POPULARITY
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 14/19
Das Mantelzell-Lymphom ist ein aggressives B-NHL, das durch die Expression des Zell-zyklus-regulierenden Proteins Cyclin D1 charakterisiert ist. Diese Expression wird in den meisten Fällen durch eine chromosomale Translokation t(11;14)(q13;q32) ausgelöst. Klinisch weist das MCL mit einem medianen Überleben von nur drei bis vier Jahren eine der schlechtesten Langzeitprognosen aller Lymphomsubtypen auf. In fortgeschrittenen Stadien kommt es zu frühzeitigen Rezidiven nach der Behandlung mit konventionellen Chemotherapeutika. Es besteht daher ein dringender Bedarf an neuen, effektiveren, mo-lekular ausgerichteten Therapieformen, die zu einer Verbesserung der Prognose und der Lebensqualität der Patienten führen. In dieser Arbeit wurde hierfür das Proliferationsverhalten und die Viabilität von sechs humanen MCL-Zelllinien nach der Behandlung mit dem mTOR-Inhibitor RAD001 und dem Purin-Nukleosid-Phosphorylase-Inhibitor Forodesin in Gegenwart von 2'-Desoxyguanosin (dGuo) untersucht. Im Vordergrund stand zum einen die Charakterisierung der Wirkung von RAD001 und Forodesin+dGuo als Monosubstanzen. Zum anderen war es auch Ziel, die Antitumorwirkung zytotoxischer Kombinationen mit etablierten Substanzen der Chemotherapie, dem Proteasom-Inhibitor Bortezomib sowie dem PKCß-Inhibitor Enzastaurin bezüglich Wachstumshemmung, Zelltod und Apoptose zu untersuchen und diese Kombinationen auf antagonistische, additive oder synergistische Interaktionen hin zu analysieren. Die behandelten Zellen wurden hierzu einem Viabilitäts-Trypanblau-Test unterzogen, der hier als Screeningverfahren diente, um die Empfindlichkeit der Zellen auf unterschiedliche Dosen in Einzel- und Kombinationstherapien zu quantifizieren. Im Anschluss wurden die Resultate mit Hilfe der Zellzyklusanalyse durch Propidiumiodid-Färbung und Apoptose-Assays verifiziert und der Wirkmechanismus der Kombinationen differenziert. Als Ergebnis dieser Arbeit erzielte der mTOR-Inhibitor RAD001 als Monosubstanz bereits in subtoxischen Konzentrationen vor allem nach 48- und 72-stündiger Expositionsdauer eine antiproliferative Wirkung auf die MCL-Zelllinien. Außerdem zeigte RAD001 bei allen in dieser Arbeit untersuchten Zelllinien eine potente Inhibition des Zellzyklus, mit einer Zunahme der G0/G1- und einer Abnahme der S-Phase. Nach 48-stündiger Behandlung mit RAD001 in Kombination mit Fludarabin, Cytarabin, Bendamustin sowie Enzastaurin und Bortezomib zeigte sich bei einer Zelllinie ein Syner-gismus, die im Viabilitäts-Trypanblau-Test besonders empfindlich auf RAD001 war. Additive Effekte konnten bei vier von fünf untersuchten MCL-Zelllinien durch die Kombination von RAD001 und Bendamustin nachgewiesen werden. Bei zwei von fünf Zelllinien konnten diese Effekte auch mit Fludarabin erzielt werden. Vier von fünf MCL-Zelllinien zeigten nach 48-stündiger Behandlung bei der Kombination von RAD001 plus Cytarabin eine antagonistische Wirkung. Die Behandlung mit der Kombination von RAD001 plus Bortezomib oder Enzastaurin führte in einigen MCL-Zelllinien ebenso zu additiven Effekten. Die Kombinationen RAD001 plus Forodesine+dGuo und RAD001 plus Bortezomib wiesen in drei von fünf MCL-Zelllinien dagegen eine antagonistische Wirkung auf. Nach der Behandlung mit Forodesin unter Beigabe von dGuo konnte ebenfalls eine anti-proliferative Wirkung in allen untersuchten MCL-Zelllinien induziert werden. Die weiteren Untersuchungen mithilfe von Zellzyklus- und Apoptose-Analysen zeigten jedoch keine wesentlichen Veränderungen im Vergleich zu der jeweiligen unbehandelten Kontrolle. Ganz anders stellte sich die Zellzyklus-Analyse der T-ALL-Kontrollzelllinie Jurkat dar. Hier zeigte sich eine deutliche T-Zelllinien-spezifische Wirkung des PNP-Inhibitors Forodesin unter Zugabe von 2'-Desoxyguanosin. Die Kombination von Forodesin+dGuo und Bendamustin wies bei vier von fünf MCL-Zelllinien nach 72 Stunden Expositionszeit ebenso eine additive Wirkung auf. Ein synergistischer Effekt war nach 48 Stunden dagegen lediglich bei einer MCL-Zelllinie zu erkennen. Die Kombination von Forodesin und Fludarabin zeigte schließlich nach 72 Stunden Expositionszeit bei vier MCL-Zelllinien und der T-ALL-Zelllinie Jurkat eine antagonistische Wirkung, was letztendlich auf das Konkurrieren der Phosphorylierung von dGuo und Fludarabin zurückzuführen ist. Bei vier von fünf untersuchten MCL-Zelllinien wies die Kombination von Forodesin+dGuo und Bortezomib ebenfalls eine antagonistische Wirkung auf, da die beiden Kombinationspartner um DNA-Bindungsstellen konkurrieren. Eine additive Wirkung ließ sich am Ende auch bei drei von fünf MCL-Zelllinien mit der Kombination von Forodesin+dGuo plus Enzastaurin nachweisen. Zusammenfassend wäre somit ein Einsatz des mTOR-Inhibitors RAD001 und des Purin-Nukleosid-Phosphorylase-Hemmstoffs Forodesin in Gegenwart von 2’-Desoxyguanosin additiv zu anderen Chemotherapeutika im Rahmen der Mantelzell-Lymphom-Therapie durchaus vielversprechend. Allerdings sind bei der Entwicklung dieser und weiterer, in-novativer Kombinationen die zugrundeliegenden molekularen Mechanismen zu beachten, um mögliche antagonistische Wirkungen zu vermeiden.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
Akkurate Verteilung der Chromosomen während der Zellteilung ist eine fundamentale Voraussetzung für den Erhalt der genetischen Information eines Organismus. Durch Fehler innerhalb dieses Prozesses resultieren Aneuploidien, die wiederum zur Entstehung von Krebs oder Trisomien (z.B. Down-Syndrom) führen können. Es überrascht daher nicht, dass die Chromosomensegregation einen der am höchsten regulierten Vorgänge innerhalb des eukaryotischen Zellzyklus darstellt. Die Schwesterchromatide eines jeden Chromosoms werden in S-Phase synthetisiert und gleichzeitig von einem sie ringförmig umschließenden Multi-Proteinkomplex, Kohäsin genannt, miteinander verpaart. Ihre Trennung in der nachfolgenden Kernteilungsphase (Mitose) erfolgt bei Vertebraten in zwei Stufen. Während Kohäsin von den Chromosomenarmen bei Phosphorylierung in Prophase dissoziiert, wird zentromerisches Kohäsin von der später aktiv werdenden Separase proteolytisch gespalten, wodurch die Anaphase ausgelöst wird. Shugoshine (SGOs) schützen die Schwesterchromatidkohäsion im Bereich der Zentromeren, indem sie durch Rekrutierung von Protein-Phosphatase 2A (PP2A) der Phosphorylierung von Kohäsin entgegenwirken. In Säugern schützt Sgo1 mitotisches Kohäsin in der Prophase, während Sgo2 meiotisches Kohäsin vor der phosphorylierungsabhängigen Spaltung durch Separase während der ersten Reifeteilung bewahrt. Sowohl