POPULARITY
Çetin Ünsalan'ın hazırlayıp sunduğu Reel Piyasalar programına Kurt Gürler Partners Yönetici Ortağı Avukat Özlem Kurt ve Kurt Gürler Partners Kıdemli Ortağı Avukat İzzet Gürler konuk oldu.
Çetin Ünsalan'ın hazırlayıp sunduğu Reel Piyasalar programına Kurt Gürler Partners Yönetici Ortağı Avukat Özlem Kurt ve Kurt Gürler Partners Kıdemli Ortağı Avukat İzzet Gürler konuk oldu.
Der letzte «Samschtig-Jass» im Jassjahr 2024 steht ganz im Zeichen der Jass-Champions. Die vier besten Jasserinnen und Jasser des zu Ende gehenden Jahres spielen um den Jackpot 2024 – als Glücksbringerin amtet Christa Rigozzi und die Band Stubete Gäng sorgt für die passende Silvesterstimmung. Moderatorin Christa Rigozzi reist für den «Samschtig-Jass» extra aus dem Tessin ins winterliche Oberarth und drückt den vier besten Jasserinnen und Jassern des bald zu Ende gehenden Jahres in der Horseshoe Braui die Daumen. Dabei spielt sie Glücksfee und Croupière zugleich, bestimmt jeweils per Roulette die Trumpffarbe und wagt zusammen mit Gastgeberin Fabienne Gyr einen Ausblick ins neue Jahr 2025. Michel Affolter aus Herzogenbuchsee (BE) mit gerademal fünf Differenzpunkten, Kurt Gäggeler aus Stettlen (BE) mit sechs, Marcel Stadelmann aus Escholzmatt (LU) mit sieben sowie Esther Moser aus Münchenstein (BL) mit neun Differenzpunkten spielen um den Titel «Jasskönigin oder Jasskönig des Jahres 2024» und um den Jahres-Jackpot von 12'000 Franken. Natürlich darf in einer königlichen Sendung auch die passende Musik nicht fehlen: Die Zuger «Örbn-Ländlr»-Formation Stubete Gäng präsentiert ein Hitmedley mit Petra Sturzenegger, Göschene Airolo, Dunne mit de Gäng und der aktuellen Hitsingle Willisau. Silvester kann kommen.
Fredrik talks to Pedro Abreu about the magical world of type theory. What is it, and why is it useful to know about and be inspired by? Pedro gives us some background on type theory, and then we talk about how type theory can provide new ways of reasoning about programs, and tools beyond tests to verify program correctness. This doesn't mean that all languages should strive for the nirvana of dependent types, but knowing the tools are out there can come in handy even if the code you write is loosely typed. We wrap up with some further podcast tips, of course including Pedro's own podcast Type theory forall. Thank you Cloudnet for sponsoring our VPS! Comments, questions or tips? We a re @kodsnack, @tobiashieta, @oferlundand @bjoreman on Twitter, have a page on Facebook and can be emailed at info@kodsnack.se if you want to write longer. We read everything we receive. If you enjoy Kodsnack we would love a review in iTunes! You can also support the podcast by buying us a coffee (or two!) through Ko-fi. Links Pedro Type theory Type theory forall - Pedro's podcast Chalmers The meetup group through which Pedro and Fredrik met Purdue university Bertrand Russell The problem of self reference Types Set theory Kurt Gödel Halting problem Alan Turing Turing machine Alonzo Church Lambda calculus Rust Dependent types Formal methods Liquid types - Haskell extension SAT solver Property-based testing Quickcheck Curry-Howard isomorphism Support Kodsnack on Ko-fi! Functional programming Imperative programming Object-oriented programming Monads Monad transformers Lenses Interactive theorem provers Isabelle HOL Dafny Saul Crucible Symbolic execution CVC3, CVC5 solvers Pure functions C# Algebraic data types Pattern matching Scala Recursion Type theory forall episode 17: the first fantastic one with Conal Elliot. The discussion continues in episode 21 Denotational types Coq IRC Software foundations - about Coq and a lot more The church of logic podcast The Iowa type theory commute podcast Titles Type theory podcasts Very odd for some people Brazilian weather Relearning to appreciate The dawn of computer science Layers of sets Where types first come in Bundle values together The research about programming languages If you squint your eyes enough Nirvana of type systems Proofs all the way down Extra guarantees If your domain is infinite Formal guarantees The properties of my system What is the meaning of my program? Building better systems
