POPULARITY
Kuckucksruf Folge 189 2.3.2021 Mikrotubuli
Die Zirbeldrüse ist das zentrale Steuerungsorgan in unserem Körper. Sie regelt den Tagnachtrhythmus, steuert eine Vielzahl an Hormonen und gilt als unser spirituelles Zentrum. Doch genau dieses Zentrum ist heutzutage in Gefahr. Was genau die Zirbeldrüse ist, was sie braucht und was sie in Gefahr bringt erfährst du in dieser Episode mit Professor Dr. Dr. Enrico Edinger. Was ist die Zirbeldrüse in Kürze? Wie funktioniert die Zirbeldrüse? Mikrotubuli mit hexagonalem Wasser, Magnetitkristalle, Halbleitereigenschaften Welches sind die Aufgaben der Zirbeldrüse? Taktgeber für alle anderen Hormondrüsen Wach- Schlafrhythmus Regeneration von Zellschäden Alterungsprozesse lenken DMT Denken Drittes Auge, Intuition, Hellsichtigkeit, Spiritualität Wie wichtig ist der Darm? Wie wichtig ist Melatonin und was kann es? Verringert Insulinausstoss, Mehr Grundumsatz, moduliert Geschlechtsdrüsen, erhöht Fruchtbarkeit. Apoptose (Krebs), Mitochondrien (spannungsgesteuerte Kalziumkanäle), PH-Wert, Homöostase, Glutathion Was ist 5G? Wie wirkt 5G auf den Körper? Wie wirkt 5G auf die Zirbeldrüse? Gibt es noch andere Feinde der Zirbeldrüse? Wie stark ist der Elektrosmog in modernen Autos? Sind Zusammenhänge zwischen 5G und Corona denkbar? Welche Lösungen gibt es? Wo kann man Dich erreichen? Hol dir deine Energie zurück mit meinem Buch Zurück ins Leben und den vielen praktischen Übungen darin, die mich enorm weitergebracht haben. Jetzt anschauen! Den Link zur Episode findest du hier.
Die Zirbeldrüse ist das zentrale Steuerungsorgan in unserem Körper. Sie regelt den Tagnachtrhythmus, steuert eine Vielzahl an Hormonen und gilt als unser spirituelles Zentrum. Doch genau dieses Zentrum ist heutzutage in Gefahr. Was genau die Zirbeldrüse ist, was sie braucht und was sie in Gefahr bringt erfährst du in dieser Episode mit Professor Dr. Dr. Enrico Edinger. Was ist die Zirbeldrüse in Kürze? Wie funktioniert die Zirbeldrüse? Mikrotubuli mit hexagonalem Wasser, Magnetitkristalle, Halbleitereigenschaften Welches sind die Aufgaben der Zirbeldrüse? Taktgeber für alle anderen Hormondrüsen Wach- Schlafrhythmus Regeneration von Zellschäden Alterungsprozesse lenken DMT Denken Drittes Auge, Intuition, Hellsichtigkeit, Spiritualität Wie wichtig ist der Darm? Wie wichtig ist Melatonin und was kann es? Verringert Insulinausstoss, Mehr Grundumsatz, moduliert Geschlechtsdrüsen, erhöht Fruchtbarkeit. Apoptose (Krebs), Mitochondrien (spannungsgesteuerte Kalziumkanäle), PH-Wert, Homöostase, Glutathion Was ist 5G? Wie wirkt 5G auf den Körper? Wie wirkt 5G auf die Zirbeldrüse? Gibt es noch andere Feinde der Zirbeldrüse? Wie stark ist der Elektrosmog in modernen Autos? Sind Zusammenhänge zwischen 5G und Corona denkbar? Welche Lösungen gibt es? Wo kann man Dich erreichen? Warum die meisten Menschen bei ihrer Entgiftung scheitern und wie du alles richtig machen kannst erfährst du in dieser kostenlosen Videoserie, die ich für dich aufgenommen habe. >> Jetzt gleich anschauen
Die Zirbeldrüse ist das zentrale Steuerungsorgan in unserem Körper. Sie regelt den Tagnachtrhythmus, steuert eine Vielzahl an Hormonen und gilt als unser spirituelles Zentrum. Doch genau dieses Zentrum ist heutzutage in Gefahr. Was genau die Zirbeldrüse ist, was sie braucht und was sie in Gefahr bringt erfährst du in dieser Episode mit Professor Dr. Dr. Enrico Edinger. Was ist die Zirbeldrüse in Kürze? Wie funktioniert die Zirbeldrüse? Mikrotubuli mit hexagonalem Wasser, Magnetitkristalle, Halbleitereigenschaften Welches sind die Aufgaben der Zirbeldrüse? Taktgeber für alle anderen Hormondrüsen Wach- Schlafrhythmus Regeneration von Zellschäden Alterungsprozesse lenken DMT Denken Drittes Auge, Intuition, Hellsichtigkeit, Spiritualität Wie wichtig ist der Darm? Wie wichtig ist Melatonin und was kann es? Verringert Insulinausstoss, Mehr Grundumsatz, moduliert Geschlechtsdrüsen, erhöht Fruchtbarkeit. Apoptose (Krebs), Mitochondrien (spannungsgesteuerte Kalziumkanäle), PH-Wert, Homöostase, Glutathion Was ist 5G? Wie wirkt 5G auf den Körper? Wie wirkt 5G auf die Zirbeldrüse? Gibt es noch andere Feinde der Zirbeldrüse? Wie stark ist der Elektrosmog in modernen Autos? Sind Zusammenhänge zwischen 5G und Corona denkbar? Welche Lösungen gibt es? Wo kann man Dich erreichen? 360 Energy ist die wohl innovativste Mitochondrienformel die es derzeit gibt. >> Hol dir jetzt die pure Energie!
Folge 002 - Die Pflanzenzelle und ihre Bestandteile | Der Aufbau der Pflanzenzelle Show Notes: Bitte unterstützt den Biologie Passion Podcast finanziell ➤ paypal.me/biologiepassionpdcst Hier gehts zum zugehörigen Blogartikel auf meiner Webseite. Wenn dir die Podcastfolge gefallen hat, würde mich eine kurze Bewertung auf iTunes freuen. Trag dich in meinen Newsletter ein, wenn du über neue Podcastfolgen informiert werden willst. Vielen Dank fürs Zuhören!
