Podcasts about dedekind

  • 17PODCASTS
  • 18EPISODES
  • 43mAVG DURATION
  • 1MONTHLY NEW EPISODE
  • Jul 2, 2024LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about dedekind

Latest podcast episodes about dedekind

Wissen
Georg Cantor und das Plagiat unter Freunden

Wissen

Play Episode Listen Later Jul 2, 2024 28:58


Georg Cantor forscht zur Unendlichkeit, seine Entdeckungen revolutionieren die Mathematik. Doch in seinem Aufsatz unterschlägt er eine wichtige Quelle. Der Name eines Freundes taucht nicht auf, obwohl Cantor sich dessen Ideen zu eigen gemacht hat. Die Idee für diesen Podcast ist am MIP.labor entstanden, der Ideenwerkstatt für Wissenschaftsjournalismus zu Mathematik, Informatik und Physik an der Freien Universität Berlin, ermöglicht durch die Klaus Tschira Stiftung. (00:00:00) Einleitung (00:01:38) Georg Cantor in Halle (00:03:13) Cantor und die Unendlichkeiten (00:06:17) Cantor und Dedekind (00:08:09) Leopold Kroneckers Feldzug gegen Cantor (00:12:06) Unendlichkeit ist nicht gleich Unendlichkeit (00:13:52) Die verschiedenen Arten der Unendlichkeit (00:16:15) Das Diagonalargument (00:22:26) Folgen der neuen Mengenlehre (00:27:35) Verabschiedung >> Artikel zum Nachlesen: https://detektor.fm/wissen/geschichten-aus-der-mathematik-georg-cantor

Podcasts – detektor.fm
Geschichten aus der Mathematik | Georg Cantor und das Plagiat unter Freunden

Podcasts – detektor.fm

Play Episode Listen Later Jul 2, 2024 28:58


Georg Cantor forscht zur Unendlichkeit, seine Entdeckungen revolutionieren die Mathematik. Doch in seinem Aufsatz unterschlägt er eine wichtige Quelle. Der Name eines Freundes taucht nicht auf, obwohl Cantor sich dessen Ideen zu eigen gemacht hat. Die Idee für diesen Podcast ist am MIP.labor entstanden, der Ideenwerkstatt für Wissenschaftsjournalismus zu Mathematik, Informatik und Physik an der Freien Universität Berlin, ermöglicht durch die Klaus Tschira Stiftung. (00:00:00) Einleitung (00:01:38) Georg Cantor in Halle (00:03:13) Cantor und die Unendlichkeiten (00:06:17) Cantor und Dedekind (00:08:09) Leopold Kroneckers Feldzug gegen Cantor (00:12:06) Unendlichkeit ist nicht gleich Unendlichkeit (00:13:52) Die verschiedenen Arten der Unendlichkeit (00:16:15) Das Diagonalargument (00:22:26) Folgen der neuen Mengenlehre (00:27:35) Verabschiedung >> Artikel zum Nachlesen: https://detektor.fm/wissen/geschichten-aus-der-mathematik-georg-cantor

Geschichten aus der Mathematik
Georg Cantor und das Plagiat unter Freunden

Geschichten aus der Mathematik

Play Episode Listen Later Jul 2, 2024 28:58


Georg Cantor forscht zur Unendlichkeit, seine Entdeckungen revolutionieren die Mathematik. Doch in seinem Aufsatz unterschlägt er eine wichtige Quelle. Der Name eines Freundes taucht nicht auf, obwohl Cantor sich dessen Ideen zu eigen gemacht hat. Die Idee für diesen Podcast ist am MIP.labor entstanden, der Ideenwerkstatt für Wissenschaftsjournalismus zu Mathematik, Informatik und Physik an der Freien Universität Berlin, ermöglicht durch die Klaus Tschira Stiftung. (00:00:00) Einleitung (00:01:38) Georg Cantor in Halle (00:03:13) Cantor und die Unendlichkeiten (00:06:17) Cantor und Dedekind (00:08:09) Leopold Kroneckers Feldzug gegen Cantor (00:12:06) Unendlichkeit ist nicht gleich Unendlichkeit (00:13:52) Die verschiedenen Arten der Unendlichkeit (00:16:15) Das Diagonalargument (00:22:26) Folgen der neuen Mengenlehre (00:27:35) Verabschiedung >> Artikel zum Nachlesen: https://detektor.fm/wissen/geschichten-aus-der-mathematik-georg-cantor

