POPULARITY
Gudrun spricht mit Alina Sage, die gerade eine Masterarbeit am Deutschen Krebsforschungszentrum in Heidelberg (DKFZ) abgeschlossen hat. Mit Mark Bangert, dem Leiter der Arbeitsgruppe dort hatte Gudrun vo einigen Monaten über die Physik der Strahlentherapie gesprochen. Auch mit Alina gibt es schon eine Folge im Modellansatz, denn sie hat über ihre Erfahrungen als Studienbotschafterin berichtet. In der Masterarbeit von Alina geht es darum, die Unsicherheiten beim Bestrahlungsvorgang besser zu modellieren. In der Fachsprache heißt das noch recht junge Forschungsgebiet Uncertainty Quantification. Es gibt natürlich unterschiedliche Ursachen, die zu einer nicht punktgenauen Umsetzung des Bestrahlungsplanes für Patienten führen. Alina wählte daraus zwei, die ihr besonders wichtig erschienen: dass der Strahl nicht aus einer Punktquelle kommt, sondern die Quelle um ein Zentrum herum streut dass der Patient nicht ganz exakt an dem Ort liegt, wie er in der Simulation angenommen wird, sondern etwas verschoben dazu. Beide Prozesse lassen sich recht gut mit einer Normalverteilung beschreiben. Eine Normalverteilung wird durch eine glockenförmige Kurve dargestellt. Das Maximum ist der Wert, der als der wahrscheinlichste angenommen wird. Er heißt Erwartungswert. Wie stark die Prozesse von diesem Wert abweichen, ist in der Glockenkurve dadurch ausgedrückt, ob die Kurve steil zu diesem Maximum hin anssteigt und anschließend wieder fällt (dann weicht sie wenig ab) oder eher breit aussieht. Das wird im Parameter Varianz (oder Standardabweichung) ausgedrückt. Um mit Hilfe von Simulationen die Unsicherheit zu beziffern, verwendet Alina das Instrument der Monte-Carlo-Simulation. Sie benutzt die Open source software TOPAS. Insbesondere heißt Monte-Carlo-Simulation, dass sie eine riesige Anzahl von möglichen Pfaden der Strahlungspartikel simulieren lässt, um dann aus Tausenden von solchen Verläufen eine Näherung für den Erwartungswert der im Gewebe deponierten Bestrahlungsdosis zu errechnen. Die Partikel folgen dabei jeweils einem Random Walk. Im Prinzip muss man diese Simulationen für beide Prozesse machen, die mit ihrer Unsicherheit betrachtet werden. Hier kommt Alina jedoch eine Eigenschaft der Normalverteilung zu Gute: wenn zwei normal verteilte Prozesse unabhängig voneinander einwirken, lässt sich die Summe ihrer Wirkungen in einem einzigen normal verteilten Prozess ausdrücken. D.h. hier, dass Alina für diesen Prozess nur einmal die Monte-Carlo-Simulation durchführen muss. Das spart extrem viel Rechenleistung ein. Im Prozess der unabsichtlichen Verschiebung des Patienten um kleine Längen ist es insbesondere von Belang, wenn z.B. in der Nähe der Lunge bestrahlt wird. Fast alle Organe und Gewebe im Körper haben eine Dichte, die der von Wasser entspricht. Damit kann man den Weg der Partikel in Wechselwirkung mit dem Körper recht einfach modellieren. Wenn jedoch die Luft gefüllte Lunge auf dem Partikelweg ist, wird viel weniger Energie deponiert und das Partikel landet an einem Ort, der viel weiter von der Strahlungsquelle entfernt ist als für normales Gewebe. In diesem Fall kann man in der Bestrahlung z.B. den Hinweis geben, besonders auf Verschiebungsvermeidung in bestimmt gefährdete Richtungen zu achten. Literatur und weiterführende Informationen H. Paganetti: Range uncertainties in proton therapy and the role of Monte Carlo simulation. Phys. Med. Biol. 7.06.2012 57(11). A.E. Feiguin: Monte Carlos error analysis online lecture course B. Bednarz, M. Engelsman, and H. Paganetti: Uncertainties and correction methods when modeling passive scattering proton therapy treatment heads with Monte Carlo. Phys Med Biol. 2011;56:2837–2854. Podcasts M. Bangert, G. Thäter: Bestrahlungstherapie, Gespräch im Modellansatz Podcast, Folge 201, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. A. Sage, L. Schenk, G. Thäter: Studienbotschafterinnen, Gespräch im Modellansatz Podcast, Folge 194, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019.