Mitose als auch Meiose werden maßgeblich durch den Spindle Assembly Checkpoint (SAC) reguliert. Dieser lässt Anaphase grundsätzlich erst dann zu, wenn alle Chromosomen über ihre Kinetochore mit Mikrotubuli des Spindelapparates in einer Weise wechselwirken, dass Zugspannung entsteht. Solange dies nicht der Fall ist, katalysiert ein kinetochorständiger Mad1-Mad2-Komplex die konformationelle Umwandlung von löslichem Mad2 hin zu einer Form, in der es über Bindung an Cdc20 die Aktivierung von Separase und den Austritt aus der Mitose blockiert. In der vorliegenden Arbeit wird durch funktionelle Charakterisierungen in Krebszelllinien gezeigt, dass Sgo2 keine essentielle mitotische Funktion ausübt. Ein bislang in der Literatur bestehender Widerspruch wird hierdurch geklärt. Die RNAi-vermittelte Depletion von Sgo2 führt zwar zu einem Verlust des Mikrotubuli-depolymerisierenden Kinesins MCAK von den Zentromeren, entsprechende HeLa-Zellen zeigen bei fehlender Zugspannung aber weiterhin einen mitotischen Arrest, der von Aurora B abhängig ist. Die Funktion dieser mitotischen Kinase innerhalb des SAC beruht demzufolge nicht auf der Erzeugung freier Kinetochore durch die Rekrutierung von MCAK sondern auf einem alternativen Signalweg. Weiterhin wird eine unerwartete, direkte Bindung von humanem Sgo2 an Mad2 beschrieben. Biochemische Experimente machen deutlich, dass Sgo2 genauso mit Mad2 interagiert, wie dies Mad1 und Cdc20 tun. Gleichzeitig wird gezeigt, dass die Wechselwirkung zwischen Sgo2 und Mad2 konserviert ist und in Organismen, denen ein zweites Shugoshin fehlt, von Sgo1 übernommen wird. Diese Daten stellen ein zentrales Dogma in Frage, das für den SAC beschrieben wurde und das für das aktive Checkpoint-Signal von einer „Quelle“ (kinetochorständiges Mad1-Mad2) und einem „Zielprotein“ (Cdc20) ausgeht. Die Mad2-Bindung ist für die Fokussierung von Sgo2 am inneren Zentromer erforderlich. In Abwesenheit von Mad2 oder bei mutierter Mad2-Bindestelle verlagert sich Sgo2 an Randbereiche des Zentromers. Aufgrund dieser Daten sowie publizierter Studien über die Funktion von Sgo2 in Meiose wird postuliert, dass der Sgo2-Mad2-Wechselwirkung eine Funktion in der Monoorientierung von Schwesterkinetochoren während der ersten Reifeteilung zukommt.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
Die Zellkernarchitektur beschreibt die räumliche Anordnung der linearen Gensequenz im dreidimensionalen Zellkern. Die Beobachtung einer geordneten räumlichen Strukturierung und radialen Verteilung der Gene und Chromosomen legt nahe, daß die Zellkernarchitektur Basis und Ausdruck von höheren Organisations- und Regulationsmechanismen ist. Chromosomen liegen im Interphasezellkern in definierten umschriebenen Regionen, sogenannten Chromosomenterritorien vor. Aus früheren Untersuchungen weiß man um die Gendichte-korrelierte radiale Anordnung dieser Chromosomenterritorien. Die vorliegende Arbeit befaßt sich mit der Frage, inwieweit die Gendichte eines subchromosomalen DNA-Bereiches (also eines Teilabschnittes eines Chromosoms) die Position dieses DNA-Abschnittes in Bezug auf das Chromosomenterritorium und den Interphasezellkern beeinflußt. Mittels Fluoreszenz-in-situ-Hybridisierung an 2D- und 3D-fixierten Zellkernen (2D/3D-FISH) und Epifluoreszenz- bzw. konfokaler Mikroskopie wurden spezifische subchromosomale Bereiche unterschiedlichen Gengehalts der Chromosomen 1 und 12 differentiell dargestellt. Beide Chromosomen zeichnen sich durch eine distinkte Gliederung in sehr genarme und sehr genreiche Areale aus. Als DNA-Sonden wurden fluoreszenzmarkierte Pools aus exakt kartierten BAC-Klonen von Chromosom 1 und 12 eingesetzt, die entweder einer R- oder G-Bande oder alternativ einem chromosomalen Abschnitt hoher oder niedriger Gendichte zugeordnet waren. Um mögliche andere, von der Gendichte unabhängige Einflüsse auf die radiale Verteilung subchromosomaler Bereiche wie z.B. die Kerngestalt zu identifizieren, wurden die Versuche an drei unterschiedlichen menschlichen Zellarten, Lymphozyten, Fibroblasten und Coloncarcinomzellen der Zellinie SW480, sowohl während der S-Phase als auch nach Verlassen des Zellzyklus in der G0-Phase durchgeführt. Die quantitative Evaluation der Anordnung und der radialen Verteilung der DNA-Segmente in Bezug auf das Chromosomenterritorium bzw. auf den Kern erfolgte an 3D-Rekonstruktionen von lichtoptischen Serienschnitten mittels zweier unabhängiger computergestützter Auswertungsprogramme. Es konnte gezeigt werden, daß in den annähernd runden Lymphozyten radiale Verteilungsunterschiede in Korrelation zur Gendichte gegeben sind: Genarme Bereiche des Chromosoms 12 ordnen sich unabhängig vom Zellzykluszeitpunkt in Bezug auf den geometrischen Mittelpunkt des Interphasekerns peripherer an als genreiche. Dieser Befund stützt die Hypothese, daß genreiche Regionen von Chromosomen eher zum Zellkernmittelpunkt hin präsentiert, genarme dagegen in die Peripherie verlagert werden. In der S-Phase konnte eine ebensolche radiale Verteilung auch in Bezug auf das Chromosomenterritorium gefunden werden. Hier wird die genarme DNA schwerpunktmäßig an den Rand des Territoriums verschoben. Anders verhält es sich bei den adhärent wachsenden, flachen humanen Fibroblasten. Hier konnte kein signifikanter Unterschied in der dreidimensionalen, räumlichen Anordnung genarmer und genreicher DNA-Abschnitte gefunden werden, und zwar weder in Bezug auf den Kern noch auf das Territorium. SW480-Tumorzellen sind rundliche bis ellipsoide Zellen. Ähnlich den Lymphozyten zeigen sie klare radiale Anordnungsunterschiede von Bereichen des Chromosoms 12, sortiert nach der Gendichte. Allerdings sind diese Unterschiede weniger stark ausgeprägt als bei den Lymphozyten. So konnte nur in Bezug auf das Chromosomenterritorium ein signifikanter radialer Verteilungsunterschied gefunden werden. In Bezug auf den Kern sieht man eine deutliche, aber statistisch nicht signifikante Tendenz, genarmes Chromatin in die Peripherie zu verlagern. Insgesamt belegen die Ergebnisse dieser Doktorarbeit, daß das Prinzip der Korrelation von Gendichte und radialer Verteilung grundsätzlich auch für subchromosomale Bereiche gilt. Es läßt sich jedoch feststellen, daß bei der radialen Verteilung von Chromosomenabschnitten weitere, noch nicht bekannte Faktoren eine Rolle spielen und sie nicht ausschließlich durch die Gendichte bestimmt wird.