POPULARITY
Ein Podcast zu was, wozu und warum Selenocystein. Verstehe etwas mehr über das Thema Selenocystein in dieser kurzen Arbeit. Eine Ausgabe des Naturheilkunde Podcasts von und mit Sukadev Bretz, Yogalehrer bei Yoga Vidya. Anmerkung: Gesundheitliche Informationen in diesem Podcast sind nicht gedacht für Selbstdiagnose und Selbstbehandlung, sondern Gedankenanstöße aus dem Gebiet der Naturheilkunde. Bei eigener … „Selenocystein“ weiterlesen
Audiovortrag zum Thema Selenocystein Simple und komplexe Fakten und Meinungen rund um dieses Thema aus dem Yoga Blickwinkel von Sukadev, dem Gründer des gemeinnützigen Vereines Yoga Vidya e.V. Dieser Audiovortrag ist eine Ausgabe des Audiovortrag zum Thema Fastenaufbau Simple und komplexe Fakten und Meinungen rund um dieses Thema aus dem Yoga Blickwinkel von Sukadev, dem Gründer des gemeinnützigen Vereines Yoga Vidya e.V. Dieser Audiovortrag ist eine Ausgabe des Naturheilkunde Podcast. Er ist ursprünglich aufgenommen als Diktat für einen Lexikonbeitrag im Yoga Wiki Bewusst Leben Lexikon. Zum ganzheitlichen Yoga kann man auch die Theorie von Karma und Reinkarnation dazu zählen. In Ayurveda Ausbildungen erfährst du mehr zum Thema Gesundheit und Prävention. Vielleicht magst du ja deine Gedanken dazu in die Kommentare schreiben. Anmerkung: Gesundheitliche Informationen in diesem Podcast sind nicht gedacht für Selbstdiagnose und Selbstbehandlung, sondern Gedankenanstöße. Bei eigener Erkrankung brauchst du einen Arzt oder Heilpraktiker. Hier findest du: Seminare mit Sukadev Seminarübersicht Themenbezogene Seminare Yoga Vidya YouTube Live Kanal Online Seminare Video Seminare Yoga Vidya kostenlose App Yoga Vidya Newsletter Unseren Online Shop Schon ein kleiner Beitrag kann viel bewegen... Spende an Yoga Vidya e.V.! kunde-podcast.podspot.de">Naturheilkunde Podcast. Er ist ursprünglich aufgenommen als Diktat für einen Lexikonbeitrag im Yoga Wiki Bewusst Leben Lexikon. Zum ganzheitlichen Yoga kann man auch die Theorie von Karma und Reinkarnation dazu zählen. In Ayurveda Ausbildungen erfährst du mehr zum Thema Gesundheit und Prävention. Vielleicht magst du ja deine Gedanken dazu in die Kommentare schreiben. Anmerkung: Gesundheitliche Informationen in diesem Podcast sind nicht gedacht für Selbstdiagnose und Selbstbehandlung, sondern Gedankenanstöße. Bei eigener Erkrankung brauchst du einen Arzt oder Heilpraktiker. Hier findest du: » » » » » » » » »
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 03/19
Selen wird in Form von Selenocystein in das katalytische Zentrum der Glutathionperoxidase gebunden. Das Enzym kann in besonders hoher Konzentration in der Schilddrüse nachgewiesen werden, wo es redoxabhängige Vorgänge reguliert und das Redoxpotenzial der Zelle aufrechterhält. Es wurde der Einfluss von Natrium-Selenit auf die Apoptoserate in humanen Schilddrüsenfollikeln untersucht. Es konnte eine konzentrationsabhängige Reduktion der Apoptoserate beobachtet werden.