The Nonlinear Library
LW - Constructive Cauchy sequences vs. Dedekind cuts by jessicata

The Nonlinear Library

Play Episode Listen Later Mar 15, 2024 7:46


Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Constructive Cauchy sequences vs. Dedekind cuts, published by jessicata on March 15, 2024 on LessWrong. In classical ZF and ZFC, there are two standard ways of defining reals: as Cauchy sequences and as Dedekind cuts. Classically, these are equivalent, but are inequivalent constructively. This makes a difference as to which real numbers are definable in constructive logic. Cauchy sequences and Dedekind cuts in classical ZF Classically, a Cauchy sequence is a sequence of reals x1,x2,…, such that for any ϵ>0, there is a natural N such that for any m,n>N, |xmxn|

The Nonlinear Library: LessWrong
LW - Constructive Cauchy sequences vs. Dedekind cuts by jessicata

The Nonlinear Library: LessWrong

Play Episode Listen Later Mar 15, 2024 7:46


Link to original articleWelcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Constructive Cauchy sequences vs. Dedekind cuts, published by jessicata on March 15, 2024 on LessWrong. In classical ZF and ZFC, there are two standard ways of defining reals: as Cauchy sequences and as Dedekind cuts. Classically, these are equivalent, but are inequivalent constructively. This makes a difference as to which real numbers are definable in constructive logic. Cauchy sequences and Dedekind cuts in classical ZF Classically, a Cauchy sequence is a sequence of reals x1,x2,…, such that for any ϵ>0, there is a natural N such that for any m,n>N, |xmxn|

Fish Out of Water: The SwimSwam Podcast
Katja Dedekind on Chasing 3rd Paralympics, Why Swimmers are Adrenaline Junkies

Fish Out of Water: The SwimSwam Podcast

Play Episode Listen Later Feb 25, 2024 32:50


Katja Dedekind is a 2x Paralympian, 2x Para world champion, and Para Commonwealth Games champion. Competing in the S13 (visually impaired) classification, Katja has racked up numerous accolades over her career which started when she was just 15. Dedekind discusses having a pro career, choosing swimming over goalball, and why swimmers are adrenaline junkies.

Being & Event
Part 3: Nature & Infinity, ft. Sarah Pourciau

Being & Event

Play Episode Listen Later Apr 10, 2023 115:10


Covering Part 3 of Alain Badiou's Being and Event on “Nature & Infinity,” Alex and Andrew complete the "arithmetic, natural story" that constitutes Badiou's presentation of being within the book so far. Guest Sarah Pourciau explores the history and philosophy of set theory, while also scrutinizing the conclusions Badiou tries to draw from it. Pourciau is a professor of German Studies at Duke University. Her expertise includes 19th Century German thought, including both philosophy and mathematics (Dedekind, Cantor). She is the author of the book The Writing of Spirit: Soul, System, and the Roots of Language Science. Concepts on Nature and Infinity Political Modernism, Math as the Difference between Real and Natural Numbers, Martin Heidegger's Poetic Ontology, Jacques Lacan's Matheme, Physis, Nature, Natural Multiples, the Non-existence of Nature, Cardinality and Ordinality, Ordinal Chain, Infinity and Finitude, Arithmetic and Natural Infinity, Georg Cantor and Richard Dedekind, Five Critiques of GWF Hegel's Notion of Infinity. Interview with Sarah Pourciau Digital Ocean, Richard Dedekind, Platonic Eidos, Georg Cantor and the Abyss, Gender and “The Feminine,” Kantian Intuition, Logos and the Origin of Set Theory, Politics, Naming and Numbers, Spontaneity, Différance, Alan Turing and Kurt Gödel, Computability. Links Pourciau profile, https://scholars.duke.edu/person/sarah.pourciau Pourciau, The Writing of Spirit: Soul, System, and the Roots of Language Science, https://www.fordhampress.com/9780823275632/the-writing-of-spirit/ Pourciau, "A/logos: An Anomalous Episode in the History of Number," https://muse.jhu.edu/article/728110 Pourciau, "On the Digital Ocean," https://www.journals.uchicago.edu/doi/abs/10.1086/717319

The Stephen Wolfram Podcast
History of Science and Technology Q&A (June 2, 2021)