Gudrun sprach im Janur 2019 mit Mark Bangert vom Deutschen Krebsforschungszentrum in Heidelberg. Er arbeitet dort seit vielen Jahren als Physiker in der medizinischen Physik. Sein Thema ist die Optimierung von Bestrahlungstherapien. Der Punkt, an dem sich die Arbeit von Mark und Gudrun seit Ende 2018 berühren, ist eine Masterarbeit von Alina Sage in der Bestrahlungsplanung. Ein Gespräch mit ihr werden wir ebenfalls bald veröffentlichen. Es gibt viele und unterschiedliche Betätigungsfelder für Physiker in der medizinischen Physik, unter anderem in der Strahlentherapie oder Radiologie (CT- und MRI-Bildgebung). Marks Hauptaufgabe ist die Simulation und Optimierung von Strahlungsdosen die Tumor-Kranke appliziert bekommen, um die Nebenwirkungen zu minimieren und die Wirkung zu maximieren. Die Modelle hierfür haben eine geometrische Basis und berücksichtigen den Strahlungstransport. Hier geht es um die Abschwächung und Auffächerung in Interaktion mit Haut und inneren Organen. Die Therapie an und für sich ist schon stark digitalisiert. Jede Krebstherapie startet mit einem CT-Bild. Basierend darauf wird ein digitales Patientenmodel entwickelt und segmentiert, um den Tumor abzugrenzen. Das Abgrenzen des Tumors leisten hauptsächlich die Mediziner, Methoden der automatischen Bilderkennung halten hier nur sehr langsam Einzug. Anschließend wird entschieden: Wo soll bestrahlt werden und wo soll möglichst viel Energie absorbiert werden - gleichzeitg aber auch: Wo muss man vorsichtig sein (z.B. Herz, Speiseröhre, Niere, Rektum usw.). Anschließend wird dann simuliert, wie Strahlung auf das digitale Modell des Patienten wirkt. Man kann die Dosis und die zeitliche, räumliche Verteilung der Strahlung variieren und optimieren. Das führt auf eine patientenspezifische Optimierung der Dosis-Gabe, die nur für häufig auftretende Tumore gut standardisierbar und automatisierbar ist. Zeitlich hat sich bewährt, dass die Strahlung über 30 Tage in 6 Wochen verteilt verabreicht wird, da sich gesundes Gewebe so besser von der Strahlungsbelastung erholen kann. Aber viele Probleme bleiben offen: Unter anderem können Patienten nicht ganz still halten, sondern müssen beispielsweise atmen. Deshalb bewegt sich der Tumor während der Bestrahlung. Der momentane Ausweg ist, dass man ein größeres Volumen rings um den Tumor markiert. Eine bessere Variante wäre, wenn die Strahlung nur eingeschaltet ist, sobald der Tumor im optimalen Fenster ist oder wenn der Strahl der Tumorbewegung folgt. Dadurch würden die Nebenwirkungen stark verringert. An solchen Fragen forscht Marks Gruppe bevor nach ausführlichen Qualitätssicherungsmaßnahmen derartige Neuerungen zur Standardbehandlung werden. Bestrahlungshard- und Software werden zusammen entwickelt und mit vorhandener Bildgebung integriert. Auch diese Tools müssen verbessert werden, um immer genauer zu werden. Der kranke Mensch ändert sich über den langen Behandlungszeitraum von bis zu 6 Wochen oft sehr stark und der Tumor erst recht. Es wäre also denkbar, den Bestrahlungsplan wöchentlich oder sogar täglich zu aktualisieren. Mark hat in Heidelberg Physik studiert und promoviert und leitet eine Nachwuchsgruppe. N. Wahl, P. Hennig, H.