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Die kotranslationelle Dekodierung des Kodons UGA als Selenocystein erfolgt durch eine spezifische tRNA (tRNASec), die von Seryl-tRNA Synthetase mit Serin beladen und anschließend von Selenocystein Synthase (SelA) zu Selenocysteyl- tRNASec umgesetzt wird. Selenophosphat, das als Selendonor für diese Reaktion dient, wird von Selenophosphat Synthetase (SelD) aus Selenid und ATP generiert. Der anschließende Transfer der beladenen tRNA zum Ribosom erfolgt durch den spezialisierten Elongationsfaktor SelB, dessen N-terminale Region Homologie zu EF-Tu zeigt und wie dieses Guanosin-Nukleotide und tRNA bindet. Der C-terminale Teil interagiert zusätzlich mit einer als SECIS-Element bezeichneten mRNA- Sekundärstruktur, die in Bakterien unmittelbar auf das für Selenocystein kodierende UGA-Triplett folgt und für dessen Rekodierung als Sinnkodon verantwortlich ist. Die vorliegende Arbeit beschäftigt sich mit den Mechanismen, die der Interaktion von SelB mit seinen Liganden sowie der Regulation der Selenocystein- Biosynthese durch SelB zu Grunde liegen. Im Einzelnen wurden dabei folgende Resultate erhalten: 1) Die strikte Diskriminierung zwischen Seryl- und Selenocysteyl-tRNASec durch SelB ist essentiell für das Funktionieren des Selenocystein inkorporierenden Systems. Eine gerichtete Mutatagenese der Aminoacyl-Bindetasche von SelB zeigte, dass die Selektivität der tRNA-Bindung vermutlich nicht auf einer spezifischen Erkennung des Aminoacyl-Rests beruht. Nach Zufallsmutagenese konnten vier SelB-Varianten isoliert werden, die in vivo eine erhöhte Aktivität mit Seryl-tRNASec besitzen. Zwei der Mutationen waren in der G-Domäne von SelB lokalisiert, die anderen beiden in Domäne 4a. Die biochemische Charakterisierung der mutierten Proteine ergab noch keinen Hinweis auf eine erhöhte Affinität der SelB-Varianten für Seryl-tRNASec, so dass andere Mechanismen für die Erweiterung der Aminosäure-Spezifität verantwortlich sein müssen. 2) Die Interaktion von SelB mit seinen Liganden wurde mit Hilfe von biochemischen und biophysikalischen Methoden analysiert. Der Elongationsfaktor zeigt im Gegensatz zu vielen anderen G-Proteinen eine höhere Affinität für GTP (KD = 0,74 µM) als für GDP (KD = 13,4 µM),was zusammen mit der hohen Dissoziationsrate von GDP (kdis = 15 s-1) darauf hinweist, dass der Nukleotidaustausch ohne Katalyse durch einen Austauschfaktor erfolgt. Die Kinetiken der Interaktion mit Guanosin-Nukleotiden werden durch die Gegenwart eines SECIS-Elements nicht beeinflusst. Die Affinität von SelB zu einem fluoresceinmarkierten SECIS-Transkript liegt im nanomolaren Bereich (KD = 1,23 nM), wobei die Assoziations- und Dissoziationskinetiken sehr schnell sind und durch die Gegenwart von Guanosin-Nukleotiden nicht verändert werden. In Gegenwart von Selenocysteyl-tRNASec wurde jedoch eine signifikante Verringerung der Dissoziationsgeschwindigkeit beobachtet, die zu einer Stabilisierung der Bindung führt und eine Interaktion zwischen der SECIS- und tRNA-Bindetasche nahelegt. Diese intramolekulare Wechselwirkung wurde durch Charakterisierung der isolierten mRNA-Bindedomäne von SelB bestätigt. Die Gleichgewichtslage der einzelnen Reaktionen führt zu einer gerichteten Bildung eines Komplexes aus SelB, GTP, Selenocysteyl-tRNASec und dem SECIS-Element, der durch seine hohe Stabilität auf der mRNA fixiert wird und gleichzeitig eine Konformation annimmt, die seine Interaktion mit dem Ribosom zulässt. 