierung von Separase durch Cyclin B1/Cdk1 für ihre Inhibition zwar notwendig, aber nicht hinreichend ist. Nach Phosphorylierung der Separase assoziiert die Kinase stabil mit der Protease, und erst diese Komplexbildung führt letztendlich zur Inhibition der proteolytischen Separase-Aktivität. Cyclin B1/Cdk1 ist also ein nicht-katalytisch wirkender Separase-Inhibitor. Die zeitlich korrekte Separase-Aktivierung ist für die fehlerlose Chromosomentrennung essentiell. Da Zellen ohne Securin ihre Chromosomen jedoch akkurat und zum richtigen Zeitpunkt trennen, muss es alternative Separase-Inhibitionsmechanismen geben. Die Separase-Hemmung durch Cyclin B1/Cdk1-Bindung könnte dieser gesuchte Securin-unabhängige Mechanismus sein, da der Separase-Cyclin B1/Cdk1-Komplex in Zellen bereits vor der Anaphase nachgewiesen werden kann und Cyclin B1 - wie Securin - am Ende der Metaphase Ubiquitin-vermittelt abgebaut wird. Securin und Cyclin B1/Cdk1 können nicht gleichzeitig an Separase binden. Die beiden Inhibitoren sind also Komponenten parallel und nicht konvergent wirkender Regulationsmechanismen. Die Phosphorylierung von Separase an Serin 1126 ist für ihre Cyclin B1/Cdk1-abhängige Inhibition essentiell (Stemmann et al., 2001). Daneben konnte in der hier vorgestellten Arbeit eine zweite Domäne in Separase identifiziert werden, die ebenfalls sowohl für die Inhibition der proteolytischen Separase-Aktivität als auch für die Komplexbildung mit Cyclin B1/Cdk1 nötig ist. Da diese zweite Cyclin B1/Cdk1-Bindungsdeterminante Sequenzhomologie zu dem Cdc6-Protein aufweist, wurde sie CLD („Cdc6 Like Domain“) genannt. Cdc6 ist ein konserviertes Protein, das in S. cerevisiae Cdk1-Inhibitionsaktivität besitzt. Dazu bindet es abhängig von der Phosphorylierung seines Aminoterminus direkt an B-Typ-Cycline, die sich im Komplex mit ihren Cdks befinden (Mimura et al., 2004). Durch Phosphatase-behandlung und Mutationsanalyse konnte bewiesen werden, dass die Interaktion zwischen Separase und Cyclin B1/Cdk1 auch von Phosphorylierung der Protease innerhalb ihrer CLD abhängt. Dies legt nahe, dass die Separase-CLD wie der Cdc6-Aminoterminus direkte Kontakte mit der Cyclin-Untereinheit der Kinase ausbildet. Serin 1126-Phosphorylierung ist dagegen indirekt an der Kinase-Bindung beteiligt. Denn erstens wird sie nach der Etablierung des Komplexes für seinen Erhalt nicht mehr benötigt (Holland et al., 2006), und zweitens ist sie für die Wechselwirkung zwischen CLD-enthaltenden Separasefragmenten und der Kinase abkömmlich. Ein zunächst favorisiertes Bindungsmodell, bei dem die Polo-Kinase an phosphoryliertes Serin 1126 bindet, um danach die Bindung von Cyclin B1 durch Phosphorylierung der CLD zu vermitteln, konnte ausgeschlossen werden. Stattdessen bewirkt die Phosphorylierung von Serin 1126 wohl eine Konformationänderung der CLD, die dadurch in die Lage versetzt wird, starke Wechselwirkungen mit der Cyclin B1-Untereinheit der Kinase einzugehen. Überraschenderweise ist im Separase-Cyclin B1/Cdk1-Komplex auch die Kinase inaktiv. Diese unerwartete Separase-Funktion als Cdk1-Inhibitor ist in Oozyten der Maus für den Übergang von der Meiose I in die Meiose II von entscheidender Bedeutung. Denn die Inhibition der Separase-Cyclin B1/Cdk1-Komplexbildung durch Mikroinjektion entsprechender Antikörper in Maus-Oozyten verhindert den Ausstoß des ersten Polkörpers, d.h., die Eizellen können den Meiose I-Meiose II-Übergang nicht vollziehen. In diesen Oozyten sinkt die Cdk1-Aktivität am Ende der Meiose I nicht wie bei Kontroll-Oozyten ab. Diese persistente Cdk1-Aktivität ist der Grund für den verhinderten Übergang von Meiose I nach -II, da künstliche Cdk1-Inhibition in Anwesenheit des inhibitorischen Antikörpers den Polkörperausstoß wiederherstellt. In mitotischen Zellen steigt der unter endogenen Bedingungen mit Separase assoziierte Anteil von Cyclin B1/Cdk1 in der Anaphase - d.h. nach dem Abbau seines Bindungskompetitors Securin - an. Übertragen auf die Meiose bedeutet das, dass Securin-Abbau die Induktion der Anaphase mit der Separase-abhängigen Cdk1-Inaktivierung koppelt.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
Für den antiproliferativen Effekt der Kombinationstherapie aus UVA-Strahlung mit dem Furocoumarin Psoralen (PUVA) wird die Ausbildung von Doppelstrangvernetzungen (Interstrand Cross Links, ICL) verantwortlich gemacht. Unklar war, ob der PUVA-induzierte Zellzyklusarrest durch Doppelstrangvernetzungen, die die Replikationsgabeln mechanisch behindern, oder durch die Aktivierung von Zellzykluscheckpoints ausgelöst wird. Zellzykluscheckpoints garantieren die Stabilität des Genoms, indem sie die Zellzyklusprogression soweit verlangsamen oder anhalten, dass die Replikation von aufgetretenen DNA-Schäden oder Fehlverteilungen von Chromosomen verhindert werden kann. Die vorliegende Arbeit zeigt, dass HaCaT-Keratinozyten durch PUVA-Exposition mit S-Phase-DNA-Gehalt arretiert werden. Zellen, die die DNA-Replikation bereits abgeschlossen hatten, waren von der PUVA-Exposition unbeeinträchtigt und durchliefen die Mitose. Zellen, die während der G1-Phase PUVA exponiert worden waren, durchquerten die G1-Phase und arretierten erst in der frühen S-Phase. PUVA induzierte eine schnelle Phosphorylierung der Chk1-Checkpointkinase an Serin 345, die mit einer Abnahme von Cdc25A einherging. Die Chk1-Phosphorylierung, die Abnahme von Cdc25A und der S-Phase-Arrest konnten durch Koffein aufgehoben werden. Dies lieferte den Beweis, dass die Aktivierung von Checkpointsignalkaskaden und nicht eine passive, mechanische Blockierung durch DNA-Doppelstrang-vernetzungen für den PUVA-induzierten Replikationsarrest verantwortlich ist. Die Überexpression von Cdc25A konnte den S-Phase-Arrest nur zum Teil aufheben, woraus sich folgern lässt, dass die Aktivierung von zusätzlichen Signalwegen an der Ausbildung des PUVA-induzierten S-Phase-Arrests beteiligt ist.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