Fredrik talks to Pedro Abreu about the magical world of type theory. What is it, and why is it useful to know about and be inspired by? Pedro gives us some background on type theory, and then we talk about how type theory can provide new ways of reasoning about programs, and tools beyond tests to verify program correctness. This doesn’t mean that all languages should strive for the nirvana of dependent types, but knowing the tools are out there can come in handy even if the code you write is loosely typed. We wrap up with some further podcast tips, of course including Pedro’s own podcast Type theory forall. Thank you Cloudnet for sponsoring our VPS! Comments, questions or tips? We a re @kodsnack, @tobiashieta, @oferlund and @bjoreman on Twitter, have a page on Facebook and can be emailed at info@kodsnack.se if you want to write longer. We read everything we receive. If you enjoy Kodsnack we would love a review in iTunes! You can also support the podcast by buying us a coffee (or two!) through Ko-fi. Links Pedro Type theory Type theory forall - Pedro’s podcast Chalmers The meetup group through which Pedro and Fredrik met Purdue university Bertrand Russell The problem of self reference Types Set theory Kurt Gödel Halting problem Alan Turing Turing machine Alonzo Church Lambda calculus Rust Dependent types Formal methods Liquid types - Haskell extension SAT solver Property-based testing Quickcheck Curry-Howard isomorphism Support Kodsnack on Ko-fi! Functional programming Imperative programming Object-oriented programming Monads Monad transformers Lenses Interactive theorem provers Isabelle HOL Dafny Saul Crucible Symbolic execution CVC3, CVC5 solvers Pure functions C# Algebraic data types Pattern matching Scala Recursion Type theory forall episode 17: the first fantastic one with Conal Elliot. The discussion continues in episode 21 Denotational types Coq IRC Software foundations - about Coq and a lot more The church of logic podcast The Iowa type theory commute podcast Titles Type theory podcasts Very odd for some people Brazilian weather Relearning to appreciate The dawn of computer science Layers of sets Where types first come in Bundle values together The research about programming languages If you squint your eyes enough Nirvana of type systems Proofs all the way down Extra guarantees If your domain is infinite Formal guarantees The properties of my system What is the meaning of my program? Building better systems
Kurt Gödel gilt als größter Logiker seit Aristoteles, er beweist die Unvollständigkeit der Mathematik. Doch das weltliche Chaos macht ihn krank. Er sehnt sich nach einem Leben, das ebenso perfekt geordnet ist, wie die Welt der Mathematik. Die Idee für diesen Podcast hat Demian Nahuel Goos am MIP.labor entwickelt, der Ideenwerkstatt für Wissenschaftsjournalismus zu Mathematik, Informatik und Physik an der Freien Universität Berlin, ermöglicht durch die Klaus Tschira Stiftung. >> Artikel zum Nachlesen: https://detektor.fm/wissen/geschichten-aus-der-mathematik-kurt-goedel
Kurt Gödel gilt als größter Logiker seit Aristoteles, er beweist die Unvollständigkeit der Mathematik. Doch das weltliche Chaos macht ihn krank. Er sehnt sich nach einem Leben, das ebenso perfekt geordnet ist, wie die Welt der Mathematik. Die Idee für diesen Podcast hat Demian Nahuel Goos am MIP.labor entwickelt, der Ideenwerkstatt für Wissenschaftsjournalismus zu Mathematik, Informatik und Physik an der Freien Universität Berlin, ermöglicht durch die Klaus Tschira Stiftung. >> Artikel zum Nachlesen: https://detektor.fm/wissen/geschichten-aus-der-mathematik-kurt-goedel