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Zusammenfassung Die Protease Separase trägt zur Regulation mitotischer und meiotischer Vorgänge entscheidend bei. Ihre klassische Funktion ist die Induktion der Schwesterchromosomen-trennung durch Spaltung des Cohesin-Proteinkomplexes, der die Schwesterchromatiden von der S-Phase bis zur Mitose gepaart hält. Separase wird am Ende der Metaphase durch Ubiquitin-abhängigen Abbau ihres Inhibitors Securin aktiviert. Ein zweiter Separase-Inhibitionsmechanismus ist die Hemmung durch Cyclin B1/Cdk1 („Cyclin Dependent Kinase 1“). Dafür ist Separase-Phosphorylierung durch Cdk1 notwendig (Stemmann et al., 2001). In vielen Modellorganismen hat Separase Funktionen, die über die Anaphase-Induktion hinausgehen. So trägt sie in S. cerevisiae beispielsweise zur Cdk1-Inaktivierung beim Meiose I-Meiose II-Übergang bei. Diese Separase-Funktion benötigt die proteolytische Separase-Aktivität nicht, ist jedoch abhängig vom Securin-Abbau. Für andere Funktionen der Separase hingegen könnte die Separase-abhängige Spaltung noch nicht identifizierter Substrate notwendig sein. In der vorliegenden Arbeit wird deshalb die Etablierung der IVEC-Methode („In Vitro Expression Cloning“) zur Identifizierung neuer Separase-Substrate vorgestellt. Mittels IVEC wurde - basierend auf der proteolytischen Separase-Aktivität - aus einer menschlichen cDNA-Bibliothek das In-vitro-Separase-Substrat GASP isoliert. Des Weiteren wurde die Separase-Hemmung durch Cyclin B1/Cdk1 näher untersucht. In der vorliegenden Arbeit konnte gezeigt werden, dass die Phosphorylierung von Separase durch Cyclin B1/Cdk1 für ihre Inhibition zwar notwendig, aber nicht hinreichend ist. Nach Phosphorylierung der Separase assoziiert die Kinase stabil mit der Protease, und erst diese Komplexbildung führt letztendlich zur Inhibition der proteolytischen Separase-Aktivität. Cyclin B1/Cdk1 ist also ein nicht-katalytisch wirkender Separase-Inhibitor. Die zeitlich korrekte Separase-Aktivierung ist für die fehlerlose Chromosomentrennung essentiell. Da Zellen ohne Securin ihre Chromosomen jedoch akkurat und zum richtigen Zeitpunkt trennen, muss es alternative Separase-Inhibitionsmechanismen geben. Die Separase-Hemmung durch Cyclin B1/Cdk1-Bindung könnte dieser gesuchte Securin-unabhängige Mechanismus sein, da der Separase-Cyclin B1/Cdk1-Komplex in Zellen bereits vor der Anaphase nachgewiesen werden kann und Cyclin B1 - wie Securin - am Ende der Metaphase Ubiquitin-vermittelt abgebaut wird. Securin und Cyclin B1/Cdk1 können nicht gleichzeitig an Separase binden. Die beiden Inhibitoren sind also Komponenten parallel und nicht konvergent wirkender Regulationsmechanismen. Die Phosphorylierung von Separase an Serin 1126 ist für ihre Cyclin B1/Cdk1-abhängige Inhibition essentiell (Stemmann et al., 2001). Daneben konnte in der hier vorgestellten Arbeit eine zweite Domäne in Separase identifiziert werden, die ebenfalls sowohl für die Inhibition der proteolytischen Separase-Aktivität als auch für die Komplexbildung mit Cyclin B1/Cdk1 nötig ist. Da diese zweite Cyclin B1/Cdk1-Bindungsdeterminante Sequenzhomologie zu dem Cdc6-Protein aufweist, wurde sie CLD („Cdc6 Like Domain“) genannt. Cdc6 ist ein konserviertes Protein, das in S. cerevisiae Cdk1-Inhibitionsaktivität besitzt. Dazu bindet es abhängig von der Phosphorylierung seines Aminoterminus direkt an B-Typ-Cycline, die sich im Komplex mit ihren Cdks befinden (Mimura et al., 2004). Durch Phosphatase-behandlung und Mutationsanalyse konnte bewiesen werden, dass die Interaktion zwischen Separase und Cyclin B1/Cdk1 auch von Phosphorylierung der Protease innerhalb ihrer CLD abhängt. Dies legt nahe, dass die Separase-CLD wie der Cdc6-Aminoterminus direkte Kontakte mit der Cyclin-Untereinheit der Kinase ausbildet. Serin 1126-Phosphorylierung ist dagegen indirekt an der Kinase-Bindung beteiligt. Denn erstens wird sie nach der Etablierung des Komplexes für seinen Erhalt nicht mehr benötigt (Holland et al., 2006), und zweitens ist sie für die Wechselwirkung zwischen CLD-enthaltenden Separasefragmenten und der Kinase abkömmlich. Ein zunächst favorisiertes Bindungsmodell, bei dem die Polo-Kinase an phosphoryliertes Serin 1126 bindet, um danach die Bindung von Cyclin B1 durch Phosphorylierung der CLD zu vermitteln, konnte ausgeschlossen werden. Stattdessen bewirkt die Phosphorylierung von Serin 1126 wohl eine Konformationänderung der CLD, die dadurch in die Lage versetzt wird, starke Wechselwirkungen mit der Cyclin B1-Untereinheit der Kinase einzugehen. Überraschenderweise ist im Separase-Cyclin B1/Cdk1-Komplex auch die Kinase inaktiv. Diese unerwartete Separase-Funktion als Cdk1-Inhibitor ist in Oozyten der Maus für den Übergang von der Meiose I in die Meiose II von entscheidender Bedeutung. Denn die Inhibition der Separase-Cyclin B1/Cdk1-Komplexbildung durch Mikroinjektion entsprechender Antikörper in Maus-Oozyten verhindert den Ausstoß des ersten Polkörpers, d.h., die Eizellen können den Meiose I-Meiose II-Übergang nicht vollziehen. In diesen Oozyten sinkt die Cdk1-Aktivität am Ende der Meiose I nicht wie bei Kontroll-Oozyten ab. Diese persistente Cdk1-Aktivität ist der Grund für den verhinderten Übergang von Meiose I nach -II, da künstliche Cdk1-Inhibition in Anwesenheit des inhibitorischen Antikörpers den Polkörperausstoß wiederherstellt. In mitotischen Zellen steigt der unter endogenen Bedingungen mit Separase assoziierte Anteil von Cyclin B1/Cdk1 in der Anaphase - d.h. nach dem Abbau seines Bindungskompetitors Securin - an. Übertragen auf die Meiose bedeutet das, dass Securin-Abbau die Induktion der Anaphase mit der Separase-abhängigen Cdk1-Inaktivierung koppelt.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Notch-Signale spielen bei der Entwicklung von Lymphozyten eine wichtige Rolle. So induzieren Notch1-Signale in Lymphozyten-Vorläuferzellen im Knochenmark die Entwicklung zu T-Zellen, während Notch2-Signale essentiell für die Differenzierung reifer B-Zellen zu Marginalzonen-B-Zellen sind. Das Epstein-Barr Virus (EBV) infiziert reife B-Zellen und regt diese zur permanenten Proliferation an. EBNA2, das erste Protein, das in EBV-infizierten B-Zellen exprimiert wird, verwendet zur Regulation von Zielgenen den gleichen Signalweg wie Notch und wird deshalb als (partielles) funktionelles Äquivalent eines aktivierten Notch-Rezeptors (NotchIC) bezeichnet. Notch und EBNA2 können sich bezüglich der Muskelzelldifferenzierung gegenseitig ersetzen, die Proliferation in B-Zellen kann dagegen nur EBNA2 induzieren. Ziel dieser Arbeit war es zu untersuchen, mit Hilfe welcher Zielgene Notch und EBNA2 unterschiedliche und gemeinsame Funktionen vermitteln. Zu diesem Zweck wurde ein Zellsystem etabliert, bei dem Tetrazyclin-regulierbares aktives Notch1IC oder Notch2IC in humane reife EBV-immortalisierte B-Zellen eingebracht wurde. In diesem System konnten Notch1IC oder Notch2IC in