The Stephen Wolfram Podcast

Play Episode Listen Later May 27, 2022 87:19


Stephen Wolfram answers questions from his viewers about the history science and technology as part of an unscripted livestream series, also available on YouTube here: https://wolfr.am/youtube-sw-qa Questions include: What appeared first in math, complex numbers or vectors? What is the relation between them? Would the square root of negatives be a problem if equations were developed with vectors instead of regular numbers? - ​Hi Wolfram. Can you tell a bit about the history of Real Variables, the Rational Numbers and why analysis was so important. Why not stick to integers. Why Cantor and Dedekind was so important. Thanks - What's the largest number you've ever used in a computation? Have you used anything bigger than Graham's number or Rayo's number? - moving from roman numerals to the numbers we use today helped merchants in those days, right? I believe that's what I read. - Was Tau used befor Pi? - ​Did Feynman overestimate Fredkin? Have the string theorists underestimated Fredkin? - ​Did you work much with Murray Gell-Mann? Any shareable stories? -What is your opinion on the resurgence of UFO's?

J&Mcast
#004 Números Reais

J&Mcast

Play Episode Listen Later Oct 29, 2021 54:30


Neste episódio conversamos sobre o conceito do infinito, sobre o que são números reais. Conversaremos sobre Dedekind, Cantor, Heine e Hilbert, dentre muitos nos escolhemos dar a visão destes sobre o que de fato é um número real. O episodio foi baseado nos livros da Tatiana Roque; História da matemática e A história da analise matemática de Cauchy a Lebesgue da Rosa lucia. Com uma busca na internet, vc deve conseguir encontrar ambas as obras. Nosso contato é jogosematematica@gmail.com Nos siga no Instagram @jogosematematica

Rádio Som Maior FM 100,7
ADELOR LESSA - Rosi Dedekind - presidente da Fampesc (15/06/2020)

Rádio Som Maior FM 100,7

Play Episode Listen Later Jun 15, 2020 4:49


ADELOR LESSA - Rosi Dedekind - presidente da Fampesc (15/06/2020) by Rádio Som Maior FM 100,7

presidente rosi lessa dedekind som maior fm
Chemistry Cayk Online Podcast
30. Crystals in the Clouds with Dr. Nadine Borduas-Dedekind

Chemistry Cayk Online Podcast

Play Episode Listen Later Jan 24, 2020 34:06


Crystals, clouds, and cake. Follow Dr. Nadine Borduas-Dedekind on Twitter here: https://twitter.com/nadineborduas and visit her group's website at www.atmoschemgroup.com.

clouds crystals borduas dedekind
Praxen der Zukunft - für eine moderne Heilmitteltherapie
Episode 19 - Wer den Nutzen der Patienten in den Mittelpunkt stellt, kann nur erfolgreich sein. Ein Interview mit Philip Dedekind.

Praxen der Zukunft - für eine moderne Heilmitteltherapie

Play Episode Listen Later Sep 30, 2019 47:37


Service, Kommunikation, Persönlichkeitsentwicklung und Verkaufen sind die Schlagworte dieser Folge. Dahinter stecken super relevante Themen, um als Therapeut und als Praxisbetreiber erfolgreich zu sein. Im Interview habe ich dazu den Physiotherapeuten und Gesundheitsunternehmer Philip Dedekind. Als ehemaliger Leistungssportler setzt Philip in seiner Praxis und in seinen Unternehmen neue Maßstäbe an die Frage: „Wie kann ich meinen Kunden noch besser dienen?“ Seine Erfolgsformel lautet dabei: 1. auf den Kundennutzen fokussieren, 2. aktiv zuhören, 3. konsequent Umsetzen und 4. permanent Weiterentwickeln. Die Formel und die Podcastfolge sind aus meiner Sicht ein Muss für jeden von Euch, die ihr nach eurer ganz eigenen Definition von Erfolg strebt. Wenn ihr Fragen oder Anmerkungen habt, lasst uns diese bitte gerne wissen, unter info@praxenderzukunft.de. Informationen zu Philips Gesundheitsangeboten findet Ihr unter https://www.physioaktiv-erfurt.de und https://www.physio4me.info Gesponsert wird diese Folge wieder von Theraphysia - Interdisziplinäre Praxen, dem Anbieter für eine richtig moderne und ehrlich interdisziplinäre Heilmitteltherapie in Berlin…und nur in Berlin ;-) (www.theraphysia.de)

Podcast Número Imaginário
Episódio #02 - Zero é um número natural?