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06
Morbus Alzheimer ist die häufigste Form einer Demenzerkrankung und stellt aufgrund der steigenden Lebenserwartung eine sehr große ökonomische und emotionale Belastung für Patienten, deren Familien und die gesamte Gesellschaft dar. Eine Verringerung dieser Belastung erfordert dringend krankheitsmodifizierende Therapien, die bisher nicht zur Verfügung stehen. Als wahrscheinlichste Erklärung für die molekularen Ursachen der Krankheit wurde in der Amyloid-Kaskaden-Hypothese postuliert, dass die Akkumulation und Aggregation des Abeta-Peptids das zentrale Ereignis darstellt. Infolgedessen kommt es zu synaptischen Beeinträchtigungen durch Abeta-Oligomere, Entzündungsreaktionen durch unlösliche Abeta-Aggregate in Form von amyloiden Plaques, progressiven Schädigungen von Synapsen und Neuronen, oxidativem Stress, der Hyperphosphorylierung des Mikrotubuli-assoziierten Proteins Tau und einem Neuronenverlust. Das Abeta-Peptid wird durch sequentielle Spaltung des Amyloid-Vorläuferproteins (APP) durch die beta- und gamma-Sekretase konstitutiv im Gehirn produziert. In der vorliegenden Arbeit wurden die Auswirkungen der Überexpression eines humanen APP mit der schwedischen Mutation auf Synapsen und die Akkumulationskinetik des Abeta-Peptids zu amyloiden Plaques in einem Alzheimer-Mausmodell (Tg2576) untersucht. Die detaillierte Charakterisierung des Mausmodells wurde in einer Therapiestudie umgesetzt, in der eine passive Immunisierung gegen das Abeta-Peptid oder Abeta-Oligomere getestet wurde. Im ersten Teil der Arbeit wurde der Einfluss der Überexpression des APP auf dendritische Spines untersucht, die das postsynaptische Kompartiment glutamaterger Synapsen entlang von Dendriten bilden. Als Reporter-Tiere wurden Mäuse verwendet, die das gelbfluoreszierende Protein YFP in einem Teil der pyramidalen Neuronen des Cortex exprimieren. Mithilfe der in vivo Zwei-Photonen-Mikroskopie wurden die denritischen Spines an den apikalen Dendriten der Schicht II/III und V Neurone im somatosensorischen Cortex analysiert. Die Überexpression des APP führte zu einem differentiellen Effekt, wobei in Schicht II/III Neuronen keine Änderung und in Schicht V Neuronen eine Erhöhung der Dichte dendritischer Spines gemessen wurde. Eine detaillierte Charakterisierung zeigte eine Mehrzahl an stabilen Spines als ursächlich für die erhöhte Spinedichte, während keine zeitliche Änderung der Spinedichte über sechs Wochen detektiert wurde. Auch die Morphologie der dendritischen Spines war unverändert. Diese Ergebnisse deuten auf eine mögliche physiologische Rolle von APP und/oder dessen proteolytische Fragmente an Synapsen. Ein wichtiges neuropathologisches Merkmal von Morbus Alzheimer sind amyloide Plaques, die durch Aggregation des Abeta-Peptids zu Amyloidfibrillen mit einer gekreuzten beta-Faltblattstruktur entstehen. Demzufolge wurde im zweiten Teil der vorliegenden Arbeit mithilfe der in vivo Zwei-Photonen-Mikroskopie, unter der wiederholten Anwendung des spezifischen fluoreszenten Markers Methoxy-X04, die Entstehungs- und Aggregationskinetik amyloider Plaques untersucht. Eine quantitative Auswertung von Plaquegrößen, -wachstumsraten und -dichten in zwei Altersgruppen der frühen und späten amyloiden Pathologie führte zur bisher detailliertesten in vivo Charakterisierung in einem Alzheimer-Mausmodell. Für eine präzise Messung der Plaquedichten wurde ein sehr großes Gehirnvolumen von 3 Kubikmillimeter pro Gruppe untersucht. In einem Langzeitversuch über 15,5 Monate mit einer zeitlichen Auflösung von einer Woche wurde erstmals eine komplette Kinetik des Plaquewachstums in einem Mausmodell beschrieben, die den gleichen Verlauf einer Sigmoid-Funktion aufwies, wie er bereits in vitro und in Alzheimer-Patienten gezeigt wurde. Die Plaquedichte stieg asymptotisch mit dem Alter an und folgte einer exponentiellen, einphasigen Assoziationsfunktion. Neu entstandene Plaques wiesen mit Abstand die kleinste Plaquegröße auf, die mit zunehmendem Alter anstieg. Die lineare Plaquewachstumsrate, gemessen als Zuwachs des Plaqueradius pro Woche, sank mit ansteigendem Alter der Mäuse, was sich in einer negativen Korrelation der Plaquewachstumsrate mit der Plaquedichte widerspiegelte. Sehr große Plaques wurden früh in der Entstehungsphase gebildet und die Größe am Ende der Untersuchung korrelierte mit ihrer Wachstumsrate. In der frühen Phase der Plaqueentwicklung nahmen die Plaques mit einer maximalen Wachstumsrate zu, die nicht durch die Abeta-Konzentration limitiert war. Die Wachstumsraten individueller Plaques waren sehr breit verteilt, was auf einen Einfluss lokaler Faktoren schließen ließ. Dieser Befund wurde gestützt durch den Langzeitversuch, da kein Zusammenhang zwischen den Wachstumsraten benachbarter Plaques detektiert wurde. Die Ergebnisse dieser Studie zeigen ein physiologisches Wachstumsmodell, in dem Plaques sehr langsam über große Zeiträume wachsen bis zum Erreichen eines Äquilibriums. Durch die nachgewiesenen Parallelen zu den Befunden von in vitro Studien und in vivo Ergebnissen von Alzheimer-Patienten stellen die beschriebenen Zusammenhänge eine wertvolle Grundlage für die Translation von Ergebnissen zwischen präklinischer und klinischer Forschung zur Entwicklung von Abeta-senkenden Therapien dar. Im dritten Teil der Arbeit wurden die Effekte einer passiven Immunisierung gegen das Abeta-Peptid oder Abeta-Oligomere untersucht. Nach einer zweimonatigen Antikörper-Behandlung wurden keine Unterschiede in der Plaqueentstehungs- und Plaquewachstumskinetik gemessen. Eine in der Literatur beschriebene Akkumulation von Abeta-Oligomeren konnte durch eine in vivo Visualisierung mit einem hochspezifischen Antikörper gegen diese Molekülspezies nicht bestätigt werden. Lösliche Abeta-Peptide oder Abeta-Aggregate akkumulierten erwartungsgemäß um den amyloiden Kern von Plaques. Am Ende der Immunisierungsstudie wurde die synaptische Pathologie mittels immunhistochemischer Färbung der Prä- und Postsynapsen mit den Markern Synapsin und PSD-95 untersucht. Innerhalb amyloider Plaques wurden sehr niedrige Synapsendichten gemessen, die mit zunehmender Entfernung zum Plaque asymptotisch zu einem Plateau anstiegen. Diese Analyse zeigte erstmals, dass der Einflussbereich der toxischen Wirkung amyloider Plaques für Präsynapsen wesentlich größer ist als für Postsynapsen, was auf eine höhere Sensibilität von Präsynapsen schließen lässt. Abseits von Plaques im Cortex waren die Synapsendichten niedriger im Vergleich zu Wildtyptieren, wie durch den Vergleich der Plateaus gemessen wurde. Beide therapeutischen Antikörper zeigten eine partielle Normalisierung der Synapsendichte. Daraus folgt, dass die Abeta-Oligomere ursächlich für die Synapsenpathologie waren, da eine spezifische Neutralisierung dieser Abeta-Aggregate für einen Therapieeffekt ausreichte. Diese Ergebnisse bestätigen in vivo die toxische Wirkung von Abeta-Oligomeren auf Synapsen und beweisen eine mögliche Neutralisierung dieser löslichen Abeta-Aggregate durch eine passive Immunisierung.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