Abwesenheit von EBNA2 exprimiert werden, sowie EBNA2 in Abwesenheit von NotchIC. Die Expression von Zielgenen wurde anhand einer Microarray- Analyse untersucht. Damit sollten Notch1IC-, Notch2IC- und EBNA2-regulierte Zielgene identifiziert werden. Hierbei wurde vornehmlich auf Unterschiede und Gemeinsamkeiten zwischen Notch1IC- und Notch2IC-regulierten Genen, sowie zwischen NotchIC- und EBNA2-regulierten Genen eingegangen. Durch Notch1IC wurden 270 Gene induziert und 374 Gene reprimiert. Notch2IC konnte 757 Gene induzieren und 959 Gene reprimieren. EBNA2 induzierte 6.250 Gene und reprimierte 6.811 Gene. Die Auswertung der Zielgene in der Clusteranalyse ergab, dass viele Gene reguliert wurden, die mit dem Zellzyklus und der Immunmodulation assoziiert sind. Aus diesem Grund sollten diese beiden Signalwege näher untersucht werden. In dem beschriebenen Zellsystem konnten weder Notch1IC noch Notch2IC die EBNA2-vermittelte Proliferation ersetzen. So konnten Notch1IC und Notch2IC zwar einige Zellzyklus-Gene induzieren, die aber assoziierten eher mit der S-Phase und mit der Mitose. Die von EBNA2 stark induzierten Gene c-Myc und LMP1, sowie die G1-Phase assoziierten D-Cycline und der Cyclin-abhängigen Kinasen CDK4 und CDK6 konnten durch NotchIC nicht oder nur schwach induziert werden. Vermutlich können Notch1IC und Notch2IC die Proliferation weder aufrechterhalten noch induzieren, da sie nicht fähig sind, G1-Phase Gene, sowie c-Myc und LMP1 ausreichend stark zu induzieren. Der Einfluss von NotchIC auf die Immunmodulation war mit der von EBNA2 vergleichbar. Die Repression vieler Gene, die mit der Immunmodulation assoziieren, weist darauf hin, dass sowohl Notch1IC, Notch2IC als auch EBNA2 die Immunantwort negativ regulieren. So könnten B-Zellrezeptor (BCR)-Signale über die Repression von Komponenten und Signalmolekülen des BCR abgeschwächt werden, die Antigenpräsentation über die Repression von MHC-Molekülen vermindert werden und der allgemeine Aktivierungszustand zusätzlich über die Repression von Komplement-, Toll-like- und Fc-Rezeptoren vermindert werden. Ebenso konnte gezeigt werden, dass Notch1IC, Notch2IC und EBNA2 den Klassenwechsel negativ beeinflussen. Dies wird möglicherweise über die transkriptionelle Repression der Interleukin-Rezeptoren IL4Rα1 und IL13Rα1, sowie über die Modulation von Molekülen des Signalwegs vermittelt, die die Expression von sterilen Transkripten induzieren und somit die Voraussetzung zum Klassenwechsel bilden.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
Für den antiproliferativen Effekt der Kombinationstherapie aus UVA-Strahlung mit dem Furocoumarin Psoralen (PUVA) wird die Ausbildung von Doppelstrangvernetzungen (Interstrand Cross Links, ICL) verantwortlich gemacht. Unklar war, ob der PUVA-induzierte Zellzyklusarrest durch Doppelstrangvernetzungen, die die Replikationsgabeln mechanisch behindern, oder durch die Aktivierung von Zellzykluscheckpoints ausgelöst wird. Zellzykluscheckpoints garantieren die Stabilität des Genoms, indem sie die Zellzyklusprogression soweit verlangsamen oder anhalten, dass die Replikation von aufgetretenen DNA-Schäden oder Fehlverteilungen von Chromosomen verhindert werden kann. Die vorliegende Arbeit zeigt, dass HaCaT-Keratinozyten durch PUVA-Exposition mit S-Phase-DNA-Gehalt arretiert werden. Zellen, die die DNA-Replikation bereits abgeschlossen hatten, waren von der PUVA-Exposition unbeeinträchtigt und durchliefen die Mitose. Zellen, die während der G1-Phase PUVA exponiert worden waren, durchquerten die G1-Phase und arretierten erst in der frühen S-Phase. PUVA induzierte eine schnelle Phosphorylierung der Chk1-Checkpointkinase an Serin 345, die mit einer Abnahme von Cdc25A einherging. Die Chk1-Phosphorylierung, die Abnahme von Cdc25A und der S-Phase-Arrest konnten durch Koffein aufgehoben werden. Dies lieferte den Beweis, dass die Aktivierung von Checkpointsignalkaskaden und nicht eine passive, mechanische Blockierung durch DNA-Doppelstrang-vernetzungen für den PUVA-induzierten Replikationsarrest verantwortlich ist. Die Überexpression von Cdc25A konnte den S-Phase-Arrest nur zum Teil aufheben, woraus sich folgern lässt, dass die Aktivierung von zusätzlichen Signalwegen an der Ausbildung des PUVA-induzierten S-Phase-Arrests beteiligt ist.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Abläufe in der Zelle eines multizellulären Organismus im Rahmen des Zellzyklus oder beim Vorgang der Differenzierung unterliegen strengen Kontrollmechanismen. Ein prominentes Regulationsprotein dieser Mechanismen ist der Retinoblastoma Tumorsuppressor (pRB). Im Zellzyklus liegt die Hauptfunktion pRBs in der Kontrolle des Übergangs von der G1- in die S-Phase. In der aktiven, nichtphosphorylierten Form reprimiert pRB die Expression von S-Phase Genen durch Inaktivierung des Transkriptionsfaktors E2F. Cyclin-abhängige Kinasen überführen pRB in eine mehrfach phosphorylierte, inaktive Form, wodurch die S-Phase eingeleitet wird. Im Gegensatz dazu übt pRB bei Differenzierungsvorgängen aber auch koaktivierende Funktionen aus und wird im Rahmen dieser Prozesse acetyliert. In der vorliegenden Arbeit konnte gezeigt werden, dass pRB nicht nur phosphoryliert und acetyliert wird, sondern darüber hinaus durch den small ubiquitin-like modifier (SUMO) modifiziert wird. Aktives pRB stellt das bevorzugte Substrat dieser Modifikation dar. Das Akzeptorlysin 720 ist konserviert und liegt in einer für die pRB-Funktion entscheidenden Domäne, der sogenannten pocket B Region. Zusammen mit der pocket A Region bildet sie die pocket Domäne, deren strukturelle Integrität sowohl für die Tumorsuppressorfunktion pRBs als auch für die Modifikation durch SUMO essenziell ist. An die pocket B Region binden neben zellulären Regulationsproteinen des Zellzyklus und der Differenzierung auch virale Onkoproteine, die pRB inaktivieren und dadurch für die Transformation einer Zelle verantwortlich sind. Diese viralen Onkoproteine und bestimmte zelluläre Proteine inhibieren die SUMO-Modifikation pRBs. Umgekehrt steigt die SUMOylierung von pRB an, wenn mutierte pRB-Versionen eingesetzt werden, die keine viralen oder zellulären Proteine mehr über die pocket B Region binden können. Eine Version von pRB, bei der das Lysin 720 zu Arginin ausgetauscht wurde und die somit nicht mehr SUMOyliert werden kann, besitzt ein stärkeres Repressionspotenzial auf die E2F-abhängige Genexpression, wie Reportergenversuche zeigten. Die SUMOylierung vermindert also pRBs Potenzial zur E2F-Reprimierung. Möglicherweise wird durch die SUMO-Modifikation von pRB die Zusammensetzung der Bindungspartner an der wichtigen pocket B Region moduliert.
Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 02/07
Untersuchungen strahleninduzierter Änderungen der Proliferation und des Zelltodes stellen Schwerpunkte der radiobiologischen Forschung dar. Aus strahlentherapeutischer Sicht interessieren hier im Besonderen die in Tumoren nach Strahlenexposition zu findenden Genexpressionsänderungen, die assoziiert mit strahleninduzierten Änderungen der Proliferation und des Zelltods auftreten. Detaillierte Kenntnisse der diesen biologischen Prozessen zugrundeliegenden Änderungen auf Genexpressionsebene könnten dazu beitragen, die Effizienz der Strahlentherapie humaner und tierischer Tumoren zu verbessern. So ist eine große Anzahl an für Proliferation und Apoptose kodierenden Genen bekannt. Es sind bisher jedoch nicht alle an der Proliferationskontrolle beteiligten Gene gefunden worden. Ebenso wird postuliert, dass auch andere Formen des Zelltodes als Apoptose auf Genexpressionsebene reguliert werden. Deshalb wurde mithilfe eines Mikroarrays mit 11.835 Genen ein Screening nach differentiell exprimierten Genen an strahlenexponierten A549 Zellen (humanen Lungenkarzinomzellen) vorgenommen. Hierzu wurden die Zellen synchronisiert, in der S-Phase mit 5 Gy bestrahlt und an den Zeitpunkten, die der Ausbildung des G2-Blocks und dem Anstieg mikrokernhaltiger und abnormaler Zellen zeitlich vorausgingen, das Screening durchgeführt. Die geeigneten Zeitpunkte wurden zuvor anhand durchflusszytometrischer Zellzyklusuntersuchungen und der Messung des Zelltodes (MAA-Assay) bestimmt. Die hybridisierten Mikroarrays wurden nach dem Digitalisieren unter Zuhilfenahme einer geeigneten Software interaktiv ausgewertet. Es konnten maximal 987 exprimierte Gene gefunden werden, was 12 % aller Gene des Mikroarrays entsprach. Setzte man die Genexpression der mit 5 Gy bestrahlten Zellen ins Verhältnis zu der Kontrolle, konnten 101 Gene als differentiell exprimiert ermittelt werden. Die Anzahl der herunterregulierten differentiell exprimierten Gene übertraf die Anzahl der hochregulierten differentiell exprimierten Gene zu jedem gemessenen Zeitpunkt immer ca. um den Faktor 4. Des Weiteren wurden die differentiellen Genexpressionen relativ zur Kontrolle der unterschiedlichen Zeitpunkte miteinander verglichen, wobei eine auffällige homogene Herunterregulation der Gene festzustellen war. Nach Einteilung der differentiell exprimierten Gene in funktionelle Gruppen konnten viele Gene, die für den Aufbau des Zytoskeletts kodierten, ermittelt werden. Hierbei standen im Vordergrund vor allem Gene für Tubulinproteine und Aktin. Des Weiteren konnten 8 Gene, die für ribosomale Proteine kodieren, identifiziert werden. Der Anteil bekannter, die Proliferation ("cyclin-dependent kinase inhibitor 1A" (p21, Cip1), "prothymosin, alpha") bzw. die Apoptose ("Caplain" und "TNF receptor-associated factor 1", "Caspase recruitment domain protein 14") regulierender Gene war gering. In Übereinstimmung mit zuvor durchgeführten Untersuchungen in anderen in vitro Modellen konnte eine aktive Herunterregulation bestimmter biologischer Funktionen (z.B. Zytoskelett, Proteinbiosynthese) bei gleichzeitiger Inhibition anderer Funktionen (Proliferation)gezeigt werden ("active silencing"). Da die Aussagen des Mikroarrays nur semiquantitativ sind, müssen die Ergebnisse noch durch ein quantitatives Verfahren (RTQ-PCR) validiert und ergänzt werden. Die vorläufigen Ergebnisse dieser Arbeit geben Hinweise darauf, dass neben den bekannten Zellproliferation und Zelltod kodierenden Genen in einem erheblichen Maß auch andere funktionelle Gengruppen wie z.B. Zytoskelett- und ribosomale Proteine kodierende Gene beteiligt sind und die Zelle im Sinne eines "active silencings" durch Abschalten verschiedener Zellfunktionen ihren eigenen Untergang vorbereitet.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Eine akkurate DNA-Replikation ist notwendig, um die Stabilität der genetischen Information zu gewährleisten. Dieser Prozess wird durch DNA-Läsionen erschwert, die durch eine Vielzahl von Ursachen entstehen und häufig nicht vor dem Erreichen der S-Phase repariert werden können. Nicht nur kann durch Läsionen geschädigte DNA häufig nicht dupliziert werden, angehaltene Replikationsgabeln können auch zusammenbrechen und so zu DNA-Strangbrüchen führen. Die Funktion des RAD6-pathways liegt darin, die Umgehung (Bypass) von DNA-Läsionen während der Replikation zu ermöglichen, wodurch eine Toleranz gegenüber Schädigungen der DNA erreicht wird. In dieser Arbeit wurde die Regulation des RAD6-vermittelten Bypass von DNA-Läsionen durch posttranslationale Ubiquitin- und SUMO-Modifikationen des Replikationsfaktors PCNA untersucht. PCNA bildet einen trimeren Ring um die DNA und verstärkt durch Bindung der replikativen Polymerase deren Assoziation zur DNA und somit die Prozessivität der Replikation. Als DNA gebundener Faktor des Replikations-komplexes ohne katalytische Aktivität ist PCNA ideal geeignet, um durch seine Modifikation Replikations-assoziierte Prozesse zu regulieren. Die Ubiquitinierung von PCNA durch Enzyme des RAD6-pathways erfolgt als spezifische Antwort auf DNA-Läsionen während der Replikation und ermöglicht deren Bypass. Dabei bewirken unterschiedliche Ubiquitin-Modifikationen verschiedene Arten des Bypass. Die Mono-Ubiquitin-Modifikation führt zum Einsatz von speziellen Transläsions-Polymerasen, die eine größere Toleranz für geschädigte DNA haben, aber auch für die Entstehung von Mutationen verantwortlich sind. Einen mechanistisch anderen Bypass von DNA-Schäden bewirkt die Modifikation von PCNA mit einer Lysin K63-verknüpften Multi-Ubiquitinkette. Für diesen wird wahrscheinlich der neureplizierte, unbeschädigte Schwester-Strang als Vorlage benutzt. Unabhängig von Schädigungen der DNA wird PCNA während der S-Phase zusätzlich mit dem ubiquitin-ähnlichen Protein SUMO modifiziert. Dies führt zu einer Interaktion mit der Helikase Srs2, die als Antagonist zu dem zentralen Rekombinationsprotein Rad51 wirkt. Dadurch wird spezfisch die homologe Rekombination zwischen Schwesterchromatiden an der Rekombinationsgabel inhibiert, nicht jedoch andere Rekombinationsereignisse, wie. z.B. Rekom-bination zwischen homologen Chromosomen. Deshalb ist es wahrscheinlich, dass spezifisch die Replikationsgabel durch PCNA-SUMO-Srs2 geschützt wird, um schädliche Rekombination oder Rekombinationsstrukturen zu vermeiden, die mit Replikations-assoziierten Prozessen interferieren. Ubiquitin- und SUMO-Modifikation regulieren demnach unabhängige Prozesse. Interessanterweise haben diese aber eine verwandte Funktion im Bypass von DNA-Läsionen während der Replikation. Die Inhibition der Schwesterchromatid-Rekombination durch PCNA-SUMO-Srs2 lenkt den Bypass von DNA-Läsionen in einen durch PCNA-Ubiquitinierung gesteuerten Mechanismus.