-P. Wieser, M. Bangert: Smooth animations of the probabilistic analog to worst case dose distribution, https://github.com/becker89/ESTRO2018 Literatur und weiterführende Informationen M. Bangert, P. Ziegenhain: Bestrahlungsplanung In: W. Schlegel e.a. (eds.): Medizinische Physik, Springer 2018. H. Gabrys e.a.: Design and selection of machine learning methods using radiomics and dosiomics for NTCP modeling of xerostomia, Frontiers in Oncology, Mar 5;8:35, 2018. doi: 10.3389/fonc.2018.00035. J. Unkelbach e.a.: Optimization of combined proton–photon treatments, Radiotherapy and Oncology, 128(1):133-138, 2018. doi: 10.1016/j.radonc.2017.12.031. Podcasts L. Adlung, G. Thäter, S. Ritterbusch: Systembiologie, Gespräch im Modellansatz Podcast, Folge 39, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. Resonator-Podcast 015: DKFZ-Forscher Christof von Kalle, Resonator-Podcast von Holger Klein/Helmholtz-Gemeinschaft, 2013. Resonator-Podcast 014: Das DKFZ in Heidelberg, Resonator-Podcast von Holger Klein/Helmholtz-Gemeinschaft, 2013. Resonator-Podcast 069: Krebsmythen, Resonator-Podcast von Holger Klein/Helmholtz-Gemeinschaft, 2015.
Als Technische Universität ist das Karlsruher Institut für Technologie (KIT) vor allem ein Lernort für junge Männer. Der Anteil von Frauen in den technischen Fächern ist in Deutschland seit vielen Jahren weit von 50% entfernt und es gibt ganz unterschiedliche Ideen, wie man mehr Studentinnen "ins Boot holen" kann. Am KIT erproben wir seit dem Jahr 2018 die Entsendung von Studienbotschafterinnen an Schulen. Sie gestalten dort zwei Unterrichtsstunden mit einem spannenden Thema aus der Mathematik oder Physik und stehen anschließend für Fragen zur Verfügung über alles, was mit dem Studium im Allgemeinen und dem Studium am KIT im Besonderen zu tun hat. Bisher wurden (im Rahmen dieses Programms) über 50 Schulen und über 1000 Schüler besucht (Stand Ende 2018). Für die Mathematik sind Alina Sage und Lea Schenk unterwegs. Alina studiert Technomathematik am KIT und Lea hat Mathe und Chemie für das Lehramt am Gymnasium studiert. Sie macht jetzt noch einen Masterabschluss in Mathematik. In der Episode schildern beide ihre persönlichen Erfahrungen mit ihrer Rolle als Studienbotschafterin und mit dem Mathematik-Studium am KIT. Literatur und weiterführende Informationen Artikel im Weinheimer Boten Schülerlabor Mathematik Schülerlabor Physik Schülerlabor Geophysik Podcasts E. Dittrich, G. Thäter: Schülerlabor, Gespräch im Modellansatz Podcast, Folge 103, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. B. Böttcher, G. Thäter: Meisterklasse, Gespräch im Modellansatz Podcast, Folge 158, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. G. Thäter, K. Wohak: CAMMP, Gespräch im Modellansatz Podcast, Folge 165, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. K. Wohak, M. Hattebuhr, E. Bastian, C. Beizinger, G. Thäter: CAMMP-Week, Gespräch im Modellansatz Podcast, Folge 174, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. S. Schäfer, I. Häuser, G. Thäter: Schülermarketing, Gespräch im Modellansatz Podcast, Folge 191, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018.
On this episode, Jes and Laura interview Alina Sage who has a knack for turning trash into treasure, modeling how God can make old things new.