Das Ziel der vorliegenden Arbeit war es zum einen, neuartige synthetische Genvektoren bzw. deren Aufnahme-Mechanismus in verschiedene Zelllinien und deren Anwendbarkeit für den Rezeptor-vermittelten Gentransfer in vivo zu charakterisieren. Bei den zu analysierenden Vektoren handelt es sich um Uronsäure-funktionalisierte PEI- bzw. PEI-PEG-Konjugate, die sich durch den Besitz dreier funktioneller Bestandteile auszeichnen. Durch das Vorhandensein von PEI kann eine Bindung und Kondensierung der DNS gewährleistet werden, PEG besitzt u. a die Fähigkeit positive Ladungen abzuschirmen und eine Kopplung von Uronsäuren an die Konjugate sollte zu einer Rezeptor-vermittelten Aufnahme der Komplexe führen. Des Weiteren sollte im Rahmen dieser Arbeit eine neuartige Methode zur Transfektion von Minichromosomen in Zellen entwickelt werden. Für den Transfer von artifiziellen Chromsomen in Akzeptor-Zellen stehen derzeit nur aufwendige und komplizierte Verfahren zur Verfügung. Eine effiziente, jedoch einfache Methode zur Transfektion von künstlichen Chromsomen in verschiedene Zelllinien könnte daher deren Einsatz als Vektoren für die Gentherapie unterstützen.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Um Aneuploidie zu verhindern, muss die Trennung der Chromosomen in der Anaphase mit hoher Genauigkeit und daher streng reguliert ablaufen. Bisher galt folgendes Modell der eukaryontischen Schwesterchromatidentrennung: Der „anaphase promoting complex/cyclosome” (APC/C) wird erst aktiviert, wenn alle Chromosomen ordnungsgemäß bipolar an die Mikrotubuli des Spindelapparates angeheftet sind. In seiner Eigenschaft als Ubiquitinligase katalysiert der APC/C dann den proteasomalen Abbau des Anaphaseinhibitors Securin aus dem Komplex mit Separase. Die auf diese Weise als Protease aktivierte Separase löst daraufhin die Anaphase aus, indem sie den Proteinkomplex Kohäsin, welcher die Schwesterchromatiden zusammenhält, spaltet. Das Ausbleiben eines Phänotyps beim Verlust von Securin deutet jedoch auf die Existenz weiterer Regulationsmechanismen der Anaphase hin. Der APC/C sorgt gleichermaßen für den Abbau von Cyclin B1. Die damit verbundene Inaktivierung der Cyclin-abhängigen Kinase 1 (Cdk1) führt zum Austritt aus der Mitose. Im Gegensatz zur Bäckerhefe, in der die Cdc14-Phosphatase ebenfalls als essentieller Gegenspieler von Cdk1 fungiert, repräsentierte in höheren Eukaryonten der APC/C-abhängige Abbau von Cyclin B1 den einzig bekannten Mechanismus zur Cdk1-Inaktivierung. Bisher glaubte man, dass nach dem APC/C die zur Anaphase und zum Mitoseaustritt führenden Signalwege strikt getrennt voneinander verlaufen. Daher war die kürzlich gemachte Beobachtung unerwartet, wonach die durch nicht abbaubares Cyclin B1 konstitutiv aktivierte Cdk1-Kinase die Schwesterchromatidentrennung in Xenopus Eiextrakten blockiert und zwar durch eine Securin-unabhängige Inhibition von Separase. Obwohl die Mutation von Separase an Cdk1-Phosphorylierungsstellen die Kohäsinspaltung in Gegenwart von aktiver Cdk1 wiederherstellte, blieben die molekularen Details der Cdk1-abhängigen Separaseinhibition unklar. In der vorliegenden Arbeit wird gezeigt, dass die Phosphorylierung zwar notwendig aber nicht hinreichend ist, um Separase zu inaktivieren. Zur Inhibition kommt es erst, wenn in einem zweiten Schritt der Cdk1-Komplex stabil und unabhängig von seiner Kinaseaktivität an zuvor phosphorylierte Separase bindet. Es wurde eine Region in Separase identifiziert, die wahrscheinlich in Abhängigkeit von ihrer Phosphorylierung durch die regulatorische Cyclin B1-Untereinheit von Cdk1 erkannt wird. Da sich Securin- und Cdk1-Bindung an Separase gegenseitig ausschließen, stellen sie, anders als ursprünglich angenommen, nicht konvergente sondern parallele Inhibitions-mechanismen dar. Bei der Rekonstitution des Separase-Cdk1 Komplexes wurde eine neue Funktion von Vertebraten-Separase als ein direkter, stöchiometrischer Cdk1-Inhibitor entdeckt, welche unabhängig von der proteolytischen Aktivität ist. Eine durch Mutantenanalyse verifizierte Sequenzhomologie im Cyclin B-bindenden Bereich zwischen Separase und dem Cdk1-Inhibitor Cdc6 aus S. cerevisiae bestätigt dieses Ergebnis. Mikroinjektionsexperimente an Oozyten zeigen, dass die Separase-vermittelte Inhibition von Cdk1 eine essentielle Rolle während der Meiose I spielt. Separase ist also nicht nur ein universeller Auslöser der eukaryontischen Anaphase, sondern sie wirkt auch, trotz unterschiedlicher Mechanismen in Hefe und Vertebraten, als konservierter Cdk1-Antagonist und koppelt damit die Anaphase mit dem Austritt aus der Meiose I.