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Das humanpathogene Bakterium H. pylori persistiert im Gastroduodenaltrakt für Jahre oder sogar Jahrzehnte und löst durch die Kolonisation der Magenmukosa eine chronische Entzündungsreaktion aus. In den meisten Fällen bleibt diese symptomlos, es können jedoch auch schwerwiegende Erkrankungen wie ein Magen- oder Zwölffingerdarm-Geschwür oder Magenkrebs daraus hervorgehen. Obwohl die Infektion eine starke zelluläre und humorale Immunantwort hervorruft, kann H. pylori durch das Immunsystem nicht eliminiert werden. In dieser Arbeit wurde der Einfluss von H. pylori auf die Proliferation und Aktivierung von CD4+ T-Zellen untersucht. Dabei zeigte sich, dass H. pylori zwei Faktoren besitzt, um die Expansion der T-Zellen zu hemmen. Der eine, nicht näher charakterisierte Faktor scheint mit der Oberfläche der Bakterien assoziiert zu sein und inhibiert die Proliferation der T-Zellen bei direktem Kontakt der Bakterien mit den Zellen. Der zweite Faktor wurde als vakuolisierendes Zytotoxin VacA identifiziert, das, wie bisher bekannt war, in Epithelzellen die Bildung saurer Vakuolen auslöst. T-Zellen produzieren, wenn sie aktiviert werden, den Wachstumsfaktor IL- 2, beginnen sich zu vermehren und setzen eine Immunreaktion gegen das Pathogen in Gang. Das VacA-Toxin hemmt jedoch die Bildung von IL-2 und bewirkt eine Hemmung des Zellzyklus bei T-Zellen, indem es die Expression der Cycline D3 und E reprimiert. Diese sind essentiell für die Aktivierung des Retinoblastom-Proteins, das den Übergang des Zellzyklus von der G1- in die S-Phase vermittelt. Durch die Hemmung der IL-2-Produktion und die Erniedrigung der Oberflächenlokalisation von CD25, der -Kette des IL-2-Rezeptors, unterbricht VacA die Signaltransduktion, die normalerweise über den IL-2-Rezeptor zur Expression der Cycline führt. Die Hemmung der IL-2-Produktion durch VacA erfolgt auf transkriptioneller Ebene, indem die Aktivierung des Transkriptionsfaktors NFAT (Nuclear Factor of Activated T cells) verhindert wird. Die anderen für die Transkription des IL-2-Gens essentiellen Transkriptionsfaktoren AP-1 und NF-B werden durch VacA nicht beeinflusst. Die Stimulation der T-Zellen aktiviert zwei Haupt-Signalwege: einer führt über den MAPKinase / ERK-Kinase Weg zur Aktivierung von AP-1 und NF-B, der andere löst eine Erhöhung der Calcium-Konzentration im Zytoplasma aus, was die Ca2+-abhängige Phosphatase Calcineurin aktiviert. Calcineurin dephosphoryliert daraufhin den Transkriptionsfaktor NFAT und NFAT wird in den Zellkern transportiert, wo es zusammen mit AP-1 und NF-B die Transkription des IL-2-Gens initiiert. Es konnte gezeigt werden, dass VacA die Translokation von NFAT in den Kern durch Hemmung der Phosphatase-Aktivität von Calcineurin verhindert. Dies hat zur Folge, dass NFAT-abhängige Gene, wie das IL-2- Gen oder das für CD25 codierende Gen, nicht abgelesen werden können. Dass Calcineurin ein geeignetes Zielmolekül ist, um eine Immunantwort zu unterdrücken, zeigen auch die medizinisch bedeutsamen Substanzen FK506 (Tacrolimus) und Cyclosporin A. Beide V Zusammenfassung 91 Substanzen verursachen durch Hemmung von Calcineurin eine starke Immunsuppression. In DNA-Microarray-Analysen wurde untersucht, ob VacA einen ähnlich drastischen Effekt auf die Funktion der T-Zellen hat wie FK506. Dabei zeigte der Vergleich der Genexpression von VacA- und FK506-behandelten T-Zellen, dass VacA eine Untergruppe der Gene, die auch von FK506 reprimiert werden, herunterreguliert, wie z.B. die Gene für die Zytokine Macrophage Inflammatory Protein (MIP)-1, MIP-1, Single C Motif-1 (SCM-1) und SCM- 1. VacA scheint also die Genaktivität von T-Zellen ähnlich wie FK506 zu modulieren, was auf einen ähnlichen Mechanismus, nämlich die Calcineurin-Hemmung schließen lässt. Da das VacA-Toxin ein sekretiertes Protein ist, das auch in den tieferen Schichten des Magengewebes nachgewiesen werden kann, erreicht H. pylori nicht nur die vereinzelt im Magenepithel vorkommenden T-Zellen, sondern auch die T-Zellen, die bei der Infektion in die Lamina propria, eine tiefere Schicht der Magenmukosa, einwandern. Durch die Unterdrückung der T-Zell-Aktivierung und die Repression von Zytokin-Genen, die wichtig sind für die Modulation der Immunantwort, induziert H. pylori so vermutlich eine lokale Immunsuppression, die seine Eliminierung durch das Immunsystem verhindert und eine chronische Infektion des Magens ermöglicht. In einem zweiten Projekt wurde die Spaltung von CagA in ein 100 kD- und ein Tyrosinphosphoryliertes 40 kD- Fragment nach dessen Translokation in diverse Zelltypen untersucht. Dabei konnte gezeigt werden, dass die Prozessierung nicht nur in Makrophagen, sondern auch in dendritischen Zellen und in T-Zellen auftritt. Die Spaltung scheint von der Tyrosin-Phosphorylierung des CagA-Proteins und von Calcium abhängig zu sein. Dabei wurde die Ca2+-abhängige Protease Calpain in einem in vitro-Ansatz als ein CagAprozessierendes Enzym identifiziert. Auch in Makrophagen kann die Spaltung von CagA in P100 und P40P-Tyr durch den Calpain-Inhibitor Calpeptin verhindert werden. Die Tatsache, dass transloziertes CagA in allen getesteten eukaryontischen Zelltypen außer der Magenepithelzellinie AGS prozessiert wird, deutet darauf hin, dass diese Prozessierung eine biologische Bedeutung hat.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
In der vorliegenden Arbeit wurden verschiedene Fragestellungen zur funktionellen und dynamischen Organisation des Kerns von Säugerzellen untersucht. Der erste Teil der Arbeit widmete sich der Frage, in welchem Zusammenhang die Synthese naszenter RNA mit der Organisation des Chromatins im Zellkern steht. Dabei wurde speziell untersucht, ob naszente RNA bevorzugt in chromatinarmen Räumen lokalisiert, wie es das Chromosomen-Territorien/Interchromatin-Kompartiment Modell (CT/IC-Modell)(Cremer und Cremer, 2001) vorhersagt. Diese Untersuchungen wurden an HeLa-Zellen durchgeführt, die stabil eine Fusion zwischen dem „Green Fluorescent Protein” (GFP) und dem Histon H2B exprimierten (Kanda et al., 1998). Mit Hilfe dieses Fusionsproteins kann die Chromatinstruktur sehr gut dargestellt werden (Sadoni et al., 2001; Zink et al., 2003). Die naszente RNA wurde in diesen Zellen durch kurze Pulse von BrUTP markiert, das anschließend durch eine Immunfärbung nachgewiesen wurde. Die markierten Zellen wurden mit Hilfe hochaufl ösender konfokaler Laserscanning Mikroskopie aufgenommen. Für die Analyse der Bilddaten wurde eine Erosionsmethode entwickelt, welche die Auswertung der Daten unabhängig von subjektiv gewählten Schwellenwerten ermöglichte. Die Ergebnisse dieser Analysen zeigten keine bevorzugte Lokalisierung naszenter RNA in chromatinarmen Bereichen. Damit stützen die Ergebnisse nicht die entsprechenden Vorhersagen des ICD-Modells. Die hier gewonnenen Ergebnisse stehen nicht im Einklang mit den Ergebnissen anderer Studien (Politz et al., 1999; Verschure et al., 1999). Die unterschiedlichen Ergebnisse sind wahrscheinlich auf unterschiedliche Methoden zur Darstellung der Chromatinorganisation, beziehungsweise auf unterschiedliche Methoden zur Bildanalyse zurückzuführen. Eine weitere Fragestellung, die im Zusammenhang mit der dynamischen Organisation der RNA-Synthese und RNA-Prozessierung in der vorliegenden Arbeit untersucht wurde, war wie das Spleißfaktor-Kompartiment mit Chromatin interagierte. Diese Interaktion sollte in lebenden „Chinesischen Hamster Ovarien” (CHO)-Zellen untersucht werden. Speziell sollte der Frage nachgegangen werden, ob das Spleißfaktor-Kompartiment unterschiedlich mit funktionell unterschiedlichen Chromatinfraktionen assoziiert ist. Dafür wurde die DNA dieser Chromatinfraktionen mit Hilfe von Cy3-dUTP (Zink et al., 1998; Zink et al., 2003) spezifisch markiert. Das