Kurt Gödel gilt als größter Logiker seit Aristoteles, er beweist die Unvollständigkeit der Mathematik. Doch das weltliche Chaos macht ihn krank. Er sehnt sich nach einem Leben, das ebenso perfekt geordnet ist, wie die Welt der Mathematik. Die Idee für diesen Podcast hat Demian Nahuel Goos am MIP.labor entwickelt, der Ideenwerkstatt für Wissenschaftsjournalismus zu Mathematik, Informatik und Physik an der Freien Universität Berlin, ermöglicht durch die Klaus Tschira Stiftung. >> Artikel zum Nachlesen: https://detektor.fm/wissen/geschichten-aus-der-mathematik-kurt-goedel
Kurt Gödel gilt als der bedeutendste Logiker des 20. Jahrhunderts. Er bewies logisch, dass man mit Logik nicht alles beweisen kann, und zeigte damit: Unsere Erkenntnis, unser Verstand hat Grenzen. Auch als Person war Gödel extrem. Von Aeneas Rooch (BR 2018)
This week we speak to multidisciplinary independent researcher William Sarill, whose life has traced a high-dimensional curve through biochemistry, art restoration, physics, and esotericism (and I'm stopping the list here but it goes on). Bill is one of the only people I know who has the scientific chops to understand and explain how to possibly unify thermodynamics with general relativity AND has gone swimming into the deep end of The Weird for long enough to develop an appreciation for its paradoxical profundities. He can also boast personal friendships with two of the greatest (and somewhat diametrically opposed) science fiction authors ever: Phil Dick and Isaac Asimov. In this conversation we start by exploring some of his discoveries and insights as an intuition-guided laboratory biomedical researcher and follow the river upstream into his synthesis of emerging theoretical frameworks that might make sense of PKD's legendary VALIS experiences — the encounter with high strangeness that drove him to write The Exegesis, over a million words of effort to explain the deep structure of time and reality. It's time for new ways to think about time! Enjoy…✨ Support This Work• Buy my brain for hourly consulting or advisory work on retainer• Become a patron on Substack or Patreon• Help me find backing for my next big project Humans On The Loop• Buy the books we discuss from my Bookshop.org reading list• Buy original paintings and prints or commission new work• Join the conversation on Discord in the Holistic Technology & Wise Innovation and Future Fossils servers• Make one-off donations at @futurefossils on Venmo, $manfredmacx on CashApp, or @michaelgarfield on PayPal• Buy the show's music on Bandcamp — intro “Olympus Mons” from the Martian Arts EP & outro “Sonnet A” from the Double-Edged Sword EP✨ Go DeeperBill's Academia.edu pageBill's talk at the PKD Film FestivalBill's profile for the Palo Alto Longevity PrizeBill's story on Facebook about his biochemistry researchBill in the FF Facebook group re: Simulation Theory, re: The Zero-Point Field, re: everything he's done that no one else has, re: how PKD predicted ChatGPT"If you find this world bad, you should see some of the others" by PKDThe Wyrd of the Early Earth: Cellular Pre-sense in the Primordial Soup by Eric WargoMy first and second interviews with William Irwin ThompsonMy lecture on biology, time, and myth from Oregon Eclipse Gathering 2017"I understand Philip K. Dick" by Terence McKennaWeird Studies on PKD and "The Trash Stratum" Part 1 & Part 2Weird Studies with Joshua Ramey on divination in scienceSparks of Genius: The Thirteen Thinking Tools of the World's Most Creative People by Robert & Michele Root-BernsteinDiscovering by Robert