Akkurate Verteilung der Chromosomen während der Zellteilung ist eine fundamentale Voraussetzung für den Erhalt der genetischen Information eines Organismus. Durch Fehler innerhalb dieses Prozesses resultieren Aneuploidien, die wiederum zur Entstehung von Krebs oder Trisomien (z.B. Down-Syndrom) führen können. Es überrascht daher nicht, dass die Chromosomensegregation einen der am höchsten regulierten Vorgänge innerhalb des eukaryotischen Zellzyklus darstellt. Die Schwesterchromatide eines jeden Chromosoms werden in S-Phase synthetisiert und gleichzeitig von einem sie ringförmig umschließenden Multi-Proteinkomplex, Kohäsin genannt, miteinander verpaart. Ihre Trennung in der nachfolgenden Kernteilungsphase (Mitose) erfolgt bei Vertebraten in zwei Stufen. Während Kohäsin von den Chromosomenarmen bei Phosphorylierung in Prophase dissoziiert, wird zentromerisches Kohäsin von der später aktiv werdenden Separase proteolytisch gespalten, wodurch die Anaphase ausgelöst wird. Shugoshine (SGOs) schützen die Schwesterchromatidkohäsion im Bereich der Zentromeren, indem sie durch Rekrutierung von Protein-Phosphatase 2A (PP2A) der Phosphorylierung von Kohäsin entgegenwirken. In Säugern schützt Sgo1 mitotisches Kohäsin in der Prophase, während Sgo2 meiotisches Kohäsin vor der phosphorylierungsabhängigen Spaltung durch Separase während der ersten Reifeteilung bewahrt. Sowohl Mitose als auch Meiose werden maßgeblich durch den Spindle Assembly Checkpoint (SAC) reguliert. Dieser lässt Anaphase grundsätzlich erst dann zu, wenn alle Chromosomen über ihre Kinetochore mit Mikrotubuli des Spindelapparates in einer Weise wechselwirken, dass Zugspannung entsteht. Solange dies nicht der Fall ist, katalysiert ein kinetochorständiger Mad1-Mad2-Komplex die konformationelle Umwandlung von löslichem Mad2 hin zu einer Form, in der es über Bindung an Cdc20 die Aktivierung von Separase und den Austritt aus der Mitose blockiert. In der vorliegenden Arbeit wird durch funktionelle Charakterisierungen in Krebszelllinien gezeigt, dass Sgo2 keine essentielle mitotische Funktion ausübt. Ein bislang in der Literatur bestehender Widerspruch wird hierdurch geklärt. Die RNAi-vermittelte Depletion von Sgo2 führt zwar zu einem Verlust des Mikrotubuli-depolymerisierenden Kinesins MCAK von den Zentromeren, entsprechende HeLa-Zellen zeigen bei fehlender Zugspannung aber weiterhin einen mitotischen Arrest, der von Aurora B abhängig ist. Die Funktion dieser mitotischen Kinase innerhalb des SAC beruht demzufolge nicht auf der Erzeugung freier Kinetochore durch die Rekrutierung von MCAK sondern auf einem alternativen Signalweg. Weiterhin wird eine unerwartete, direkte Bindung von humanem Sgo2 an Mad2 beschrieben. Biochemische Experimente machen deutlich, dass Sgo2 genauso mit Mad2 interagiert, wie dies Mad1 und Cdc20 tun. Gleichzeitig wird gezeigt, dass die Wechselwirkung zwischen Sgo2 und Mad2 konserviert ist und in Organismen, denen ein zweites Shugoshin fehlt, von Sgo1 übernommen wird. Diese Daten stellen ein zentrales Dogma in Frage, das für den SAC beschrieben wurde und das für das aktive Checkpoint-Signal von einer „Quelle“ (kinetochorständiges Mad1-Mad2) und einem „Zielprotein“ (Cdc20) ausgeht. Die Mad2-Bindung ist für die Fokussierung von Sgo2 am inneren Zentromer erforderlich. In Abwesenheit von Mad2 oder bei mutierter Mad2-Bindestelle verlagert sich Sgo2 an Randbereiche des Zentromers. Aufgrund dieser Daten sowie publizierter Studien über die Funktion von Sgo2 in Meiose wird postuliert, dass der Sgo2-Mad2-Wechselwirkung eine Funktion in der Monoorientierung von Schwesterkinetochoren während der ersten Reifeteilung zukommt.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
Podosomen sind aktinreiche Adhäsionsstrukturen, die vor allem in monozytären Zellen, aber auch in dendritischen Zellen, Osteoklasten, Endothelzellen oder glatten Muskelzel-len vorkommen. In primären humanen Makrophagen gibt es zwei Subpopulationen von Podosomen: größere, hochdynamische Precursor in der Peripherie sowie kleinere, sta-bilere Podosomen im Zellzentrum. Die Regulation der Podosomendynamik in der Zell-peripherie erfolgt durch das Mikrotubuli-basierte Motorprotein KIF1C, wahrscheinlich durch den Transport von Regulationsfaktoren. Ein Schwerpunkt der vorliegenden Ar-beit lag daher in der Identifizierung dieser Regulatoren. • Die Aufreinigung KIF1C-GFP positiver Vesikel mittels FACS ist grundsätzlich funk-tionell. Die Analyse zahlreicher Vesikel-assoziierter Proteine spricht weiter für die Hypothese, dass es sich bei der von KIF1C transportierten Fracht um vesikuläre Struk-turen handelt. Die Detektion zahlreicher unspezifischer Proteine zeigt jedoch auch, dass die Methode der Aufreinigung zukünftig noch verbessert werden muss. • RabGTPasen, die auch am Transport von Vesikeln beteiligt sind, haben oftmals eine ähnliche subzelluläre Lokalisation wie KIF1C. Vor allem zwischen Rab6a und KIF1C war ein häufiger und länger dauernder Kontakt in der Zellperipherie zu beobachten. Mittels GFP-Immunpräzipitation konnte eine Interaktion bestätigt werden. • Auf der Suche nach weiteren potentiellen Interaktionspartnern von KIF1C wurde das Protein HAX1 identifiziert. Sowohl in fixierten als auch in lebenden primären humanen Makrophagen konnte eine eindeutige Kolokalisation der Proteine in der Zellperipherie beobachtet werden. Bei Einsatz der Rigormutante von KIF1C (KIF1C-K103A) akku-mulierten beide Proteine am MTOC. Diese Ergebnisse lassen auf eine Interaktion zwi-schen KIF1C und HAX1 schließen. Das Motorprotein KIF9 lokalisiert vor allem an den stabileren Podosomen im Zentrum der Zelle. Bei der Ermittlung der Rolle von KIF9 hinsichtlich der Regulation dieser Po-dosomensubpopulation wurden folgende Erkenntnisse gewonnen: • Knock-down von KIF9 reduziert die Anzahl der Podosomen und inhibiert bei noch bestehenden Podosomen den Abbau extrazellulärer Matrix. Für KIF9 konnte demnach nicht nur eine Beteiligung an der Podosomenregulation sondern auch eine Rolle im Matrixabbau zugewiesen werden. • KIF9-GFP positive Vesikel assoziieren mit Mikrotubuli und kontaktieren mehrere Podosomen nacheinander. Dies spricht für eine direkte Verbindung von KIF9-vermitteltem, mikrotubuli-basiertem Transport mit Podosomen, die durch KIF9 regu-liert werden. • Durch Immunpräzipitationsversuche wurden Hinweise gefunden, dass KIF9 mögli-cherweise in unterschiedlichen Spleißvarianten oder verschieden phosphorylierten Zu-ständen existiert. • Als Interaktionspartner für KIF9 konnte