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Der Aufbau des Zellkerns und die höheren Organisationsmuster von Chromosomen gehorchen Regeln, die bisher in menschlichen Zellen und Zellen einiger Primaten bestätigt werden konnten. In dieser Arbeit sollte an einem anderen Säuger, der Maus, untersucht werden, in wie weit sich die bisher gewonnenen Erkenntnisse auch auf den molekularbiologisch intensiv studierten Modellorganismus der modernen Genomforschung übertragen lassen. Besonders interessant ist die Frage, weil der Karyotyp der Maus nur akrozentrische Chromosomen enthält und viel homogener in Bezug auf Chromosomengröße und Gendichte ist, als der Karyotyp des Menschen oder verschiedener Primaten. Die letzten gemeinsamen Vorfahren von Mäusen und Menschen lebten vor über 80 Mio. Jahren, in dieser Zeitspanne fanden die zahlreichen Veränderungen am Genom der Maus statt. Die vorliegende Arbeit untersucht, ob Gemeinsamkeiten in Bezug auf die Organisation des Chromatins nachzuweisen sind und ob evolutionär konservierte Organisationsmuster zu finden sind. Die quantitative Untersuchung der Topologie von Chromosomenterritorien und Zentromerregionen erfolgte mit Fluoreszenz-in-situ-Hybridisierung auf Zellkernen von vier Zelltypen der Maus. Auf Kerne von Lymphozyten, Fibroblasten, ES-Zellen und Makrophagen wurden die Territorien von sechs Chromosomen mittels Chromosomen-Paint-Sonden hybridisiert. Das ausgewählte Chromosomenset enthielt genreiche, genarme, große und kleine Chromosomen in verschiedenen Kombinationen. Bilddaten wurden mit einem konfokalen Laser-Scanning-Mikroskop aufgenommen und einer digitalen quantitativen Bildanalyse unterzogen. In allen Mauszelltypen zeigten sich klare Korrelationen zwischen sowohl Gengehalt als auch Größe und radialer Verteilung von Chromosomenterritorien. Bei kugeligen Lymphozytenkernen korreliert die Gendichte stärker mit der radialen Verteilung als es die Chromosomengrößen tun. In Fibroblasten sind beide Korrelationen schwächer, aber nachweisbar, in ES-Zellen sind die Korrelationskoeffizienten wieder etwas höher und für beide Verteilungsmodelle gleich, in Makrophagen überwiegt die größenabhängige Verteilung der Chromosomenterritorien. Das genreichste Chromosom MMU 11 zeigt in den Lymphozyten die meisten Unterschiede zu anderen Chromosomenterritorien, während sich das genarme MMU X in den untersuchten männlichen ES Zellen durch seine extreme Randlage von den anderen unterscheidet. Innerhalb der Fibroblasten und Makrophagen gibt es vergleichsweise wenig signifikante Unterschiede zwischen den radialen Positionen der untersuchten Chromosomenterritorien. Zelltypspezifische Verlagerungen von Chromosomenterritorien zeigten sich auch nach einem Differenzierungsschritt von ES-Zellen zu Makrophagen. Die Lage der Chromozentren ist zelltypspezifisch. Im Gegensatz zu den untersuchten Chromosomenterritorien liegen die Chromozentren in Fibroblasten und Makrophagen in relativ zentralen Positionen. In Lymphozyten sind die Chromozentren am weitesten nach außen zum Zellkernrand gelangt, gefolgt von den ES-Zellen. Die Anzahl der Chromozentren ist ebenfalls zelltypspezifisch. Ausgehend von der Chromozentrenzahl in ES Zellen nimmt die Zahl der Chromozentren in differenzierteren Zellen zu (Lymphozyten, Fibroblasten) oder bleibt gleich (Makrophagen). Aufgrund der Ergebnisse lässt sich ausschließen, dass die äußere Form des Zellkerns alleine für die beobachteten Verteilungsunterschiede verantwortlich ist. Allerdings waren die beobachteten Unterschiede kleiner als bei vergleichbaren menschlichen Zelltypen. Mit ein Grund dafür ist sicher die geringere Variabilität der Chromosomengröße und Gendichte im Genom der Maus. Zellkernvolumina lagen zwischen 470 und 650 µm3. Lymphozyten besitzen im Durchschnitt die kleinsten Kerne der zyklierenden Zelltypen, ES-Zellen die größten. Makrophagen befanden sich in der G0-Phase, ihre Zellkerne waren am kleinsten und wiesen die geringste Standardabweichung auf. Die Analyse der Winkel und Abstände innerhalb der Chromosomenterritorien zeigte eine sehr flexible Positionierung innerhalb der Grenzen radialer Ordnungsprinzipien. Diese Resultate sind unvereinbar mit einem früher vorgeschlagenen Modell der Trennung des parentalen Genoms. Es gibt keine Hinweise für eine Abweichung von einer zufälligen Verteilung, von einer Häufung nahe beieinanderliegender MMU 1 Homologen in Makrophagen abgesehen. Zur Untersuchung der Struktur von Chromosomenterritorien wurden Programme angewandt, bei denen steigende Schwellwerte zu Zerfällen von Objekten führten, die analysiert wurden. Zwei unabgängige Methoden zur Berechnung von Objektzahlen in Bildstapeln führten zu gleichen Ergebnissen. Mit dem Programm OC-2 konnten Unterschiede in der Textur von Chromosomenterritorien bei der Maus innerhalb eines Zelltyps, als auch zwischen Zelltypen festgestellt werden. Dabei wurden die individuellen Chromosomengrößen mit berücksichtigt. Es konnte kein allgemeiner Zusammenhang zwischen den durchschnittlichen maximalen Objektzahlen und dem Gengehalt der entsprechenden Chromosomen festgestellt werden, vielmehr scheint die Textur des Chromatins von noch unbekannten, zelltypspezifischen Faktoren beeinflusst zu sein. Die Analyse der Chromatinstruktur in normalen menschlichen Zelltypen und in Tumorzelllinien mit dem Objektzählprogramm OC-2 ergab allgemein erhöhte Objektzahlen in Tumorzellen, verglichen mit normalen Zelltypen. Davon unabhängig waren auch immer die genreichen HSA 19 durch höhere Objektzahlen charakterisiert als die etwas größeren genarmen HSA 18 in den selben Zell-typen. Vergleiche zwischen den Objektzahlen eines Chromosoms in normalen Zelltypen und Tumorzelllinien ergaben mehr Unterschiede, als Vergleiche nur innerhalb der normalen Zelltypen. Die hier untersuchten Tumorzelllinien weisen eine objektreichere Chromatinstruktur auf, als die ihnen gegenübergestellten normalen Zelltypen.