Podcast Número Imaginário

Play Episode Listen Later Aug 28, 2015 10:55


Neste episódio falarei um pouco sobre os axiomas de Peano (ou Dedekind-Peano) e tentarei responder à seguinte questão: zero é um número natural?

Podcast Número Imaginário
Episódio #02 - Zero é um número natural?

Podcast Número Imaginário

Play Episode Listen Later Aug 28, 2015 10:55


Neste episódio falarei um pouco sobre os axiomas de Peano (ou Dedekind-Peano) e tentarei responder à seguinte questão: zero é um número natural?

MCMP – History of Philosophy
Giuseppe Veronese: The Fascination of Infinity

MCMP – History of Philosophy

Play Episode Listen Later May 12, 2015 68:58


Paolo Busotti (San Marino in Storia della Scienza) gives a talk at the MCMP Colloquium (7 May, 2015) titled "Giuseppe Veronese: The Fascination of Infinity". Abstract: Giuseppe Veronese (1854-1917) is one of the most interesting mathematicians lived between the end of the 19th century and the beginning of the 20th. He gave important contributions to geometry, in particular he developed the non-Archimedean geometries and David Hilbert (1862-1943) mentioned some of Veronese’s results in his Grundlagen der Geometrie. In connection to his geometrical researches, Veronese developed a theory of infinite numbers. In his huge (more than 600 pages) essay Fondamenti di geometria, 1891 (Foundations of geometry), Veronese premised an introduction which is a very treatise (about 200 pages) in which he developed a theory of the continuum and of the infinite numbers which was completely different from Cantor’s (1845-1918) and which, in the mind of his author, had to represent an alternative to Cantorian set theory. The great difference, in comparison to Cantor, was that Veronese admitted the existence of infinitesimal actual numbers, while Cantor always denied this possibility. Basing on his actual infinite and infinitesimal numbers Veronese constructed the continuum in a manner which is different from Cantor’s and Dedekind’s (1831-1916). Other mathematicians, as Paul Dubois-Reymond (1831-1889) and Otto Stolz (1842-1905) faced the problem of the infinite actual magnitudes in an original way, but they did not develop an entire theory, while Veronese did. From a mathematical point of view Veronese’s theory is problematic, because there are some serious inaccuracies and it is not developed in every detail. Nevertheless, the situation is very interesting from an epistemological and logical standpoint because many of the ideas carried out by Veronese were resumed by Abraham Robinson (1918-1995) in his famous book Non standard Analysis (1966), where a coherent theory of non-archimedean numbers is explained. Many of Robinson’s idea had already been expounded by Veronese, though in nuce. In my talk, I am going to explain Veronese’s theory of infinite numbers in comparison to Cantor’s as well as Veronese’s conception of the continuum.

Grothendieck-Teichmüller Groups, Deformation and Operads

Horozov, I (Washington University in St. Louis) Monday 08 April 2013, 15:00-16:00

MCMP – Mathematical Philosophy (Archive 2011/12)
Explicating Dedekind: Existential Axiomatics or Logicist Abstration?

MCMP – Mathematical Philosophy (Archive 2011/12)

Play Episode Listen Later Nov 6, 2012 74:44


Erich Reck (UCR) gives a talk at the MCMP Colloquium (18 October, 2012) titled "Explicating Dedekind: Existential Axiomatics or Logicist Abstration?". Abstract: In recent years, there has been renewed interested in Richard Dedekind as a philosopher of mathematics, especially in connection with structuralist views about the content of mathematics. In this talk, I will juxtapose two ways of interpreting Dedekind's structuralism, or better, two explications (in Carnap's sense) of his position, that seem most promising to me. One of them is Hilbertian, leading to a reading of Dedekind as a precursor of Hilbert's "existential axiomatics"; the other is neo-Fregean or neo-logicist, in the sense of being based on a distinctive kind of "abstraction principles" that can be seen as underlying Dedekind's position. I will argue that, besides being more defensible on interpretive grounds, the second explication of Dedekind points in a direction for developing mathematical structuralism that deserves further attention today.

Bicentenaire de la naissance d'Evariste Galois
Dedekind, Frobenius and the beginning of representation theory: cooperation and conflicting views

Bicentenaire de la naissance d'Evariste Galois

Play Episode Listen Later Feb 10, 2012 67:44