Reggie-1 identifiziert werden. Durch knock-down von Reggie-1 und auch Reggie-2 konnte diesen Proteinen eine Beteiligung am Abbau extrazellulärer Matrix zugeschrieben werden. Die Teilung der Podosomen-Precursor sowie Auflösung der regulären Podosomen sind grundlegende Vorgänge. Unterschiede in der molekularen Zusammensetzung der Podo-somen-Subpopulationen waren bisher allerdings unbekannt. • Supervillin konnte als erstes Protein identifiziert werden, das differentiell an die unter-schiedlichen Subpopulationen lokalisiert. Dies zeigt zum ersten Mal eine unterschiedli-che molekulare Zusammensetzung der Podosomen-Subpopulationen. • Podosomen reichern Supervillin an, bevor diese sich auflösen. Überexpression von GFP-Supervillin führte außerdem zu einem Verlust von Podosomen, wohingegen shRNA-basierter knock-down die Lebensdauer verlängerte. Supervillin scheint somit eine Rolle in der Regulation von Podosomen zu spielen. • Die Myosin IIA-Bindedomäne ist sowohl für die Anzahl der Podosomen als auch für die differentielle Rekrutierung an die unterschiedlichen Subpopulationen essentiell. • Supervillin steht mit Myosin IIA und der phosphorylierten leichten Kette von Myosin in Verbindung und koppelt kontraktiles Myosin an Podosomen, was deren Auflösung auslöst. • Durch siRNA-basierten knock-down konnte gezeigt werden, dass Supervillin erst zu-sammen mit Myosin IIA und/oder Gelsolin die Effektivität der Podosomen hinsichtlich Matrixabbau beeinflusst. Die Podosomenanzahl hingegen war nicht verändert.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Auf der Suche nach bislang unbekannten Proteinen des Centrosoms von Dictyostelium wurde zunächst auf der Ebene des Dictyostelium-Genomprojekts, basierend auf Ähnlichkeiten zu bekannten centrosomalen Proteinen anderer Spezies, nach möglichen Kandidaten gesucht. Zu den ca. 120 wahrscheinlich centrosomalen Proteinen in Tieren konnten hier nur 38 Homologe gefunden werden. Allerdings besteht das Dictyostelium-Centrosom wahrscheinlich aus ähnlich vielen verschiedenen Proteinen, sodass mit dieser Methode ein Großteil unentdeckt blieb. In einem Proteomics-Ansatz mit verschiedenen Auftrennungsmethoden wurde das Dictyostelium-Centrosom systematisch untersucht. Hierfür wurde zunächst ein Verfahren erarbeitet, Centrosomen in hinreichender Reinheit für massenspektrometrische Analysen zu präparieren. Am Ende der Bemühungen wurden 33 neue mögliche centrosomale Proteine gefunden, von denen bereits drei bestätigt werden konnten. Parallel wurde im Dictyostelium-System die Krankheit Lissenzephalie untersucht, eine Migrationsstörung von Neuronen bei der Gehirnentwicklung, bei der Centrosom-assozierte Proteine eine wichtige Rolle spielen. Zellmotilität und Entwicklung sind in Dictyostelium besonders gut zu beobachten, außerdem existieren hier Homologe zu den miteinander interagierenden Proteinen LIS1 und DCX, deren Mutationen beim Menschen Lissenzephalie auslösen. Mit DdDCX wurde ein Homologes (29 % Identität) zum humanen DCX gefunden und unter Einsatz von Fusionsproteinen und eines Antikörpers umfangreich charakterisiert. DdDCX bindet an Mikrotubuli und wird hauptsächlich in der Aggregationsphase exprimiert. Die generierte Nullmutante zeigte jedoch keinen Phänotyp. Das centrosomale Protein DdLIS1 hat zahlreiche wichtige Dynein-assoziierte Funkionen in vegetativ wachsenden Zellen. Hier konnte in durch gezielte Mutationen gezeigt werden, dass DdLIS1 eine Rolle bei der Entwicklung spielt, auch wenn es selbst nicht entwicklungsreguliert ist. Eine klare Aussage wurde erst durch die Generierung einer Doppelmutante möglich: Bei dieser ist die Aggregation in der Entwicklung gestört, also die Phase, in der wie bei Neuronen Zellbewegung und die Kommunikation zwischen den Zellen besonders wichtig sind. Da gezeigt werden konnte, dass Mikrotubuli dafür nicht essentiell sind, sind Spekulationen über gestörte Mikrotubuli-Dynamik als Ursache für die Migrationsstörung in Dictyostelium nicht haltbar. Mögliche Erklärungen bieten dagegen die nachgewiesene Interaktion mit Aktin oder die Beteiligung von LIS1 an der Regulation von PAF, einem intrazellulären Botenstoff, der auch in Neuronen eine Rolle spielt.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Um Aneuploidie zu verhindern, muss die Trennung der Chromosomen in der Anaphase mit hoher Genauigkeit und daher streng reguliert ablaufen. Bisher galt folgendes Modell der eukaryontischen Schwesterchromatidentrennung: Der „anaphase promoting complex/cyclosome” (APC/C) wird erst aktiviert, wenn alle Chromosomen ordnungsgemäß bipolar an die Mikrotubuli des Spindelapparates angeheftet sind. In seiner Eigenschaft als Ubiquitinligase katalysiert der APC/C dann den proteasomalen Abbau des Anaphaseinhibitors Securin aus dem Komplex mit Separase. Die auf diese Weise als Protease aktivierte Separase löst daraufhin die Anaphase aus, indem sie den Proteinkomplex Kohäsin, welcher die Schwesterchromatiden zusammenhält, spaltet. Das Ausbleiben eines Phänotyps beim Verlust von Securin deutet jedoch auf die Existenz weiterer Regulationsmechanismen der Anaphase hin. Der APC/C sorgt gleichermaßen für den Abbau von Cyclin B1. Die damit verbundene Inaktivierung der Cyclin-abhängigen Kinase 1 (Cdk1) führt zum Austritt aus der Mitose. Im Gegensatz zur Bäckerhefe, in der die Cdc14-Phosphatase ebenfalls als essentieller Gegenspieler von Cdk1 fungiert, repräsentierte in höheren Eukaryonten der APC/C-abhängige Abbau von Cyclin B1 den einzig bekannten Mechanismus zur Cdk1-Inaktivierung. Bisher glaubte man, dass nach dem APC/C die zur Anaphase und zum Mitoseaustritt führenden Signalwege strikt getrennt voneinander verlaufen. Daher war die kürzlich gemachte Beobachtung unerwartet, wonach die durch nicht abbaubares Cyclin B1 konstitutiv aktivierte Cdk1-Kinase die Schwesterchromatidentrennung in Xenopus Eiextrakten blockiert und zwar durch eine Securin-unabhängige Inhibition von Separase. Obwohl die Mutation von Separase an Cdk1-Phosphorylierungsstellen die Kohäsinspaltung in Gegenwart von aktiver Cdk1 wiederherstellte, blieben die molekularen Details der Cdk1-abhängigen Separaseinhibition unklar. In der vorliegenden Arbeit wird gezeigt, dass die Phosphorylierung zwar notwendig aber nicht hinreichend ist, um Separase zu inaktivieren. Zur Inhibition kommt es erst, wenn in einem zweiten Schritt der Cdk1-Komplex stabil und unabhängig von seiner Kinaseaktivität an zuvor phosphorylierte Separase bindet. Es wurde eine Region in Separase identifiziert, die wahrscheinlich in Abhängigkeit von ihrer Phosphorylierung durch die regulatorische Cyclin B1-Untereinheit von Cdk1 erkannt wird. Da sich Securin- und Cdk1-Bindung an Separase gegenseitig ausschließen, stellen sie, anders als ursprünglich angenommen, nicht konvergente sondern parallele Inhibitions-mechanismen dar. Bei der Rekonstitution des Separase-Cdk1 Komplexes wurde eine neue Funktion von Vertebraten-Separase als ein direkter, stöchiometrischer Cdk1-Inhibitor entdeckt, welche unabhängig von der proteolytischen Aktivität ist. Eine durch Mutantenanalyse verifizierte Sequenzhomologie im Cyclin B-bindenden Bereich zwischen Separase und dem Cdk1-Inhibitor Cdc6 aus S. cerevisiae bestätigt dieses Ergebnis. Mikroinjektionsexperimente an Oozyten zeigen, dass die Separase-vermittelte Inhibition von Cdk1 eine essentielle Rolle während der Meiose I spielt. Separase ist also nicht nur ein universeller Auslöser der eukaryontischen Anaphase, sondern sie wirkt auch, trotz unterschiedlicher Mechanismen in Hefe und Vertebraten, als konservierter Cdk1-Antagonist und koppelt damit die Anaphase mit dem Austritt aus der Meiose I.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19