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Eine akkurate DNA-Replikation ist notwendig, um die Stabilität der genetischen Information zu gewährleisten. Dieser Prozess wird durch DNA-Läsionen erschwert, die durch eine Vielzahl von Ursachen entstehen und häufig nicht vor dem Erreichen der S-Phase repariert werden können. Nicht nur kann durch Läsionen geschädigte DNA häufig nicht dupliziert werden, angehaltene Replikationsgabeln können auch zusammenbrechen und so zu DNA-Strangbrüchen führen. Die Funktion des RAD6-pathways liegt darin, die Umgehung (Bypass) von DNA-Läsionen während der Replikation zu ermöglichen, wodurch eine Toleranz gegenüber Schädigungen der DNA erreicht wird. In dieser Arbeit wurde die Regulation des RAD6-vermittelten Bypass von DNA-Läsionen durch posttranslationale Ubiquitin- und SUMO-Modifikationen des Replikationsfaktors PCNA untersucht. PCNA bildet einen trimeren Ring um die DNA und verstärkt durch Bindung der replikativen Polymerase deren Assoziation zur DNA und somit die Prozessivität der Replikation. Als DNA gebundener Faktor des Replikations-komplexes ohne katalytische Aktivität ist PCNA ideal geeignet, um durch seine Modifikation Replikations-assoziierte Prozesse zu regulieren. Die Ubiquitinierung von PCNA durch Enzyme des RAD6-pathways erfolgt als spezifische Antwort auf DNA-Läsionen während der Replikation und ermöglicht deren Bypass. Dabei bewirken unterschiedliche Ubiquitin-Modifikationen verschiedene Arten des Bypass. Die Mono-Ubiquitin-Modifikation führt zum Einsatz von speziellen Transläsions-Polymerasen, die eine größere Toleranz für geschädigte DNA haben, aber auch für die Entstehung von Mutationen verantwortlich sind. Einen mechanistisch anderen Bypass von DNA-Schäden bewirkt die Modifikation von PCNA mit einer Lysin K63-verknüpften Multi-Ubiquitinkette. Für diesen wird wahrscheinlich der neureplizierte, unbeschädigte Schwester-Strang als Vorlage benutzt. Unabhängig von Schädigungen der DNA wird PCNA während der S-Phase zusätzlich mit dem ubiquitin-ähnlichen Protein SUMO modifiziert. Dies führt zu einer Interaktion mit der Helikase Srs2, die als Antagonist zu dem zentralen Rekombinationsprotein Rad51 wirkt. Dadurch wird spezfisch die homologe Rekombination zwischen Schwesterchromatiden an der Rekombinationsgabel inhibiert, nicht jedoch andere Rekombinationsereignisse, wie. z.B. Rekom-bination zwischen homologen Chromosomen. Deshalb ist es wahrscheinlich, dass spezifisch die Replikationsgabel durch PCNA-SUMO-Srs2 geschützt wird, um schädliche Rekombination oder Rekombinationsstrukturen zu vermeiden, die mit Replikations-assoziierten Prozessen interferieren. Ubiquitin- und SUMO-Modifikation regulieren demnach unabhängige Prozesse. Interessanterweise haben diese aber eine verwandte Funktion im Bypass von DNA-Läsionen während der Replikation. Die Inhibition der Schwesterchromatid-Rekombination durch PCNA-SUMO-Srs2 lenkt den Bypass von DNA-Läsionen in einen durch PCNA-Ubiquitinierung gesteuerten Mechanismus.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Für die stabile, regulierte Expression eines therapeutischen Gens in Zielzellen stellen künstliche menschliche Chromosomen (HACs) derzeit das einzige Konzept dar, das hohe Sicherheit und technische Realisierbarkeit bietet. Künstliche Chromosomen (HACs) mit dem CFTR-Gen sollen sich durch den Transfer definierter HAC-Konstrukte effizient formieren, ohne dabei die Zielzellen zu stören. Im Augenblick werden künstliche Chromosomen zur Klärung vieler grundlegender Fragen auf dem Gebiet der Chromosomenstruktur und -funktion sowie der Genregulation konstruiert. In der vorliegenden Arbeit sollte die zugrundeliegende de novo HAC-Technologie der Arbeitsgruppe, die sich auf die Konstruktion und den intakten Transfer von PACs mit den funktionellen Komponenten menschlicher Chromosomen (zentromerische, telomerische und genomische Sequenzen mit oris und Gene) konzentriert, weiterentwickelt werden. Die Verwendung von PACs als Kloniervektoren erlaubt die stabile Klonierung langer, genomischer DNA, die biochemische Verknüpfung über lox/Cre vermittelte Rekombination, sowie die Darstellung grosser Mengen intakter, supercoiled PAC DNA durch Anwendung einer in der Arbeitsgruppe entwickelten Technik (Reinigung der supercoiled DNA Fraktion in Agaroseplugs von gebrochener und genickter DNA im elektrischen Feld). Eine Verbesserung der Vektoren ist nötig, da die Effizienz der HAC Formierung bisheriger Vektoren für eine klinische Anwendung nicht ausreicht. Dafür wurden zunächst Marker benötigt, die Anzeigen können wieviele Zellen mit wievielen Vektormolekülen transfiziert wurden und wieviele der physikalisch erfolgreich transfizierten Zellen stabile HACs bilden (genetische Funktion). Im Rahmen dieser Arbeit wurden Expressionsmarker entwickelt, die eine Formierung stabiler HAC-Linien durch grüne Fluoreszenz anzeigen können. So wurde ein tetratelomerischer PAC-Vektor „pTT“ konstruiert, der stabil eine EGFP-Kassette exprimiert, ein funktionelles Zentromer trägt (TTE1), und für die Klonierung weiterer genomischer Komponenten eine weiss/blau selektionierbare Sal I Stelle enthält. Ausserdem wurde ein CFTR-Gen-basierender „genomischer“ Marker (159 kb) vorgestellt, der den intakten Transfer langer, genomischer DNA und die Expression vom CFTR Promoter anzeigen kann. Besonders hervorzuhebende Ergebnisse aus der Arbeit sind: 1) Kopiezahlabhängigkeit bei der transienten Expression. Einzelne Markergen-Kopien genügen nicht, um Anwesenheit der transfizierten DNA mittels transienter Expression nachzuweisen. 