Root-Bernstein✨ MentionsPhilip K. Dick, Bruce Damer, Iain McGilchrist, Eric Wargo, Stu Kauffman, Michael Persinger, Alfred North Whitehead, Terence McKenna, Karl Friedrich, Mike Parker, Chris Jeynes, David Wolpert, Ivo Dinov, Albert Einstein, Kurt Gödel, Erwin Schroedinger, Kaluza & Klein, Richard Feynman, Euclid, Hermann Minkowski, James Clerk Maxwell, The I Ching, St. Augustine, Stephen Hawking, Jim Hartle, Alexander Vilenkin, Pierre Teilhard de Chardin, Timothy Morton, Futurama, The Wachowski Siblings, Gottfried Wilhelm Leibniz, Leonard Euler, Paramahansa Yogananda, Alfred Korbzybski, Frank Herbert, Robert Heinlein, Claude Shannon, Ludwig Boltzmann, Carl Jung, Danny Jones, Mark Newman, Michael Lachmann, Cristopher Moore, Jessica Flack, Robert Root Bernstein, Louis Pasteur, Alexander Fleming, Ruth Bernstein, Andres Gomez Emilsson, Diane Musho Hamilton This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit michaelgarfield.substack.com/subscribe
Deborah Gambetta"Incompletezza"Una storia di Kurt GödelPonte alle Graziewww.ponteallegrazie.itLa storia di un grande genio. La storia di una rinascita.Come distaccarsi da un amore malato, afflitto da litigi perpetui, manipolazioni, fughe e ritorni? Trovando un'altra ossessione, come se ci si innalzasse su un ramo più alto dello stesso albero: questo racconta Deborah Gambetta nello stupefacente romanzo, min cui l'incontro con la vita e il pensiero di Kurt Gödel – uno dei maggiori matematici della Storia, autore di teoremi fondamentali per l'intero edificio della scienza e della tecnica – rappresenta l'innesco di una vita nuova, l'iniziazione a un universo misterioso e fantastico. Con la dedizione assoluta di chi deve salvarsi la vita, l'autrice/narratrice si rifugia nella matematica e al contempo nella conoscenza personale, quasi viva, dell'uomo Gödel: solo così troverà la chiave per fare i conti con l'assenza di senso, l'incaponirsi del destino, la casualità delle vicende umane.Incompletezza è un romanzo unico nella sua riuscita fusione di due grandi temi apparentemente opposti: da un lato la ricerca di una passione materiale definitiva, che ci spossessi per sempre di noi, dall'altro l'ambizione a una conoscenza pura e astratta, che contempli soltanto sé stessa. Il genio sovrannaturale e umanissimo di Kurt Gödel può trasformarsi allora, per chi narra e per chi legge, in un nuovo Virgilio, in una guida verso un senso possibile, verso un ordine fragile ma autentico della vita e del mondo.IL POSTO DELLE PAROLEascoltare fa pensarewww.ilpostodelleparole.itDiventa un supporter di questo podcast: https://www.spreaker.com/podcast/il-posto-delle-parole--1487855/support.
Ganze Opern wurden auf Texte von Kafka komponiert, Lieder wie auch Instrumentalmusik. Von den diversen Kafka-Vertonungen ist dies wohl die bekannteste. Zum 100. Todestag des meistgelesenen Autors deutscher Sprache am 3. Juni besprechen wir vier Einspielungen. 40 Fragmente aus Briefen und Tagebüchern von Franz Kafka hat der ungarische Komponist György Kurtág Mitte der 1980er-Jahre vertont. Seine verdichtete Tonsprache passt ausgezeichnet zu den kafkaesken Kürzest-Szenen, «ihre Welt aus knappen Sprachformeln, erfüllt von Trauer, Verzweiflung und Humor, Hintersinn und so vielem zugleich, liess mich nicht mehr los», sagte er einmal. Und in einigen findet er sich sogar autobiografisch wieder: Die zwei Schlangen etwa, welche im Schlussstück durch den Staub kriechen, das sind für den Komponisten er selbst und seine Frau Márta. Die Stücke bilden einen Mikrokosmos von Kurtágs Kunst, die meisten sind von aphoristischer Kürze, einzlne breiten sich aber auch rhapsodisch bis zu mehreren Minuten Spieldauer aus. Gäste von Moritz Weber sind die Mezzosopranistin Leila Pfister und die Komponistin und Geigerin Helena Winkelman.