ZD6126 is a novel vascular-targeting agent that acts by disrupting the tubulin cytoskeleton of an immature tumor endothelium, leading to an occlusion of tumor blood vessels and a subsequent tumor necrosis. We wanted to evaluate ZD6126 in primary and metastatic tumor models of human pancreatic cancer. Nude mice were injected orthotopically with L3.6pl pancreatic cancer cells. In single and multiple dosing experiments, mice received ZD6126, gemcitabine, a combination of both agents, or no treatment. For the induction of metastatic diseases, additional groups of mice were injected with L3.6pl cells into the spleen. Twenty-four hours after a single-dose treatment, ZD6126 therapy led to an extensive central tumor necrosis, which was not seen after gemcitabine treatment. Multiple dosing of ZD6126 resulted in a significant growth inhibition of primary tumors and a marked reduction of spontaneous liver and lymph node metastases. Experimental metastatic diseases could be significantly controlled by a combination of ZD6126 and gemcitabine, as shown by a reduction of the number and size of established liver metastases. As shown by additional in vitro and in vivo experiments, possible mechanisms involve antivascular activities and subsequent antiproliferative and proapoptotic effects of ZD6126 on tumor cells, whereas direct activities against tumor cells seem unlikely. These data highlight the antitumor and antimetastatic effects of ZD6126 in human pancreatic cancer and reveal benefits of adding ZD6126 to standard gemcitabine therapy.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Wed, 25 Jan 2006 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/4906/ https://edoc.ub.uni-muenchen.de/4906/1/Kopp_Petra.pdf Kopp, Petra ddc:500, ddc:570, Fakultät für Biol
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Die Organisation und Dynamik des Mikrotubuli-Cytoskeletts wird von großen Proteinkomplexen an den plus- und minus-Enden der Mikrotubuli reguliert. Am minus-Ende befindet sich das Centrosom, das als Mikrotubuli-organisierendes Zentrum dient. Am plus-Ende der Mikrotubuli findet sich ein Komplex von Proteinen, der die Dynamik der Mikrotubuli reguliert sowie ihre Verankerung am Zellcortex vermittelt. DdCP224 ist ein centrosomales und Mikrotubuli-assoziiertes Protein bei Dictyostelium discoideum, das zur ubiquitären XMAP215-Familie gehört und eine wichtige Rolle bei der Dynamik des Centrosoms und des Mikrotubuli-Cytoskeletts spielt. Ziel dieser Arbeit war die Charakterisierung zuvor unbekannter Dictyostelium-Proteine, die mit DdCP224 bei diesen dynamischen Vorgängen zusammenwirken. Mit DdEB1, DdMoe1 und DdLIS1 konnten drei neue Mikrotubuli-assoziierte Proteine bei Dictyostelium identifiziert und charakterisiert werden. Alle drei Proteine konnten gleichzeitig auch als echte centrosomale Bestandteile nachgewiesen werden, da ihre Lokalisation am Centrosom unabhängig von Mikrotubuli ist. DdEB1 ist aufgrund seines Molekulargewichts, das größte Mitglied der ubiquitären EB1-Proteinfamilie. DdEB1 zeigte eine cytosolische Interaktion mit DdCP224 und Dynein. Am Beispiel von DdEB1 und DdCP224 konnte in dieser Arbeit nicht nur erstmals die Interaktion von Proteinen aus der EB1- und XMAP215-Familie, sondern auch ihre lange vermutete Colokalisation an Mikrotubuli-plus-Enden nachgewiesen werden. Mit Hilfe der Expression von GFP-DdEB1-Deletionsmutanten konnte gezeigt werden, dass die DdEB1 Bindung an Mikrotubuli von einer Homo-Oligomerisierung des Proteins abhängt, die durch eine „coiled-coil“-Domäne vermittelt wird. DdEB1-Nullmutanten zeigen in erster Linie mitotische Defekte, d.h. Störungen der Centrosomenduplikation, Spindelbildung und Chromosomensegregation. Die mikroskopische Analyse lebender Zellen ergab, dass DdEB1 für die Spindelbildung, nicht aber für die Spindelelongation oder die Mikrotubuli/Zellcortex-Interaktion benötigt wird. Bei der Suche nach möglichen DdEB1-Interaktoren wurde mit DdMoe1 das Dictyostelium-Homologe von Schizosaccharomyces pombe Moe1 isoliert, das dort ein Interaktionspartner des entsprechenden EB1-Proteins ist. Eine solche Interaktion ist den durchgeführten Untersuchungen zufolge bei Dictyostelium jedoch unwahrscheinlich. Dafür konnte hier zum ersten mal ein Moe1-homologes Protein als echte Centrosomenkomponente identifiziert werden und die Mikrotubuli-Bindung eines solche Proteins in vivo nachgewiesen werden. Wie EB1 ist auch das humane LIS1-Protein ein Mikrotubuli-plus-End und Dynein-assoziiertes Protein. Mutationen in diesem Gen führen zu einer schweren Entwicklungsstörung des Gehirns (Lissenzephalie), aufgrund eines neuronalen Migrationsdefekts. Dictyostelium LIS1 (DdLIS1) bindet nicht nur an Dynein, sondern auch an DdCP224, womit auch erstmals die Interaktion mit einem Protein der XMAP215-Familie nachgewiesen werden konnte. DdLIS1 spielt gemeinsam mit Dynein eine Rolle bei der Mikrotubuli/Zellcortex Verankerung, was in DdLIS1-Überexpressionsmutanten deutlich wurde. Die Überexpression von DdLIS1 führte außerdem zur Centrosomenamplifikation, Defekten bei der Organisation der Mitosespindel, schweren Cytokinesedefekten und einer drastisch eingeschränkten Zellmotilität. Letztere steht im Einklang mit dramatischen Veränderungen der Aktindynamik, bei der charakteristische wandernde Aktin-Polymerisationswellen am Zellcortex auftreten. Da derselbe Aktin-Phänotyp auch durch Behandlung von Kontrollzellen mit der F-Aktin depolymerisierenden Droge Latrunculin A simuliert werden konnte wurde angenommen, dass die DdLIS1-Überexpression den Aktin-Gehalt beeinflusst. Tatsächlich konnte in mikroskopischen und biochemischen Nachweisen bestätigt werden, dass die Überexpression von DdLIS1 den F-Aktin Gehalt der Zellen vermindert. Das Mikrotubuli-assoziierte Protein DdLIS1 ist also ein mögliches Bindeglied zwischen dem Mikrotubuli- und Aktin-Cytoskelettsystem.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 03/19