2) Sichtbar transient exprimierende HAC Konstrukte (große Zahl) führen nicht zu stabilen Linien, was nahelegt, dass ein „low copy“ HAC Transfer benötigt wird. Für eine Optimierung und besseres „low copy“ HAC-Monitoring wurden multimere Marker (EGFP Array) und DNA-tags (Gal4-BD, Lac-Operator) entwickelt und stehen nun für einen Einsatz bereit. 3) Für den „low copy“ Transfer wurden neben Lipofektionsassays und der Mikroinjektion insbesondere eine neue Methode, die Baktofektion, eingesetzt, bei der die DNA nicht aus Bakterien isoliert werden muss: Modifizierte Transferbakterien dringen in die Zelle ein und geben die DNA-Konstrukte nach Autolyse frei („suicidal transfer“). Dabei wurde ein funktioneller Transfer genomischer DNA nachgewiesen. Es konnte zum einen gezeigt werden, dass Zentromer tragende Konstrukte effizient de novo HACs bildeten, und zum anderen, dass das lange genomische CFTR Expressionskonstrukt CGT21 stabil vom CFTR Promoter exprimiert wird. Damit steht nun die Baktofektion als effizienteste Methode zur HAC Optimierung zur Verfügung. 4) Durch Auszählung der stabilen Klone, Isolierung von Stichproben klonaler Linien und einem HAC-Formierungsassay mittels FISH Analyse, wurden folgende grundlegende Beobachtungen gemacht: Die Rate der Formierung stabiler Klone mit HAC Konstrukten hängt nicht von a) der Zahl der im einzelnen Konstrukt vorhandenen, oder cotransfizierten Zahl der BS Marker, b) nicht von der Orientierung der alpha-sat DNA relativ zum BS-Gen oder dem entgegengesetzt gerichteten EGFP-Gen, und c) nicht absolut von der Verwendung unterschiedlicher alpha-sat Sequenzen der zwei homogenen Array Typen auf Chr.5 ab, wobei der Vektor pTT mit dem Zentromer E1 die besten Ergebnisse der HAC Bildung erzielte und die höchsten Klonzahlen in Cotransfektionen mit einem telomerisierten Genkonstrukt erhalten wurden, nicht aber in Cotransfektionen mit dem Telomervektor ohne einklonierte genomische DNA. Diese Erkenntnisse haben direkte Relevanz für die Weiterentwicklung CFTR exprimierender HAC Vektoren. Mit den Konstrukten pTTE1 und CGT21, und den zukünftig erweiterten Konstrukten mit multimeren Markern bzw. Tags und einem kompletten CFTR Gen, kann nun auch der physikalische Transfer der HAC Konstrukte in Zielzellen, sowie deren Funktion effizient untersucht werden. Damit konnten wichtige Voraussetzungen für die Weiterentwicklung einer stabilen CFTR Gentherapie geschaffen werden.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Die Entstehung struktureller Chromosomenaberrationen in somatischen Zellen ist von besonderem biologischem Interesse, da Aberrationen mit Tumorgenese in Verbindung gebracht werden. Wie wir heute wissen, sind strukturelle Chromosomenaberrationen die Folge fehlerhafter Doppelstrangbruch (DSB)-Reparatur, wobei im einfachsten Fall die Enden von zwei (oder mehr) Bruchstellen durch so genannte nichthomologe Endverknüpfung in falscher Kombination verknüpft werden. Bis heute ist jedoch unklar, inwieweit die Kernarchitektur - das heißt die Positionierung der Chromosomen im Zellkern - die Wahrscheinlichkeit einer Aberrationsentstehung beeinflusst. Um Hinweise über den Einfluss der Kernarchitektur auf die Entstehung von Austausch-aberrationen zu gewinnen, bietet es sich an, Untersuchungen in einem Modellorganismus mit vergleichbar geringer Komplexität durchzuführen. Die Hefe Saccharomyces cerevisiae ist dazu sehr geeignet, da die Kernarchitektur in diesem Organismus recht gut charakterisiert ist. Die Interphasechromosomen der Hefe nehmen eine Rabl-ähnliche Konfiguration ein, bei der alle Zentromere in der Nähe der Zellkernperipherie in einer Rosettenstruktur als cluster angeordnet sind, und die in mehreren clustern vorliegenden Telomere präferentiell am gegenüberliegenden Pol an der Kernmembran verankert sind. Die Wahrscheinlichkeit interchromosomaler Interaktionen sollte daher im Bereich der Zentromere und Telomere am höchsten sein. In der vorliegenden Arbeit wurde der Einfluss der Zellkernarchitektur auf die Aberrations-entstehung in zwei unterschiedlichen experimentellen Ansätzen in Hefe untersucht. Im ersten Ansatz wurde eine Kartierung von Translokations-Bruchpunkten durchgeführt, um anhand des Verteilungsmusters Aussagen über die Wahrscheinlichkeit der Entstehung von Austausch-aberrationen machen zu können. Dazu stand aus Vorarbeiten eine Kollektion von 16 Klonen Rekombinations-defizienter Hefestämme (rad52- bzw. rad54-Mutanten) zur Verfügung, die strahleninduzierte strukturelle Chromosomenaberrationen tragen (mit insgesamt 35 beteiligten Chromosomen). Die Chromosomen V und VIII waren bei diesen Klonen an der Ausbildung strahleninduzierter Aberrationen häufiger beteiligt, als aufgrund ihrer Länge zu erwarten war, ohne dass hierfür ein Grund ausgemacht werden konnte. Die Bruchpunkte auf den Chromosomen V und VIII, sowie ihren jeweiligen Translokationspartnern, wurden mit Hilfe zwei verschiedener Methoden kartiert, die jeweils auf den Nachweis der An- und Abwesenheit spezifischer Sequenzbereiche (Sonden) auf den aberranten chromosomalen Banden abzielten. Dabei zeigte sich, dass von den insgesamt 17 kartierten Bruchpunkten sieben Zentromer-nah (bis zu 100 kb vom Zentromer entfernt), drei Telomer-nah (bis zu 12 kb vom Telomer entfernt) und sieben in der interstitiellen Region liegen. Bruchpunkte in der interstitiellen Region zeigten sich also signifikant unterrepräsentiert, so dass hier auf einen Einfluss der Zellkernarchitektur auf die Aberrationsentstehung zu schließen ist. Im zweiten