3) In der 5´-untranslatierten Region der selAB-mRNA wurde eine Sekundärstruktur identifiziert, die Ähnlichkeit mit dem SECIS-Element aufweist und mit der SelB spezifisch und mit hoher Affinität interagiert. Die Stabilität des Komplexes zwischen SelB und dem SECIS-ähnlichen Element erhöht sich in Gegenwart von Selenocysteyl-tRNASec. Eine Analyse der sel-Genexpression ergab, dass die Synthese von SelA und in geringerem Ausmaß SelB in genetischen Hintergründen, die eine Assemblierung des quaternären Komplexes aus SelB, GTP, Selenocysteyl- tRNASec und dem SECIS-ähnlichen Element erlauben, reprimiert ist. Mutationen in sel- Genen führen dagegen zu einer erhöhten intrazellulären Konzentration dieser Proteine. Mit Hilfe von Reportergen-Fusionen wurde gezeigt, dass die Repression der selA-Expression direkt von der Bildung eines quaternären Komplexes am SECIS-ähnlichen Element abhängig ist. Da diese keinen Einfluss auf die Transkription hat und nur zu einer schwachen Verringerung der mRNA-Menge führt, wurde gefolgert, dass das SECIS-ähnliche Element eine Regulation der Translationsinitiation am selA-Gen in Abhängigkeit vom Selenstatus der Zelle ermöglicht.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Ziel dieser Arbeit war es, die aus der Genomsequenz von M. jannaschii identifizierten Komponenten der Biosynthese und Inkorporation von Selenocystein biochemisch und molekularbiologisch zu charakterisieren. Folgende Ergebnisse wurden erhalten: a) Die tRNASec von M. jannaschii konnte mit gereinigter Seryl-tRNA-Synthetase von E. coli korrekt in vitro mit L-Serin beladen werden. Die Umwandlung der Seryl-Gruppe in eine Selenocysteyl-Gruppe war mit gereinigter Selenocystein-Synthase und Selenophosphat- Synthetase von E. coli ebenfalls erfolgreich. In Extrakten von M. jannaschii konnte darüber hinaus die Selenocystein-Synthase-Aktivität nachgewiesen werden. Eine rekombinante tRNASec von M. maripaludis, bei der eine Base im Anticodon-"Loop"ausgetauscht worden war, konnte im heterologen Wirt E. coli Selenocystein inserieren. b) Die Natur und die Lokalisation des archaeellen SECIS-Elements konnte durch die heterologe Expression eines Selenoprotein-Gens von M. jannaschii in M. maripaludis bewiesen werden. Die heterologe Selenoprotein-Synthese war dabei abhängig vom Vorhandensein und der strukturellen Unversehrtheit des RNA-Elements in der 3'-nicht-translatierten Region der Selenoprotein-mRNA. c) Die biochemische Charakterisierung des heterolog in E. coli überproduzierten MJ0495- Proteins von M. jannaschii ergab Dissoziationskonstanten für Guanin-Nukleotide, wie sie für bakterielle SelB-Spezies typisch sind. Darüber hinaus diskriminiert das MJ0495-Protein zwischen der kognaten Ser-tRNASec und Sec-tRNASec; letztere wird mit höherer Affinität gebunden. MJ0495 stellt deshalb den Selenocystein-spezifischen Translationsfaktor in Archaea (aSelB) dar. Das in der nicht-translatierten mRNA-Region liegende SECIS-Element wird allerdings (im Unterschied zu SelB von E. coli) nicht von aSelB gebunden. d) Es konnten mehrere SECIS-bindende, und ein aSelB-bindendes Protein identifiziert werden, die möglicherweise für die notwendige Kommunikation zwischen aSelB und dem SECISElement sorgen. e) Durch die Proteomanalyse konnte gezeigt werden, dass in M. maripaludis einige Proteine in Abhängigkeit von der Selenversorgung gebildet werden. Dabei wurden auch solche Proteine selenabhängig synthetisiert, die kein Selenocystein enthalten.