Die Polymerisation von monomerem G-Aktin zu filamentösem F-Aktin, die Organisation von Aktin-Filamenten zu spezifischen Zytoskelettstrukturen, sowie die F-Aktin Depolymerisation stellen in ihrem dynamischen Zusammenspiel die Triebkraft vieler zellulärer Bewegungsvorgänge dar. Dies sind u.a. Zell-Polarisation, Zell-Migration, Zell-Teilung, Zell-Zell-Interaktionen, Phagozytose und intrazellulärer Vesikeltransport. Das Verständnis der molekularen Grundlagen der Aktin Organisation hat 1999 einen entscheidenden Fortschritt gemacht: damals wurde entdeckt, dass der sieben Untereinheiten umfassende Arp2/3 Komplex nach Aktivierung durch Proteine der Wiskott-Aldrich Syndrom Protein- (WASp-) Familie Aktin-Filamente de novo polymerisieren kann. Die Experimente für diese Dissertationsarbeit hatten zum Ziel, den Mechanismus der WASp-abhängigen Aktin Nukleation in vitro und in humanen Makrophagen genauer zu untersuchen. Einerseits sollten die Regionen von WASp genauer charakterisiert werden, die für die Aktivierung des Arp2/3 Komplexes verantwortlich sind. Andererseits sollte die Bedeutung von WASp und Arp2/3 Komplex bei der Aktin Nukleation in spezialisierten Adhäsionsstrukturen von Makrophagen, sogenannten Podosomen, geklärt werden. Podosomen sind essentiell für Adhäsion, Migration und vermutlich auch Gewebeinvasion von Makrophagen und ihnen verwandten Zellarten, aber sie finden sich auch in einer Vielzahl weiterer Zelltypen einschließlich metastasierender Tumorzellen. Die Bedeutung von Podosomen wird dadurch verdeutlicht, dass ihr Fehlen bei unter Wiskott-Aldrich Syndrom leidenden Patienten mit klinisch relevanten Immundefekten assoziiert ist. Zur Identifizierung der für die Aktin Nukleation minimal notwendigen WASp Regionen wurden verschiedene GST-Fusionskonstrukte der konstitutiv aktiven VCA (“Verprolin-like“, “Central“, “Acidic“) Domäne hergestellt. Durch Anisotropie Messungen und in GST-“Pulldown“ Versuchen wurde die Bindung von Arp2/3 Komplex und G-Aktin an die verschiedenen Konstrukte in vitro bestimmt. In einem zweiten Schritt wurde getestet, welche Regionen für die Arp2/3 Komplex Aktivierung notwendig sind. Dabei wurde GST-VC als die minimal notwendige Region für die Aktivierung der Aktin Nukleation identifiziert. Durch mikroskopische Analyse von in vitro nukleierten Aktin-Filamenten stellten wir fest, dass der durch GST-VC aktivierte Arp2/3 Komplex auch zur Ausbildung von Aktin-Filament Verzweigungen fähig ist. Die zellulären Effekte der VCA Konstrukte wurden mittels Mikroinjektion in primäre humane Makrophagen untersucht. Aktive Konstrukte führten zum Auftreten von prominenten Aktin-Aggregaten im Zytoplasma und zur Zerstörung von Podosomen. Auch hierbei war GST-VC das kürzeste Konstrukt, das vermutlich durch Aktivierung von zellulärem Arp2/3 Komplex, zur Zunahme des Gehaltes an intrazellulärem polymerisiertem Aktin führte. Obwohl die WASp-A Region als hochaffine Arp2/3 Komplex Bindungsstelle beschrieben worden war (Machesky und Insall, 1998), ist sie für die Arp2/3 Komplex Aktivierung nicht essentiell. Durch Koinjektion von WASp-A oder N-WASP-A mit aktiven GTPasen konnte ein erster experimenteller Hinweise für eine “Priming“- (Sensibilisierungs-) Funktion der A Region am Arp2/3 Komplex gefunden werden. Bei der Untersuchung der Aktin Nukleation und Organisation in Podosomen zeigte sich ein enger funktioneller Zusammenhang zwischen Aktin- und Tubulin-Zytoskelett. So konnte durch Depolymerisierung der Mikrotubuli in adhärierenden Monozyten die Ausbildung von Podosomen verhindert werden. Da bekannt war, dass WASp über seine Polyprolin Domäne an CIP4 (“CDC42 Interacting Protein“) bindet und dieses wiederum mit Mikrotubuli assoziiert, wurde der Einfluss der isolierten WASp-Polyprolin Domäne, aber auch von CIP4 Deletions-Konstrukten, denen entweder die Mikrotubuli oder WASp Bindungsstelle fehlten, auf die Podosomen-Ausbildung untersucht. Einem auf den so erhaltenen Ergebnissen basierendem Modell zufolge könnte WASp durch CIP4 an Mikrotubuli rekrutiert und anschließend via Mikrotubuli an Orte der Podosomen-Bildung transportiert werden. Dort könnte WASp dann zur Aktivierung von Arp2/3 Komplex und zur Nukleation von neuen Aktin-Filamenten führen.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Vererbung und intrazelluläre Positionierung von Mitochondrien werden in eukaryotischen Zellen durch verschiedenartige Zytoskelett-abhängige molekulare Maschinerien vermittelt. Dabei spielen insbesondere Mikrotubuli eine herausragende Rolle in Säugetierzellen und in einigen Pilzen. Außer einzelnen Motorproteinen, welche an der Interaktion von Mitochondrien mit Mikrotubuli in Säugerzellen beteiligt sind, sind keine weiteren die Interaktion vermittelnden Komponenten bekannt. Ziel der Arbeit war, in dem filamentösen Pilz Neurospora crassa als Modellorganismus Proteine zu identifizieren, die an der Interaktion von Mitochondrien mit Mikrotubuli beteiligt sind und diese zu charakterisieren. Zuerst sollte die biochemische Grundlage der Wechselwirkung zwischen Mitochondrien und Mikrotubuli durch Entwicklung und Einsatz von in vitro-Testsystemen aufgeklärt werden. Hierfür wurde ein biochemisches Testsystem entwickelt, in dem isolierte Mitochondrien mit Taxol-stabilisierten Mikrotubuli unter verschiedenen Bedingungen inkubiert werden, um nach Saccharosegradienten-Zentrifugation die Assoziation zwischen Mitochondrien und Mikrotubuli zu analysieren. Zusätzlich sollten die Ergebnisse dieser Versuche in einem fluoreszenzmikroskopischen Testsystem verifiziert werden. Dafür wurde die Expression von mitochondrial zielgesteuertem GFP in N. crassa etabliert. Auf diese Weise konnte nicht nur das Verhalten und die Morphologie von Mitochondrien in verschiedenen Stadien des Lebenszyklusses in vivo beobachtet werden, sondern isolierte GFP-gefärbte Mitochondrien konnten zudem für eine mikroskopische Interaktionsanalyse mit Rhodamin-gefärbten Mikrotubuli verwendet werden. Unter Einsatz der beiden Testsysteme wurde eine spezifische ATP-abhängige Interaktion zwischen Mitochondrien und Mikrotubuli nachgewiesen, die durch peripher mit der mitochondrialen Außenmembran assoziierte Proteine vermittelt wird. Diese Ergebnisse deuteten auf eine Beteiligung von Motorproteinen an der Assoziation von Mitochondrien mit Mikrotubuli hin. Deshalb wurde im Genom von N. crassa gezielt nach Sequenzen gesucht, die Kinesine kodieren, die diese Rolle übernehmen könnten. Es wurden zwei neue Mitglieder der Unc104-Kinesinfamilie identifiziert und im Rahmen dieser Arbeit charakterisiert. Eines dieser Kinesine, Nkin2, ist peripher mit der Außenmembran von Mitochondrien assoziiert. Unter Verwendung der in vitro-Testsysteme wurde die Beteiligung von Nkin2 am Transport von Mitochondrien im Wildtyp belegt. Die Interaktion der Mitochondrien mit