experimentellen Ansatz wurde ein Modellsystem in Hefe entwickelt, mit dem sich der Einfluss der initialen Position von DSB auf die Entstehungswahrscheinlichkeit inter-chromosomaler Fehlverknüpfung systematisch untersuchen lässt. Dazu wurde eine Serie von Hefestämmen hergestellt, in denen gleichzeitig jeweils zwei DSB enzymatisch mittels HO-Endonuklease induziert werden können. Die entsprechenden Enzymschnittstellen (HOcs) wurden dabei an verschiedenen chromosomalen Positionen eingesetzt, die aufgrund ihrer Entfernung zu Zentromer und/oder Telomer im Falle eines Kernarchitektureinflusses unterschiedliche Interaktionswahrscheinlichkeiten haben sollten. Nach DSB-Induktion sowie Reparatur wurde mittels PCR-Analyse untersucht, wie häufig es in den einzelnen Stämme im Zuge der Reparatur zu einer Fehlverknüpfung der Enden gekommen war. Dabei konnte gezeigt werden, dass die intra- und intermolekulare Verknüpfung bei der Reparatur in allen getesteten Bruchort-Konstellationen etwa gleich häufig war, d.h. es wurde kein Einfluss der Kernarchitektur auf die Aberrationsentstehung festgestellt. Dieses Ergebnis passt gut zu Befunden einer neueren Arbeit, in der gezeigt werden konnte, dass sich nach Induktion multipler DSB nur wenige RAD52-Foci im Zellkern bilden, die als Reparaturzentren/ „-fabriken“ erklärt werden. Entsprechend diesem Modell können damit auch initial weiter voneinander entfernte DSB zu Austauschaberrationen führen, da die jeweiligen Enden in den wenigen „Fabriken“ zusammentreffen können. Als Ursache für die in beiden Systemen erzielten unterschiedlichen Ergebnisse könnten also entweder die unterschiedlichen genetischen Hintergründe (Rekombinations-defizient im Vergleich zu Rekombinations-profizient) oder die unterschiedliche Struktur der Bruchenden (strahlen-induziert im Vergleich zu Endonuklease-induziert) in Betracht kommen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 03/19
10-15% der de novo akuten myeloischen Leukämie (AML) zeigen einen komplex aberranten Karyotyp, der definitionsgemäß mindesten 3 numerische und/oder strukturelle Veränderungen pro Karyotyp beinhaltet. Patienten mit diesem Karyotyp weisen eine besonders ungünstige Prognose auf. Über die Pathogenese bei dieser Subgruppe ist bisher nur wenig bekannt. Ziel dieser Studie war das Aberrationsmuster bei der AML mit komplex aberranten Karyotyp detaillierter zu charakterisieren. Hierzu wurden 44 AML-Patienten, die in der Routinediagnostik nach der klassischen Zytogenetik (G-Banden Analyse), der Fluoreszenz in situ Hybridisierung (FISH) und der 24-Farben-FISH (M-FISH) einen komplex aberranten Karyotyp zeigten, zusätzlich mit der Comparativen Genomischen Hybridisierung (CGH) untersucht. Diese auf der in situ Hybridisierung basierende Methode ermöglicht es, einen Überblick über Verluste und Vermehrungen des genetischen Materials in einem Versuchsansatz zu erhalten und diese den einzelnen Chromosomen auf Bandenebene zu zuordnen. Die im Rahmen dieser Arbeit erhobenen Daten zeigen, dass bei der AML mit komplex aberranten Karyotyp besonders Verluste, die durch strukturelle Aberrationen entstanden, häufiger auftreten wie Zugewinne von genetischem Material. Deletionen lagen besonders häufig in den Bereichen 5q (91%), 7q (59%) und 17p (61%), während nur 2% der Patienten keine Veränderung in mindestens einer dieser drei Regionen zeigte. Weiterhin konnten Verluste den Chromsomen 12p, 13q, 16q, 18q zugeordnet werden. Zugewinne lagen besonders in den Chromosomen 8q und 11q. Mit CGH war es zusätzlich möglich bei 6 Patienten Amplifikationen in 11q zu detektieren. Das Aberrationsmuster der AML mit komplex aberrantem Karyotyp konnte mittels CGH genauer beschrieben werden. Die erhobenen Daten lassen eine genauere Definition der AML mit komplex aberranten Karyotyp als eigene Entität sinnvoll erscheinen. Diese beinhaltet das Fehlen einer spezifischen, primär balancierte Aberration, das Vorkommen von mindesten 5 Aberrationen pro Karyotyp und das Vorhandensein einer Deletion in mindestens einer der chromosomalen Banden 5q31, 7q31 und 17p13. Insgesamt konnten Verluste 7 bestimmten Chromosomenbereichen und Zugewinne 2 bestimmten Chromosomenregionen genauer zugeordnet werden. Diese Eingrenzung der involvierten Chromosomenbereiche bei dieser AML-Subgruppe dient der Suche nach relevanten Tumorsuppressor- und Onkogenen. Als weiterer Pathomechanismus scheint der Gendosiseffekt eine besondere Rolle bei der AML mit komplex aberranten Karyotyp zu spielen, da Amplifikationen nur in dieser Subgruppe nachgewiesen wurden. Insgesamt scheint besonders die Komplexität unterschiedlicher Rearrangements und weniger eine spezifische Aberration für die so ungünstige Prognose verantwortlich zu sein.