POPULARITY
Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 06/07
Das West-Nil-Virus (WNV) ist ein zur Familie der Flaviviren gehörendes Arbovirus, das weltweit zunehmende Verbreitung findet. Das natürliche Reservoir des Virus sind Vögel. Nach Übertragung durch Stechmücken kann es zu Infektionen von „Fehlwirten“, insbesondere Pferden und Menschen, kommen. Die meisten Infektionen verlaufen asymptomatisch oder mit der Entwicklung des West-Nil-Fiebers, einer relativ milden, Grippe-ähnlichen Erkrankung. In einigen Fällen, vor allem bei immungeschwächten und älteren Individuen, können aber auch lebensbedrohliche Infektionen mit schwerer neurologischer Symptomatik (z.B. Enzephalitiden) die Folge sein. WNV-Impfstoffe sind bisher nur für die Veterinärmedizin zugelassen und diese benötigen für einen effektiven Schutz häufige Auffrischungen. Außerdem gibt es keine effizienten Therapiemöglichkeiten. Aus diesem Grund ist die Entwicklung weiterer wirksamer WNV-Impstoffe wünschenswert. Ziel dieser Arbeit war es, verschiedene rekombinante Vakzinkandidaten auf Basis des Modifizierten Vacciniavirus Ankara (MVA) zu entwickeln, zu analysieren und bezüglich ihrer Eignung als Vektorvakzin zu bewerten. Das in seiner Replikationsfähigkeit extrem limitierte und hoch attenuierte MVA gehört bei der Entwicklung neuartiger rekombinanter Virusvakzine zu den viel versprechendsten Kandidaten. Potentielle WNV-Vektorvakzine beruhen überwiegend auf der Expression der beiden viralen Hüllproteine prM/M und E oder Teilen davon. Gerade das E-Protein stellt nach einer Infektion das Hauptzielantigen der adaptiven Immunantwort dar, indem es eine Vielzahl an immunogenen und protektiven Epitopen aufweist. Die fünf in dieser Arbeit hergestellten rekombinanten Viren exprimierten zum Teil das E-Protein in unterschiedlicher Ausführung oder prM/M und E simultan. Damit wurden verschiedene Ansätze zur Induktion einer Immunantwort generiert und untersucht. Alle rekombinanten MVA-Vektorviren waren bis auf die inserierten Zielsequenzen identisch und erwiesen sich als genetisch stabil. Die Replikationsdefizienz der Viren in den humanen und equinen Zielzellen konnte eindeutig nachgewiesen und somit ihre biologische Sicherheit belegt werden. Für die Erzeugung hochtitriger Virusstocks und zur Impfstoffproduktion in größerem Umfang war es notwendig zu zeigen, dass sich die ins MVA-Genom inserierten Sequenzen nicht negativ auf das Vermehrungspotential der Viren in permissiven Zellen auswirkten. Es konnte belegt werden, dass alle Konstrukte dem Wildtypvirus ähnliche, und somit zur Produktion ausreichende, Wachstumsfähigkeiten besaßen. Als weitere wichtige Voraussetzung für die potentielle Verwendung der rekombinanten Viren als Kandidaten-Vakzine galt eine effiziente rekombinante Proteinexpression. Durch die Analyse der Proteinsynthese mittels Westernblot konnte nachgewiesen werden, dass diese bei allen Konstrukten stabil und produktiv verlief. Auch die Lokalisierung der rekombinanten E-Proteine durch Immunfluoreszenzfärbung und nachfolgender Konfokalmikroskopie infizierter Zellen brachte das erwartete Ergebnis. Abschließend wurden zur ersten Einschätzung der Immunogenität der rekombinanten Viren WNV-spezifische Antikörper- und T-Zellantworten im Mausmodell untersucht. Alle Vektorviren waren in der Lage humorale und zelluläre Immunantworten zu induzieren. Hierbei erwies sich MVA-WNVESOL, was die, mittels Antigen-ELISA ermittelte, Antikörperantwort anbelangt als viel versprechendster Kandidat. Bezüglich der CD8+-T-Zellantwort konnte sich dies jedoch nicht bestätigen. Es ist anzumerken, dass weiterführende Untersuchungen der Testimpfstoffe in anderen präklinischen Modellen in Zukunft noch durchzuführen sein werden. Die in dieser Arbeit hergestellten rekombinanten Viren und gewonnenen Erkenntnisse belegen die Fähigkeit von MVA als viel versprechenden Vektorvakzin-Kandidaten gegen WNV. Die nachgewiesene Sicherheit und zugleich gute Vermehrungsfähigkeit in permissiven Zellen, die effiziente WNV-Antigen-Expression und die ersten positiven Daten zur Immunogenität aller Konstrukte sprechen für eine zukünftige, weitere Nutzung und Untersuchung dieser Vektorviren, um als langfristiges Ziel einen potenten WNV-Impfstoff zu erhalten.
Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 06/07
Das Ektromelievirus, der Erreger der Mäusepocken, wird dem Genus der Orthopockenviren zugeordnet und gehört zu den Vertretern, die nur für einen Wirt virulent sind. Das Ektromelievirus ist spezifisch an die Maus adaptiert und induziert dort eine zyklisch, systemische Infektionskrankheit. An der Ausbildung dieser letalen Erkrankung sind vermutlich eine Vielzahl regulatorischer Virusproteine beteiligt, die sehr genau an das Immunsys-tem der Maus angepasst sind. Kandidaten für sogenannte Immunevasi-onsgene sind für fast alle Orthopockenviren identifiziert und beschrieben. Aufgrund limitierter Untersuchungsmöglichkeiten ist aber noch sehr wenig über die Funktionen dieser Gene bekannt, vor allem mit welchen Mecha-nismen die hier kodierten Faktoren agieren, um in vivo die Entwicklung eines fatalen Krankheitsverlaufes zu fördern. Das Ziel dieser Arbeit war es, einen neuen experimentellen Ansatz für die Analyse der Pathogenesemechanismen der Ektromelievirusinfektion in vitro und in vivo in der Maus zu entwickeln. Die Strategie beruhte auf der Markierung des Ektromelievirus mit einem rekombinanten Gen zur Ex-pression eines Fluoreszenzproteins. Dieser Reporter sollte neue nützliche Einblicke in den Ablauf des Lebenszyklus des Erregers ermöglichen, gleichzeitig sollte das fluoreszenzmarkierte Virus im Vergleich zu nicht rekombinantem Ektromelievirus unveränderte biologische Eigenschaften besitzen. Als Fluoreszenzmarker diente in der hier vorliegenden Arbeit das Protein mCherry, das mit den etablierten Detektionssystemen den best-möglichen Nachweis virusinfizierter Zellen in vitro und in vivo ermöglichen sollte. Zunächst konnte zur Generierung eines rekombinanten Ektromelie-mCherry Virus im Genom des Ektromelievirus ein neuartiger Insertionslo-kus identifiziert werden. Der Einbau der Fremdgensequenzen in den Zwi-schengenlokus EVM063 und EVM064 interferierte nicht mit anderen funk-tionellen Bereichen des Ektromeliegenoms und erlaubte die Herstellung stabiler rekombinanter Ektromelieviren. Die neue Insertionsstelle kann somit in Zukunft auch für die Konstruktion anderer gentechnisch modifi-zierter Ektromelieviren eingesetzt werden. Nach der erfolgreichen Rekom-bination des Ektromelie-mCherry Virus wurden drei voneinander unab-hängige klonale Isolate dieses Virus gewonnen und einer detaillierten Charakterisierung in in vitro Infektionsexperimenten unterzogen. Das mCherry Protein erwies sich hierbei als ein ausgezeichnetes molekularbio-logisches Werkzeug zur direkten Markierung der Infektion unterschiedli-cher Zielzellen mit Ektromelievirus. Jedes der drei untersuchten rekombi-nanten Ektromelieviren vermittelte eine deutlich sichtbare rote Fluores-zenz infizierter Zellen bereits innerhalb eines einzigen Infektionszyklus (12 Stunden nach Infektion). Zur Prüfung ob Einbau und Expression des Re-portergens das natürliche Infektionsverhalten des Ektromelievirus beein-flusst, wurde das Wachstum der drei rekombinanten Ektromelieviren in verschiedenen etablierten Zelllinien und in in vitro präparierten primären Mauszellen analysiert. Alle Ektromelie-mCherry-Viren wiesen eine mindes-tens genau so gute Vermehrungsfähigkeit wie das nicht rekombinante Ektromelie-Wildtypvirus auf. Zudem identifizierten die vergleichenden Un-tersuchungen das Ektromelie-mCherry-Virus 1 als das Virus mit den bes-ten Wachstumseigenschaften auf permanenten und primären