Spleißfaktor-Kompartiment der lebenden Zellen wurde simultan mit einem hier lokalisierenden GFP-Fusionsprotein dargestellt (freundlicherweise zur Verfügung gestellt von Dr. M. C. Cardoso, MDC, Berlin). Die so markierten lebenden Zellen wurden mit Hilfe der konfokalen Laserscanning Mikroskopie aufgenommen. Die Auswertung der Bilddaten ergab eine generelle enge Assoziation des Spleißfaktor-Kompartiments mit früh-replizierendem und transkriptionell aktivem Chromatin. Dagegen bestand eine solche Assoziation nicht mit spät-replizierendem und transkriptionell inaktivem Chromatin. Eine Behandlung der Zellen mit dem Transkriptions-Inhibitor α-Amanitin zeigte, dass die enge Assoziation des Spleißfaktor-Kompartiments mit früh-replizierendem und transkriptionell aktivem Chromatin direkt vom Prozess der Transkription abhängig war. Insgesamt zeigten die Daten zum ersten Mal, dass es in lebenden Zellen eine definierte Interaktion des Spleißfaktor-Kompartiments mit funktionell unterschiedlichen Chromatinfraktionen gibt, die abhängig ist vom Prozess der Transkription. Ein weiterer dynamischer Prozess im Zellkern, der in der vorliegenden Arbeit an lebenden HeLa-Zellen untersucht werden sollte, war der Prozess der DNA-Replikation. Von besonderem Interesse war hierbei die Frage, welchen dynamischen Reorganisationen die DNA während der S-Phase unterliegt. Daneben sollte auch untersucht werden, wie der spezifische zeitlich-räumliche Verlauf der S-Phase in Säugerzellen koordiniert wird. Zur Untersuchung dieser Fragen wurde die zu replizierende oder die naszente DNA lebender Zellen mit fluoreszensmarkierten Nukleotiden dargestellt. Simultan wurde die Replikationsmaschinerie mit Hilfe eines GFP-PCNA Fusionsproteins markiert (freundlicherweise zur Verfügung gestellt von Dr. M. C. Cardoso, MDC, Berlin). Diese Markierungstechniken erlaubten es zum ersten Mal, direkt die Interaktionen von replizierender DNA und der Replikationsmaschinerie zu beobachten und zu analysieren. Die Ergebnisse zeigten, dass die DNA während der S-Phase keine großräumigen Umlagerungen erfuhr. Nur einige lokal begrenzte Reorganisationen wurden beobachtet, die sich innerhalb von Distanzen von weniger als 1 µm abspielten. Die Ergebnisse zeigten ferner, dass DNA in stabile Aggregate organisiert war, die den Replikationsfoci entsprachen. 85 % dieser Aggregate, die auch als subchromosomale Foci bezeichnet werden (Zink et al., 1998), behielten ihren Replikationszeitpunkt von S-Phase zu SPhase stabil bei. Während des zeitlichen Fortschreitens der S-Phase schritt die Replikationsmaschinerie sequentiell durch benachbarte Gruppen von subchromosomalen Foci. Diese besaßen einen definierten Replikationszeitpunkt, und lokalisierten an de- finierten Positionen im Zellkern. Diese Ergebnisse legten nahe, dass die spezifische Anordnung von subchromosomalen Foci im Kern, die während der frühen G1-Phase etabliert wird (Dimitrova und Gilbert, 1999; Ferreira et al., 1997; Sadoni et al., 1999), die räumlich-zeitliche Organisation der S-Phase determiniert.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Der eukaryontische Zellzyklus wird durch die Aktivität verschiedener Cyclinabhängiger Kinasen (CDKs) reguliert. Die zelluläre Menge des CDK-Inhibitorproteins p27Kip1 spielt eine entscheidende Rolle beim Übergang der Zelle von der G1- zur SPhase. Die Menge von p27Kip1 steigt während der G0- oder der G1-Phase an und nimmt zu Beginn der S-Phase rasch wieder ab. Die Bindung von p27Kip1 an die CDKKomplexe der G1-Phase inaktiviert diese und verhindert dadurch die Initiation der SPhase. Eine verminderte Menge von p27Kip1 am G1/S-Phaseübergang findet man dagegen häufig in verschiedenen Tumorgeweben. Die geringere zelluläre Menge des Inhibitors ist dabei mit einer hohen Patientensterblichkeit und einem aggressiven Verlauf der Erkrankung verbunden. Die zelluläre Aktivität und Menge von p27Kip1 wird entscheidend durch Proteine reguliert, die mit p27Kip1 interagieren. In dieser Arbeit wurden deshalb mit Hilfe von rekombinantem p27Kip1 Interaktionspartner des Inhibitors in HeLa-Zellextrakt identifiziert. Es konnte gezeigt werden, daß p27Kip1 an die CDK-Proteine und an Grb2 bindet. Grb2 ist ein Adapterprotein der Signaltransduktion. Die Interaktion zwischen p27Kip1 und Grb2 könnte damit, nach Stimulation der Zelle durch verschiedene Mitogene, die Signalweitergabe mit der Zellzyklusmaschinerie verbinden. Die zu dieser Interaktion notwendige Domäne in p27Kip1 konnte in weiteren Analysen auf eine acht Aminosäuren lange Prolin-reiche Region eingegrenzt werden. Auf der anderen Seite interagiert Grb2 vornehmlich über seine C-terminale SH3-Domäne mit p27Kip1. Die beiden mit p27Kip1 nah verwandten Inhibitorproteine p21Cip1 und p57Kip2 interagieren dagegen nicht mit Grb2. In einer erweiterten Analyse wurden 41 verschiedene rekombinante SH3-Domänen auf eine Interaktion mit p27Kip1 hin getestet. Es konnte gezeigt werden, daß p27Kip1 nur mit der C-terminalen SH3-Domäne von Grf40/Mona und der SH3-Domäne der Tyrosinkinase Lyn wechselwirkt. Die Interaktion der Tyrosinkinase Lyn in vivo führte zur Hypothese, daß p27Kip1 durch Lyn phosphoryliert werden könnte. Im zweiten Teil dieser Arbeit wurde deshalb die Tyrosinphosphorylierung von p27Kip1 untersucht. In Phosphoaminosäureanalysen mit metabolisch markierten Zellen konnte gezeigt werden, daß p27K i p 1 in vivo an Tyrosinresten phosphoryliert wird. Diese Zusammenfassung 13 Phosphorylierung konnte durch rekombinant hergestellte Tyrosinkinasen und verschiedene Tyrosin/Phenylalanin-Austausche in p27Kip1 auf Tyrosin 88 und 89 eingegrenzt werden. Nach Kristallstrukturdaten des trimeren Komplexes aus p27Kip1, CDK2 und Cyclin A kommt der Tyrosinrest 88 von p27Kip1 in der ATP-Bindetasche der Kinase zu liegen und blockiert diese. Es wurde deshalb untersucht, inwieweit eine Phosphorylierung von p27Kip1 an Tyrosin 88 oder 89 Einfluß auf die Aktivität des Inhibitors hat. Die Tyrosinphosphorylierung von p27Kip1 verhindert nicht die Bindung an den CDK-Komplex. Allerdings konnte mit in vitro-phosphoryliertem p27Kip1 gezeigt werden, daß eine Tyrosinphosphorylierung zu einer etwa 40%-igen Reduktion der Aktivität des Inhibitors führt. Diese Ergebnis konnte in vivo bestätigt werden. Interessanterweise verstärkt die Tyrosinphosphorylierung des Inhibitors die Phosphorylierung von p27Kip1 an Threonin 187 durch den gebundenen CDK-Komplex. Die Phosphorylierung von p27Kip1 an Threonin 187 ist in der Zelle ein initiales Signal zum Abbau von p27Kip1 durch das 26S-Proteasom. Das so markierte p27Kip1 wird von einem E3-Ligase-Komplex erkannt und ubiquitiniert. Es wurde deshalb untersucht, welchen Einfluß die Tyrosinphosphorylierung auf den Abbau von p27Kip1 besitzt. In Halbwertszeitbestimmungen mit einer SH3-bindedefizienten Form von p27Kip1 und einer Tyrosin/Phenylalanin-Austauschform von p27Kip1 konnte zeigten werden, daß beide Formen, im Vergleich zu unverändertem p27Kip1, eine höhere Stabilität aufweisen. Die Interaktion von p27Kip1 mit der Tyrosinkinase Lyn und die Inaktivierung des Inhibitors durch die Phosphorylierung von Tyrosinresten zeigt eine Möglichkeit auf wie p27Kip1, in Abhängigkeit von mitogenen Stimuli, reguliert werden kann. Die in dieser Arbeit gefundene Interaktion von Grb2, Grf40 und Lyn mit p27Kip1 verbindet damit die Signaltransduktion mit der Zellzykluskontrolle.