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Im Rahmen der vorliegenden Doktorarbeit wurde zum ersten Mal die Keimbahn eines Käfers erfolgreich genetisch transformiert. Der von uns zu diesem Zweck in Zusammenarbeit mit Ernst Wimmer entwickelte Transformationsmarker 3xP3-EGFP hat inzwischen sein Potential als spezies-unabhängiges Markergen auch in weiteren Invertebraten-Spezies unter Beweis gestellt und damit das Spektrum transformierbarer Taxa beträchtlich erweitert. In Tribolium konnten Transformationsereignisse mit 3xP3-EGFP für drei verschiedene Transposons - Hermes, Minos und piggyBac - erzielt werden. Die Effizienz betrug dabei 1,4% (Hermes), 11,4% (Minos) bzw. 56% (piggyBac) der fertilen G0 und gehört damit zu den höchsten Werten, die in der Literatur für Insekten berichtet wurden. Bei Minos konnte die Effizienz durch die Verwendung von Transposase mRNA statt einem DNA Helper-Plasmid weiter auf 32,4% gesteigert werden. Für piggyBac und Minos wurde ferner in Zusammenarbeit mit anderen Labors gezeigt, daß es sich bei den meisten Transposoninsertionen um unabhängige Einzelintegrationen handelt, die auf verschiedene Chromosomen verteilt sind und stabil weitervererbt werden. Die Größe zusätzlich transferierter Fremd-DNA kann dabei bei piggyBac mindestens bis zu 9,5 kb betragen. Schließlich konnte noch ein piggyBac Element durch Helperinjektion mit einer Rate von 28,1% remobilisiert werden. Zusammen mit der Anfälligkeit für enhancer trap Effekte können daher mit diesem System alle relevanten Transposon-basierenden Techniken zur funktionellen Genomanalyse angewandt werden. Als erste praktische Anwendung wurden D. melanogaster Sequenzen für anteriore und posteriore mRNA-Lokalisierung (bicoid-3’UTR und oskar-3’UTR), sowie ein bicoid-abhängiger Minimalpromotor in Tribolium eingeführt. Allerdings konnten durch diese Ansätze keine Komponenten oder Mechanismen eines ggf. konservierten maternalen Systems nachgewiesen werden. Ein Konstrukt mit 5,2 kb der upstream Sequenzen von Tc’hunchback mit lacZ als Reportergen war hingegen in der Lage, das endogene hunchback-Muster größtenteils nachzubilden. Das frühere Ergebnis von Christian Wolff mit Tc’hunchback in Drosophila, wonach dieses Fragment alle wesentlichen regulatorischen Elemente enthält, konnte daher in transgenen Käfern bestätigt werden. Zusätzlich zu dem als sehr riskant eingestuften Transformations-Projekt wurde parallel ein weiteres Projekt durchgeführt, die Analyse der homöotischen Mutanten wurm und überlänge. In beiden Mutanten ist vor allem die Identität der posterioren Segmente ab A9 verändert. In wurm sind die Segmente A9-A11 nach A8 transformiert und die telsonalen Anhänge Urogomphi und Pygopodien fehlen. In überlänge ist nur A9 wie A8 ausgebildet und demzufolge nicht mit dem Telson fusioniert. Es fehlen nur die Urogomphi. überlänge bildet zusätzlich ein ektopisches Stigma im ersten thorakalen Segment. Es wurde gezeigt, daß es sich bei den betroffenen Genen um zwei verschiedene Loci handelt, die beide nicht im homöotischen Komplex liegen. Obwohl der Phänotyp von wurm weitgehend der RNAi-Phänokopie von Abdominal-B entspricht, konnte also keiner dieser beiden Loci einem bekannten Hox-Gen zugeordnet werden. Als mögliches Kandidatengen für diese Loci wurde daher das Tribolium-Homolog des regionsspezifischen homöotischen Gens spalt kloniert. Die Expression von spalt entspricht weitgehend der von Dm’spalt, mit einer anterioren und einer posterioren Domäne, einer dorsalen Expression an den seitlichen Rändern des Keimstreifs, sowie einem komplexen Muster im Nervensystem. Mit Hilfe der kürzlich entwickelten Technik der parentalen RNAi wurde die Funktion dieses Gens untersucht. In sal–– Phänokopien finden sich, wie in Drosophila, anteriore und posteriore Veränderungen von Segmentidentitäten. So wird das abdominale Segment A9 in Richtung anteriore abdominale Segmente transformiert. Dadurch tritt ein zusätzliches Stigma auf und die Pygopodien gehen verloren, das Segment fusioniert aber weiterhin mit dem Telson. Im Gegensatz zu Drosophila wird aber anterior nicht das Labium verändert, sondern die Identität der Maxille wird partiell in Richtung Mandibel transformiert: statt dem Enditen der Maxille wird ein mandibel-ähnlicher Zahn gebildet. Damit kommt offenbar auch spalt nicht als Locus in Frage, der in wurm oder überlänge seine Funktion verloren hat. Möglicherweise spielen diese beiden Loci eine Rolle als den HOX-Genen übergeordnete regulatorische Gene, oder als Co-Faktor von Abd-B. Damit sind wurm und überlänge als interessante (und aus Drosophila nicht bekannte) Spieler im homöotischen System der Insekten identifiziert, was weitere Untersuchungen als sehr lohnend erscheinen läßt. Vor allem aber hat dieses Teilprojekt die Evolution des spalt-Gens erhellt, das in weniger abgeleiteten Insekten offenbar eine essentielle Rolle bei der Spezifizierung von Mandibel versus Maxille spielt. Diese Funktion ist in Drosophila vermutlich im Zuge der Reduktion der Mandibel verloren gegangen.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Sat, 16 Nov 2002 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/784/ https://edoc.ub.uni-muenchen.de/784/1/Zoller_Jutta_F.pdf Zoller, Jutta Franziska ddc:570, ddc:500, Fakultät für Bi
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Die Pflanzenzelle enthält ein integriertes, kompartimentiertes genetisches System, mit den Subgenomen im Zellkern, in den Mitochondrien und den Plastiden, das aus Endocytobioseereignissen mit prokaryotischen Zellen hervorgegangen ist. Im Laufe der Evolution der eukaryotischen Zelle wurden die genetischen Potentiale der symbiontischen Partnerzellen vermischt. Dabei ging ein Teil genetischer Information verloren, ein anderer wurde aus den Organellen in den Kern transferiert, und außerdem wurde neue Information hinzugewonnen. Dies ging einher mit der Einbettung von Mitochondrien und Plastiden in die Signaltransduktionsketten und Regelkreise der Wirtszelle. Heute interagieren die Subgenome auf vielen Ebenen; ihre Expression wird in der Pflanzenzelle koordiniert in Raum, Zeit und Quantität reguliert. Die Interdependenz der Subgenome hatte ihre Koevolution zur Folge, so daß die genetischen Kompartimente der Zelle nicht mehr ohne weiteres zwischen Arten ausgetauscht werden können. Kombinationen von artfremden Organellen können zu Entwicklungsstörungen führen, wie sie sowohl von "kompartimentellen" (Genom/Plastom-) Hybriden als auch von Cybriden beschrieben worden sind (Bastardbleichheit, Bastardscheckung). In dieser Arbeit wurden reziproke Cybriden der Arten Atropa belladonna und Nicotiana tabacum auf molekulare Determinanten von Genom/Plastom-Inkompatibilität untersucht. Die Cybriden sind je nach Kombination elterlicher Organellen entweder albinotisch [Kern von Atropa, Plastide vom Tabak; Ab(Nt)-Cybride] oder gleichen dem Wildtyp [Kern von Tabak; Plastide von Atropa, Nt(Ab)-Cybride]. 