Mikrotubuli in vitro kann durch eine Präinkubation von Zusammenfassung Mitochondrien mit Antikörpern gegen Nkin2 geblockt werden. Um die Funktion von Nkin2 im Mitochondrientransport in vivo zu untersuchen, wurden nkin2-Deletionsmutanten erstellt und funktionell charakterisiert.Die Deletion von Nkin2 führt in vivo zu einem eingeschränkten Mitochondrientransport in auswachsenden Hyphen. Dieser Phänotyp wird durch Überexpression des zweiten neu identifizierten Mitglieds der Unc104-Familie, Nkin3, komplementiert. Zwar ist Nkin3 im Wildtypstamm nicht auf Mitochondrien lokalisiert, es wird aber bei Abwesenheit von Nkin2 hochreguliert und spezifisch an die Mitochondrien rekrutiert.In Abwesenheit von Nkin2 ist Nkin3 essenziell für die Interaktion in vitro von Mitochondrien mit Mikrotubuli. Diese Ergebnisse deuten auf eine funktionelle Redundanz von verschiedenen Motorproteinen im Mitochondrientransport in N. crassa hin, die in ähnlicher Weise auch in Säugerzellen vorliegen könnte. Da Transport und Vererbung von Mitochondrien nicht nur von dem beteiligten Motorprotein abhängen, sondern auch mit Fusions- und Teilungsvorgängen der mitochondrialen Membranen verknüpft sind, wurde eine Stammsammlung von Deletionsmutanten nichtessenzieller Gene in der Hefe Saccharomyces cerevisiae nach Komponenten mit einer Funktion in der Morphogenese von Mitochondrien durchmustert. Im Rahmen dieser Arbeit wurden drei neue Gene identifiziert. Die aus der Deletion dieser Gene resultierenden Phänotypen werden beschrieben.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 02/19
Tau ist ein Mikrotubuli- assoziiertes Protein, dessen Expression im Nervensystem des Menschen der Regulation durch alternatives Spleißen unterliegt. Das Exon 10 dieses Gens, welches für einen Teil der Mikrotutuli- bindenden Domäne kodiert, ist ein für Erwachsene spezifisches Kassettenexon. Mutationen, die den Einschluss von Exon 10 verstärken, resultieren in der Produktion von Tau- Protein, das vier Mikrotubuli- bindende Aminosäuresequenzwiederholungen enthält. Diese Mutationen scheinen in ursächlichem Zusammenhang mit der Frontotemporalen Demenz mit Parkinsonismus gekoppelt an Chromosom 17 (FTDP- 17) zu stehen. In dieser Arbeit konnte mittels Transfektionsexperimenten gezeigt werden, dass die Verwendung von Exon 10 durch ein komplexes Zusammenspiel der CDC- ähnlichen Kinase Clk2, einer SR- Proteinkinase, und des SR- ähnlichen Proteins humaner Transformer 2- b (Htra2- b) reguliert wird. Kotransfektionsexperimente legen den Schluss nahe, dass diese Regulation über mehrere ineinandergreifende Prozesse abläuft. Die Kinase Clk2 scheint dabei sowohl direkt durch Posphorylierung bzw. Hyperphosophorylierung von Htra2- b als auch indirekt durch Einfluss auf die alternative Expression der Htra2- b Isoformen in den Regulationsmechanismus einzugreifen. Phosphorylierung von SR- Proteinen führt zu deren Freisetzung aus den nukleären Speicherkomponenten, den speckles, und damit zur Aktivierung der Spleißreaktion, während sowohl eine Hyper- als auch eine Hypophosphorylierung in der Regel einen hemmenden Einfluss auf Spleißen ausüben. Kontrollierte Phosphorylierung scheint demnach zu einer regulierbaren Veränderung von prä- mRNA- Prozessierungswegen zu führen. Eine Interpretation dieser Resultate könnte als Grundlage für die Entwicklung neuer therapeutischer Konzepte verwendet werden.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Konventionelle Kinesine sind Mikrotubuli assoziierte Motorproteine. Sie benutzen die Energie der ATP-Hydrolyse, um gerichtete Bewegungen entlang des Zytoskeletts zu ermöglichen. Tierische konventionelle Kinesine sind aus zwei schweren Ketten und zwei leichte Ketten aufgebaut. Die niederen Organismen, wie Pilze, besitzen dagegen nur die zwei schweren Ketten. Das konventionelle Kinesin des roten Brotschimmels Neurospora crassa (NcKin) bewegt sich wie auch andere Pilzkinesine in vitro im mikroskopischen Gleittest mit Geschwindigkeiten, die etwa drei- bis fünffach höher sind (zwischen 2,0 und 2,6 µm/s), als die der tierischen Kinesine (zwischen 0,2 und 0,8 µm/s). Trotz der hohen Sequenzähnlichkeit von Tier- und Pilzkinesinen, sind spezifische Unterschiede festgestellt worden, vor allem im Halsbereich. Weil es bisher keine zufrieden stellende Erklärung der schnellen Gleitgeschwindigkeit von NcKin gibt, liegt es nahe, in diesen pilzspezifischen Sequenzbereichen die Grundlage hierfür zu vermuten. In dieser Dissertation wurde daher untersucht, welchen Einfluss die einzelnen Kinesin-Domänen auf die Motilität und den ATP-Umsatz haben. Zu diesem Zweck wurden (i) bakterielle Expressionsvektoren hergestellt, die für C-terminal verkürzte Kinesinkonstrukte kodieren. Hierbei wurden zunächst rekombinante Motoren hergestellt, die an den Domänengrenzen endeten, wie sie durch kristallografische Modelle und Sekundärstrukturvorhersagen abgeleitet worden waren. Aufgrund der Ergebnisse an diesen Proteinen wurden weitere C-terminal verkürzte Kinesine konstruiert, die eine genauere funktionelle Kartierung der Scharnierdomäne zum Ziel hatten. Mit diesen Konstrukten wurden kinetische Studien durchgeführt, um ein Gesamtbild von deren ATPase-Aktivität und Prozessivität zu bekommen. Da ähnliche Studien an dem homologen Drosophila Kinesin durchgeführt worden waren, war ein direkter Vergleich zu diesen Vertretern der Tierkinesine möglich. (ii) Um den Beitrag der einzelnen Domänen zur hohen Geschwindigkeit von NcKin zu ermitteln, wurden in einem zweiten Teil der vorliegenden Arbeit gezielt NcKin Domänen in die entsprechenden Bereiche des humanen Kinesins eingeführt, und die entstandenen Chimären auf einen Geschwindigkeitszuwachs getestet.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Die Eph-Familie von Rezeptortyrosinkinasen und ihre Liganden, die Ephrine, sind die größte Gruppe von axonalen Zielführungsmolekülen. Die membrangebundenen Ephrine und ihre Rezeptoren sind jedoch nicht ausschließlich für die Etablierung neuronaler Konnektivität, sondern auch für Entwicklungsvorgänge außerhalb des Nervensystems wie die Ausbildung des Blutgefäßsystems und die Steuerung von Zellmigration von Bedeutung. Als charakteristisches Merkmal dieser Molekülfamilie kann jeder einzelne Rezeptor durch eine Vielzahl verschiedener Ephrine aktiviert werden, was eine starke funktionelle Redundanz zur Folge hat. Konventionelle knock-out Experimente liefern daher nur ein unvollständiges Bild von der Funktion dieser Proteine, da eine genetische Deletion von Einzelmolekülen zumindest partiell von anderen Vertretern der Eph-Familie kompensiert werden kann. Im ersten Teil der Arbeit wurde eine transgene Mauslinie etabliert, welche im gesamten Nervensystem ein sezerniertes, Antikörper-ähnliches Fusionsprotein, einen sog. Rezeptorkörper, exprimiert. In dieser Mauslinie