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Das Gen des Selenoproteins PHGPx war in der Arbeitsgruppe im Verlaufe einer Expressionsklonierung als antiapoptotisches Gen für Burkitt-Lymphom-Zellen kloniert worden. Die Komplexität der kotranslationalen Inkorporation von Selenocystein, welches bei Selenoenzymen Teil des reaktiven Zentrums ist, limitiert die Überexpression und erschwert die funktionelle Analyse der Selenoproteine sowohl in vitro als auch in vivo. Die PHGPx und das ebenfalls Selenocystein-abhängige mitochondriale Thioredoxin/Thioredoxin-Reduktase-System sind bei der Detoxifikation von reaktiven Sauerstoffspezies beteiligt, die in der mitochondrialen Atmungskette erzeugt werden. Im Gegensatz zur PHGPx vermittelt die Thioredoxin- Reduktase ihre Schutzfunktion vor oxidativem Stress über Thioredoxin-abhängige Peroxidasen, die sogenannten Peroxiredoxine. Aufgrund einer möglichen Redundanz beider Systeme sollten beide Gene in Mäusen gezielt zerstört und bei Bedarf doppel-knock-out-Tiere erzeugt werden. Da das Fehlen der funktionellen, mitochondrialen Thioredoxin-Reduktase möglicherweise nicht mit dem Leben vereinbar ist, wurden Mäuse unter Verwendung des Cre/loxP-Rekombinationssystems etabliert, bei welchen das Gen zunächst aktiv ist. Die Inaktivierung der Thioredoxin-Reduktase 3 erfolgte durch Einkreuzen von transgenen Mäusen, die die Cre-Rekombinase in allen Geweben exprimieren. Die aus dieser Verpaarung abstammenden, heterozygoten knock-out-Mäuse zeigen keinen offensichtlichen Phänotyp. Erste Ergebnisse zeigen, dass homozygote TR3 knock-out-Mäuse wahrscheinlich embryonal oder perinatal letal sind. Bei der Inaktivierung des PHGPx-Gens in Mäusen wurden zwei Strategien verfolgt. Die lacZ knock-in-Strategie sollte ermöglichen, die Gewebeexpression der PHGPx zu studieren. Die konditionale knock-out-Strategie wurde parallel verfolgt, weil zu Beginn der Arbeit nicht abzusehen war, ob homozygote PHGPx knock-out-Mäuse lebensfähig sind oder ob Probleme mit der männlichen Fertilität zu erwarten sind. Schon lange war bekannt, dass die PHGPx im Hoden hoch exprimiert ist. Wie sich dann im Laufe dieser Arbeit herausstellte, handelte es sich bei dem konditionalen PHGPx knock-out ebenfalls um einen direkten knock-out. Durch die beabsichtigte konditionale knock-out-Strategie wurde ein Spermienkern-spezifisches, alternatives Exon des PHGPx-Gens zerstört. Diese neue Form der PHGPx wurde kloniert, das Hoden-spezifische Expressionsmuster und die Kernlokalisation des alternativenExons durch GFP-Fusionsproteine gezeigt. Geleitet von den in dieser Arbeit und von Ursini et al. (1999) beschriebenen neuen Funktionen der PHGPx in der Spermatogenese und den vergeblichen Versuchen, das veränderte PHGPx-Allel in Mäusen in die Keimbahn zu bekommen, wurden die Hoden und Spermien von den PHGPx- Chimären analysiert. Die Analyse der Chimären zeigte einen Phänotyp der partiellen Hodenatrophie und schweren Missbildungen der Spermien, der dem von Selendefizienten Nagetieren sehr ähnlich ist. Die bei diesen Chimären beobachtete Haploinsuffizienz führte zu der Entscheidung, die konditionale knock-out-Strategie für PHGPx zu ändern. Letztendlich gelang es, mit der neuen konditionalen knock-out- Strategie Keimbahntransmission zu erhalten. Dadurch wurde nicht nur das gesteckte Ziel, ein Maus knock-out-Modell für die PHGPx zu etablieren, erreicht, sondern es wurden viele zusätzlich wichtige neue Erkenntnisse über die Struktur und Funktion der PHGPx in der Spermienreifung gewonnen. Die Cre-vermittelte Inaktivierung des konditionalen PHGPx-Allels wird in Kürze erwartet.