1. Als Voraussetzung für einen Sequenzvergleich der plastidären Chromosomen beider Solanaceen-Arten wurde das Plastidenchromosom von Atropa komplett sequenziert. Der Vergleich der (Atropa)-Sequenz mit der bekannten des Chromosoms aus dem Tabak und anschließende molekularbiologische Untersuchungen führten zur Identifizierung von zwei potenziellen Ursachen für die Defekte im albinotischen Material. 2. Die Ab(Nt)-Cybride zeigt eine gestörte Akkumulation von Transkripten für eine Reihe von Operonen. Das resultierende aberrante Transkriptmuster ähnelte verblüffend dem von Tabakpflanzen mit Defizienz der plastidenkodierten RNA-Polymerase (PEP). Möglicherweise ist in der Cybride die Interaktion des PEP-Apoenzyms mit einem oder mehreren der kernkodierten Sigmafaktoren gestört. Tatsächlich unterscheiden sich die für eine Untereinheit der PEP kodierenden (plastidären) rpoC2-Gene von Tabak und Atropa durch eine Insertion/Deletion an einer Stelle im Molekül, die mit Sigmafaktoren interagieren kann. Transformation der Plastiden der Ab(Nt)-Cybride mit dem rpoC2-Gen aus Tabak führte in der Tat zu einer partiellen Reversion zum WT und macht Transkriptionsdefekte als eines von offenbar mehreren Determinanten für die Genom/Plastom-Inkompatibilität in Artbastarden wahrscheinlich. 3. Neben der Transkription ist im albinotischen Material auch die RNA-Edierung gestört. Die plastidären Editotypen beider Solanaceen ähneln einander, doch gibt es für beide Arten spezifische Edierungsstellen. Von den fünf tabakspezifischen Stellen in der Ab(Nt)-Cybride werden vier nicht ediert. Offensichtlich besitzt der Atropa-Kern nicht die notwendigen Kernfaktoren zur Prozessierung dieser Stellen. Da Edierung generell hochkonservierte und funktionell wichtige Aminosäurepositionen betrifft, trägt der Ausfall der Edierung sehr wahrscheinlich ebenfalls zum beobachteten Defekt in der Plastidenentwicklung bei. 4. Auf der anderen Seite werden die Stellen der grünen Nt(Ab)-Cybride, bemerkenswerterweise auch Atropa-spezifische, heterolog vom Tabakkern ediert. Der erstmalige Befund von heterologem Edieren stellte sich als Folge der Allotetraploidie von Tabak heraus. Untersuchungen dieser Stellen in den diploiden Eltern des allotetraploiden Tabaks, N. tomentosiformis als Nachkomme des Vaters und N. sylvestris als Nachkomme der Mutter, zeigten, daß der Tabak die Fähigkeit zur heterologen Edierung von Atropa-spezifischen Stellen wohl vom Vater ererbt hat. Dies wurde auch durch einen transplastomischen Ansatz bestätigt. In diesen Experimenten wurde die intronnahe ndhA-Edierungsstelle aus Spinat, die es auch in N. tomentosiformis gibt, nicht aber in N. sylvestris, in Tabak über ballistische Transformation eingebracht. 5. Über Konstruktionen, die entweder der gespleißen oder ungespleißten ndhA-mRNA inklusive der Edierungsstelle entsprachen, konnte gezeigt werden, daß die Edierung an dieser Stelle immer erst nach dem Spleißen erfolgt. Dies ist der erste Nachweis einer strikten kinetischen Verknüpfung von RNA-Edierung mit einem anderen mRNA-Reifungsschritt in Plastiden. Er zeigt an, daß das ndhA-Intron phylogenetisch älter als die ndhA-Edierungsstelle ist. Mechanistische Implikationen dieses Befundes werden diskutiert.
Um die Anordnung von Chromosomen in Zellkernen der Interphase zu untersuchen, wurde ein Verfahren aus der Computergeometrie adaptiert. Dieser Ansatz basiert auf der Zerlegung von dreidimensionalen Bildvolumen mithilfe des Voronoi-Diagramms in konvexe Polyeder. Die graphenorientierte, geometrische Struktur dieses Verfahrens ermöglicht sowohl eine schnelle Extraktion von Objekten im Bildraum als auch die Berechnung morphologischer Parameter wie Volumina, Oberflächen und Rundheitsfaktoren. In diesem Beitrag wird exemplarisch die dreidimensionale Morphologie von XChromosomen in weiblichen Interphasezellkernen mithilfe dieser drei Parameter untersucht. Um diese Zellkerne mit lichtoptischen Methoden zu untersuchen, wurden die Territorien der X-Chromosomen mit einem molekularcytogenetischen Verfahren fluoreszierend dargestellt. Zur Unterscheidung des aktiven und inaktiven X-Chromosoms wurde das Barr-Körperchen zusätzlich markiert und mithilfe eines Epifluoreszenzmikroskops, ausgerüstet mit einer CCD-Kamera, aufgenommen. Anschließend wurden 1 2 - 2 5 äquidistante, lichtoptische Schnitte der X-Chromosomenterritorien mit einem konfokalen Laser Scanning Mikroskop (CLSM) aufgenommen. Diese lichtoptischen Schnitte wurden mithilfe des Voronoi-Verfahrens segmentiert und analysiert. Methoden aus der Computergraphik wurden zur Visualisierung der Ergebnisse eingesetzt. Es konnte gezeigt werden, daß mithilfe des Voronoi-Verfahrens Chromosomen- Territorien anhand der morphologischen Parameter zuverlässig beschrieben werden können.
Sat, 1 Jan 1994 12:00:00 +0100 https://epub.ub.uni-muenchen.de/7711/1/7711.pdf Eisenmenger, Wolfgang; Keil, W.; Weichhold, G