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Das Protein Ubiquitin kann posttranslational an Proteine geknüpft werden. Dieser Vorgang ist für den Abbau von Proteinen durch das Proteasom notwendig.Neben dieser Funktion hat die Modifikation mit Ubiquitin noch weitere Funktionen,die nicht zum Abbau des Proteins führen.Ubiquitin- ähnlichen Proteine,wie beispielsweise SUMO,sind ebenfalls nicht direkt am Proteinabbau beteiligt.Die Konsequenz der Modifikation,und das Zusammenspiel Ubiquitin-ähnlicher-Systeme mit dem Ubiquitin-System sind bisher allerdings wenig verstanden. PCNA (Proliferating Cell Nuclear Antigen)ist eine zentrale Komponente der DNA-Replikation und DNA-Reparatur.Im Rahmen dieser Arbeit konnte gezeigt werden,daß PCNA über drei verschiedene posttranslationale Modifikationen reguliert wird.In der S-Phase des Zellzyklus wird PCNA durch SUMO modifiziert.Nach DNA-Schädigung wird PCNA dagegen durch Komponenten des RAD6 -DNA-Reparaturwegs mono-oder multiubiquitiniert. Alle drei Modifikationen finden am gleichen,zwischen eukaryontischen Spezies kon servierten Lysin statt.Der RAD6 -DNA-Reparaturweg reguliert postreplikative DNA-Reparatur.Eine Schlüsselstellung innerhalb dieses Reparaturwegs nehmen zwei Ubiquitin-konjugierende Enzyme,RAD6 sowie das Heterodimer UBC13/MMS2,die über die RING-Finger Prote ine RAD18 bzw.RAD5 an das Chromatin rekrutiert werden,ein.Interessanterweise interagiert neben PCNA auch das SUMO-konjugierende Enzym UBC9 mit den beiden RING-Finger Proteinen sowie mit PCNA selbst und ist so ebenfalls mit dem RAD6 -Reparaturweg assoziiert.Nach DNA-Schädigung wird PCNA von RAD6/RAD18 monoubiquitiniert.Alternativ kann PCNA durch das hierfür zusätzlich notwendige Heterodimer UBC13/MMS2 und das RING-Finger- Protein RAD5 mit speziellen,Lysin-63-verknüpften Ubiquitinketten, multiubiquitiniert werden.PCNA-Ubiquitinierung ist essentiell für DNA- Reparatur,da eine PCNA-Mutante,die nicht mehr modifiziert wird,starke Sensitivität gegenüber DNA-Schädigung besitzt. Es konnte gezeigt werden,daß die verschiedenen Modifikationen unterschiedlich auf die Funktionen von PCNA einwirken können. SUMOylierung von PCNA wirkt inhibierend auf RAD6 -abhängige DNA- Reparatur.PCNA-Multiubiquitinierung durch Lysin-63-verknüpfte Ubiquitinketten aktiviert PCNA in dem UBC13/MMS2/RAD5-abhängigen Zweig RAD6 -abhängiger DN A -Reparatur,der fehlerfrei arbeitet.PCNA- Monoubiquitinierung scheint dagegen den fehlerhaften Zweig RAD6 - abhängiger DNA-Reparatur zu aktivieren.ˇ
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Der Neurotrophinrezeptor p75 wurde als erstes Mitglied der Tumornekrosefaktor-Rezeptor-Superfamilie kloniert. Da die trophischen Eigenschaften der Neurotrophine durch eine zweite Klasse von Rezeptoren, die Trk-Rezeptor-Tyrosinkinasen, vermittelt werden, wurde p75 lange als deren „Corezeptor“ angesehen. Inzwischen gibt es viele Beweise für eine eigen-ständige Signaltransduktion durch p75, die beispielsweise zur Aktivierung von NF-κ B oder zu programmiertem Zelltod führen kann. Zu Beginn dieser Arbeit war weitgehend unbekannt, wie der Neurotrophinrezeptor p75 apoptotische Signale im Inneren der Zelle weiterleitet. Unter Verwendung des Hefe-„Two-Hybrid“- Systems war im Vorfeld das Zinkfingerprotein NRIF1 („Neurotrophin Receptor Interacting Factor“) als potentieller p75-Interaktionspartner identifiziert worden. Die wichtige Rolle dieses Proteins als Vermittler von apoptotischen Signalen konnte später durch gezielte Deletion des nrif1-Gens in der Maus bestätigt werden: In nrif1-Nullmutanten wurde eine Reduktion des embryonalen Zelltodes von Nervenzellen der Netzhaut nachgewiesen, deren Ausmaß dem einer p75- oder ngf („Nerve Growth Factor“)-Deletion entsprach (Casademunt et al., 1999). In der vorliegenden Arbeit wurde ein zweites nrif-Gen (nrif2) kloniert, das zu über 90% mit nrif1 identisch ist. Beide Proteine besitzen typische Strukturmerkmale negativ regulatorisch wirkender Transkriptionsfaktoren. Der carboxyterminale Abschnitt enthält fünf Zinkfinger des Cys2-His2-Typs, die eine Bindung an DNA vermitteln könnten, während der aminoterminale Bereich zwei KRAB-Domänen enthält, die Transkriptionsrepressor-Module darstellen. Das nrif2-Gen wird im 5’-untranslatierten Bereich differentiell gespleißt. Durch Experimente mit rekombinanten Proteinen aus E. coli und Fibroblasten-Zellinien wurde die vermutete Interaktion von NRIF und p75 biochemisch nachgewiesen. Die Ver-wendung unterschiedlicher Deletionskonstrukte zeigte, daß für die Wechselwirkung nur die Juxtamembran-Domäne des Rezeptors und ein carboxyterminaler Abschnitt von NRIF (stromaufwärts der Zinkfinger) nötig sind. NRIF-Proteine können unter Bildung von Homo- und Heterodimeren mit sich selbst interagieren. Die Colokalisierung von NRIF1 und NRIF2 bzw. NRIF und p75 nach transienter Transfektion von Fibroblasten-Zellinien bestätigte die biochemisch nachgewiesenen Interaktionen auch in vivo. Die Expression von NRIF in Zellinien neuronalen Ursprungs offenbarte eine mögliche Funktion als Auslöser von Apoptose, welche unabhängig von p75 allein durch Über-expression dieser Zinkfingerproteine verursacht wurde. Außerdem war in NRIF-überexprimierenden Zellen der Einbau von BrdU, einem Thymidin-Analogon, das Zellen in der S-Phase des Zellzyklus markiert, stark eingeschränkt. Diese Funktionen von NRIF sindbesonders interessant, da in den letzten zwei Jahren weitere Adaptermoleküle des Neuro-trophinrezeptors p75 identifiziert wurden, die einen Einfluß auf Apoptose und/oder den Ablauf des Zellzyklus besitzen. p75 spielt insbesondere während des programmierten Zelltodes in der Entwicklung des Nervensystems eine wichtige Rolle und wird im Embryonalstadium am stärksten exprimiert. Die Analyse der mRNA-Expression von nrif bestätigte, daß auch nrif1 und nrif2 während der Embryonalentwicklung deutlich höher exprimiert sind als in adulten Mäusen. Nrif-mRNA wurde jedoch im Gegensatz zu p75-mRNA ubiquitär in allen untersuchten embryonalen Geweben nachgewiesen. In weiterführenden Experimenten wurden transgene Mäusen untersucht, in denen das nrif1-Gen durch homologe Rekombination entfernt worden war. Diese Mäuse sind in einem kongenen Sv129- oder einem gemischten Sv129/BL6-Hintergrund lebensfähig und fertil, sterben jedoch im BL6-Hintergrund ungefähr am zwölften Embryonaltag. Die Hypothese, daß die nrif2-mRNA-Menge in überlebenden Tieren erhöht sein könnte, wurde zuerst in neugebo-renen Sv129-Mäusen durch semiquantitative RT-PCR-Analysen bestätigt. Eine vergleichen-de Untersuchung 10,5 Tage alter Embryonen aus verschiedenen Stämmen deutete auf die Möglichkeit einer funktionellen Kompensation hin: Während in Nullmutanten des Sv129- Stammes die nrif2-mRNA-Konzentration ungefähr doppelt so hoch war wie in Wildtyp-Tieren, konnten BL6-Nullmutanten die nrif2-Menge nicht differentiell regulieren. Das Fehlen von NRIF1 und die gleichzeitige Unfähigkeit einer ausgleichenden Hochregulation von NRIF2 könnten ein wichtiger Grund für die embryonale Letalität der nrif1 (-/-)-Embryonen im BL6- Stamm sein. Eine genau ausgewogene Menge der Zinkfingerproteine NRIF1 und NRIF2 scheint demnach essentiell zu sein, damit wichtige Prozesse wie Zellzyklus und Apoptose ungestört ablaufen können.