Zellkulturen. Dieses Virus bietet sich daher als eine besonders vielversprechende Aus-gangsbasis für die Herstellung von gezielt mutierten Viren und für weitere Untersuchungen in in vitro und in vivo Infektionsexperimenten an. Mit den in dieser Arbeit dargestellten Experimenten ist es zum ersten Mal gelun-gen, rekombinante mCherry-markierte Ektromelieviren zu konstruieren, die in allen untersuchten biologischen Eigenschaften mit einem hoch virulen-ten Ektromelie-Wildtypvirus übereinstimmen. Die zukünftige Nutzung die-ser Viren verspricht völlig neue Einblicke in die molekularen Mechanismen der Wechselwirkung zwischen einem wirtspezifischen Orthopockenvirus und seinem natürlichen Wirt. Als Ergebnis erwartet werden dürfen ein um-fassenderes Verständnis zur Pathogenese systemischer Virusinfektionen und grundlegende Erkenntnisse zur Funktion der Immunabwehr. Beides sind wichtige Voraussetzungen für die Entwicklung neuer wirksamer Impf-stoffe und Therapieansätze.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 10/19
Zellkulturen humaner mesenchymaler Stammzellen (hMSC) enthalten überwiegend drei Subpopulationen: spindelige fibroblastenähnliche Zellen, große abflachte Zellen und kleine hoch proliferative Zellen, die sogenannten rapidly self-renewing cells (RS-Zellen). Ziel dieser Studie war zunächst die Isolation dieser RS-Zellen auf Einzelzellniveau und ihre anschließende klonale Expansion auf eine für Folgeexperimente hohe Zellzahl. Das Hauptziel war das Stammzellkriterium der Plastizität für eine RS-Zelle durch Differenzierung in die adipogene, osteogene und chondrogene Richtung ausgehend von einer Zelle nachzuweisen. HMSCs der Fa. Cambrex (USA) wurden entsprechend den Herstellerangaben kultiviert. Einzelne Zellen wurden mittels single cell picking isoliert und klonal expandiert sowie anschließend entweder nach Standardprotokollen adipogen, osteogen und chondrogen differenziert, oder als Kontrolle unstimuliert kultiviert. Die histologische Auswertung der Differenzierung erfolgte mit Oil Red-O- (Fettzellen), von Kossa- (Knochenzellen) und Toluidin Blau- (Knorpelzellen) Färbung. Für die chondrogene Differenzierung wurde zudem eine spezifische Immunfluoreszenzfärbung gegen Kollagen Typ-II durchgeführt. Nach Optimierung des Isolationsverfahrens mittels Einzelzellpickens konnte ausgehend von einer einzelnen Zelle die Zellzahl innerhalb von 5 Wochen auf ca. 1 Mio. Zellen expandiert werden. Die adiopogene, osteogene und chondrogene Differenzierung konnte bei den stimulierten RS-Zellen durch die oben beschriebenen histologisch Färbemethoden nachgewiesen werden. Die unstimulierten Kontrollen veränderten sich nicht. Die Versuche wurden stets mit einer heterogenen Kontrollgruppe durchgeführt. In dieser Studie ist es gelungen, ausgehend von einer einzelnen RS-Zelle, die Differenzierung in drei verschiedene Richtungen nachzuweisen. Somit konnten für die RS-Zellen erstmals die Stammzellkriterien einer hohen Replikationsrate sowie die Plastizität durch Differenzierung in drei mesenchymale Gewebetypen nachgewiesen werden. Zudem konnten für die Klassifizierung der RS-Zellen in Bezug auf Morphologie und Wachstumskinetik wichtige Erkenntnisse erbracht werden. Aufgrund ihrer Vermehrungsfähigkeit in vitro sind RS-Zellen für das tissue engineering besonders von Bedeutung. Jedoch bedarf es weiterer Studien, um das Verhalten der RS-Zellen als Subpopulation der humanen mesenchymalen Stammzellen besser zu verstehen.