sollte der Rezeptorkörper alle Ephrine der sog. A-Subfamilie zugleich binden und neutralisieren, und damit die funktionelle Redundanz der A-Ephrine überwinden. Hierzu wurde in einem ersten Schritt der Rezeptorkörper kloniert, in Zellinien exprimiert und hinsichtlich seiner Funktionalität charakterisiert. In einem zweiten Schritt wurde nun das Mikrotubuli bindende Protein Tau gegen die cDNA des Rezeptorkörpers ersetzt (sog. knock-in), und nach Keimbahntransmission des rekombinanten Allels wurde durch Rückkreuzung gegen den Inzuchtstamm C57BL/6 eine congenische Mauslinie erzeugt. In dieser Mauslinie wurde der Rezeptorkörper mit dem räumlich-zeitlichen Expressionsmuster von tau exprimiert. Im zweiten Teil der Arbeit wurden einige Eigenschaften der knock-in Mauslinie charakterisiert. Die vollständige Deletion des Tau-Proteins sowie die pan-neuronale Expression des Rezeptorkörpers wurden mit Hilfe von Northern-Transfer, mRNA in-situ Hybridisierung, RT-PCR sowie mit Western-Transfer und immunhistochemischen Experimenten belegt. Tiere mit dem rekombinanten Allel waren fertil, zeigten keine Hinweise für eine erhöhte prä- oder postnatale Letalität, und das äußere Erscheinungsbild der Mäuse war weitgehend unauffällig. Eine erste Analyse der Hirnanatomie mit Hilfe klassischer histologischer Färbemethoden lieferte keine Hinweise auf starke, offensichtliche morphologische Veränderungen. Mit einem Immunassay wurde die Gewebekonzentration des Rezeptorkörpers zu verschiedenen embryonalen und postnatalen Entwicklungsstufen quantifiziert. Auf subzellulärer Ebene wurde mittels immuncytochemischer Färbungen dissoziierter Neuronen demonstriert, daß der Rezeptorkörper nicht auf das Soma der Zellen beschränkt, sondern auch in Nervenfortsätzen lokalisiert war. Die Analyse der Mauslinie auf spezifische Veränderungen im dritten Teil der Arbeit konzentrierte sich auf sensorische Projektionen in Peripherie und Rückenmark, sowie auf physiologische Aspekte des visuellen Systems und Blutgefäße. In neugeborenen Tieren wurden keine offensichtlichen Veränderungen der topographischen Projektionen von Spinalganglien in das Rückenmark detektiert. In der Peripherie wurde in dem knock-in hingegen eine signifikante Zunahme von Nervenverzweigungen in verschiedenen Strukturen beobachtet, die bei der Innervierung von Extremitäten sowie bei Interkostalnerven zwischen dem 12. und dem 14. Tag der Embryonalentwicklung (E12-14) besonders ausgeprägt war. Die Untersuchung der Blutgefäße im zentralen Nervensystem adulter Mäuse mit Hilfe von Korrosionsausgüssen ließ in der Mutante keine offensichtlichen Veränderungen erkennen. Mit Hilfe der in Anwendung auf Mäuse neuartigen Technik „Intrinsic Signal Optical Imaging“ wurde die Repräsentation der Retina im Primären Visuellen Cortex juveniler und adulter Mäuse untersucht. Zentraler Befund dieser Experimente war eine Verzerrung der retinotopen Karte in dem knock-in, die in jungen Mäusen erheblich stärker war als in adulten Tieren.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
7 Im Rahmen dieser Doktorarbeit wurden mit dem Rasterkraftmikroskop (AFM) Untersuchungen an lebenden Zellen durchgeführt. Zu diesem Zweck wurde eine Versuchsanordnung aufgebaut, die ein kommerziell erhältliches AFM mit einem invertierten optischen Mikroskop kombiniert. Die Anordnung erlaubt es, während der Messung Umgebungsbedingungen aufrechtzuerhalten, bei denen Zellen über lange Zeiträume hinweg überleben. Zunächst wurde eine festkörpergestützte Lipidschicht als Modellsystem verwendet, um die komplexe Wechselwirkung zwischen AFM-Spitze und Zellmembran zu charakterisieren. Daraus ergab sich eine Methode zur ortsaufgelösten Messung elektrostatischer Oberflächeneigenschaften. Die ersten Experimente an lebenden Zellen dienten der Beantwortung einiger grundlegender Fragen zur Bildentstehung an weichen Proben. Dazu zählen die Diskussion des verringerten Auflösungsvermögens und die Interpretation des Abbildungsvorgangs. Durch Korrelation der AFM-Messungen mit strukturellen Daten in Form von Fluoreszenzbildern konnten faserige Strukturen, die häufig in AFM-Bildern lebender Zellen auftreten, als Spannungsfasern (Bündel von Aktinfilamenten) identifiziert werden. Den Hauptteil der Arbeit bilden Elastizitätsmessungen an Zellen, die ebenfalls mit Hilfe des AFM durchgeführt wurden. Die lokalen Elastizitätsmoduli einer Probe werden dabei aus dem Verlauf von Kraftkurven berechnet. Dieser Berechnung liegt das Hertz-Modell für die elastische Eindrückung zweier Körper zugrunde. Einschränkungen, die sich ergeben, wenn Voraussetzungen des Modells hinsichtlich Probenbeschaffenheit und geometrischer Verhältnisse des Systems nicht erfüllt sind, wurden experimentell untersucht und theoretisch diskutiert. Um eine Interpretation der Elastizitätsbilder zu ermöglichen, mußte geklärt werden, welche Bestandteile den Zellen mechanische Stabilität verleihen. Morphologischen Überlegungen zufolge spielt das Zytoskelett die Rolle einer Stützstruktur, die die Zellen nicht nur stabilisiert, sondern auch verschiedene Bewegungsvorgänge ermöglicht. Durch gezielte Manipulationen konnte gezeigt werden, daß das Aktinnetzwerk, eine Komponente des Zytoskeletts, von entscheidender Bedeutung für die Zellelastizität ist. In analogen Experimenten wurde festgestellt, daß Mikrotubuli, die ebenfalls zum Zytoskelett gehören, keinen Einfluß auf die Stabilität von Zellen haben. Die Manipulationen wurden mit Hilfe verschiedener chemischer Wirkstoffe durchgeführt, die spezifisch bestimmte Bestandteile des Zytoskeletts angreifen. Dabei konnten sogar Unterschiede in den Mechanismen der Wirkstoffeffekte beobachtet werden. Eine erste Anwendung fanden diese Resultate bei der Untersuchung kriechender Zellen. Dieser Bewegungsvorgang beruht auf koordinierten Umstrukturierungen im Aktinnetzwerk und spielt eine entscheidende Rolle z. B. bei der Ausbreitung von Krebs, bei der Embryonalentwicklung oder bei Reaktionen des Immunsystems. Mit Hilfe von Elastizitätsmessungen an aktiven Lamellipodien kriechender Bindegewebszellen wurden Erkenntnisse über den molekularen Mechanismus gewonnen, der der Bewegung dieser Zellen zugrunde liegt. Von vier Modellvorstellungen über den Ursprung der Kraft, die das Lamellipodium vorwärts schiebt, sind nur zwei mit den AFM-Daten konsistent. Die Fortsetzung dieser Messungen bilden ähnliche Experimente mit schnell kriechenden Keratocyten sowie mit chemotaktisch stimulierten MTLn3-Zellen. In einem weiteren Projekt wurde das Quellverhalten der Cuticula untersucht. Die Cuticula ist die wachsartige extrazelluläre Schicht an der Oberfläche von Blättern hochentwickelter Pflanzen. Sie reguliert den Wasserhaushalt der Pflanzen. Aus dem gemessenen Quellverhalten ergaben sich Rückschlüsse auf die Diffusionsrate von Wasser durch die Cuticula.