When one path is blocked, a new one must be paved. How Einstein, Heisenberg and Gödel used constraints to make life-changing discoveries: Astrophysicist Janna Levin discusses three examples of constraints in science, and how they ultimately led to massive breakthroughs in physics and mathematics. Abiding by the speed of light caused Albert Einstein to begin his pursuit into the theory of relativity, Heisenberg's uncertainty principle planted the seed for quantum mechanics, and Kurt Gödel's incompleteness theorem led directly to the invention of computers and artificial intelligence. We often think of constraints as impenetrable barriers that cannot be broken. However, these very constraints have the potential to inspire new ways of thinking and revolutionize the world as we know it. ------------------------------------------------------------------------------------------- ❍ About The Well ❍ Do we inhabit a multiverse? Do we have free will? What is love? Is evolution directional? There are no simple answers to life's biggest questions, and that's why they're the questions occupying the world's brightest minds. So what do they think? How is the power of science advancing understanding? How are philosophers and theologians tackling these fascinating questions? Let's dive into The Well. ------------------------------------------------------------------------------------------
Dr. Rebecca Goldstein and J.J. communicate the story of Spinoza's herem and outline the radicalism of his Ethics. Our first mini-series!! Welcome to the first episode of our three-parter covering friend of the pod, Benedict "Barukh" Spinoza.Please send any complaints or compliments to podcasts@torahinmotion.orgFor more information visit torahinmotion.org/podcastsRebecca Newberger Goldstein graduated summa cum laude from Barnard College and immediately went on to graduate work at Princeton University, receiving her Ph.D. in philosophy. She then returned to her alma mater as an Assistant Professor of Philosophy, where she taught the philosophy of science, philosophy of mind, and philosophy of mathematics. She has also been a Professor or Fellow at Rutgers, Columbia, Trinity College, Yale, NYU, Dartmouth, the Radcliffe Institute, the Santa Fe Institute, and the New College of the Humanities in London.Goldstein is the author of six works of fiction, the latest of which was Thirty-Six Arguments for the Existence of God: A Work of Fiction, as well as three books of non-fiction: Incompleteness: The Proof and Paradox of Kurt Gödel; Betraying Spinoza: The Renegade Jew Who Gave Us Modernity; and Plato at the Googleplex: Why Philosophy Won't Go Away.In 1996 Goldstein became a MacArthur Fellow, receiving the prize which is popularly known as the “Genius Award.” In 2005 she was elected to The American Academy of Arts and Sciences. In 2006 she received a Guggenheim Fellowship and a Radcliffe Fellowship. In 2008, she was designated a Humanist Laureate by the International Academy of Humanism. Goldstein has been designated Humanist of the Year 2011 by the American Humanist Association, and Freethought Heroine 2011 by the Freedom from Religion Foundation. In that year she also delivered the Tanner Lectures on Human Values at Yale University, entitled "The Ancient Quarrel: Philosophy and Literature," which was published by University of Utah Press.In September, 2015, Goldstein was awarded the National Humanities Medal by President Obama in a ceremony at the White House. The citation reads: "For bringing philosophy into conversation with culture. In scholarship, Dr. Goldstein has elucidated the ideas of Spinoza and Gödel, while in fiction, she deploys wit and drama to help us understand the great human conflict between thought and feeling.”
Legyen szó kortárs zenéről vagy dzsesszről, a világ legjelentősebb hangversenytermeiben koncertezik. Mesterkurzusokon mutatja meg a hangszerében rejlő lehetőségeket, hallgatói pedig rácsodálkoznak, milyen modern hangszer a cimbalom. Interjú Lukács Miklós Liszt Ferenc-díjas cimbalomművésszel.
Infinity is a puzzling idea. Even young children are fascinated by its various manifestations: What is the biggest number? Does the universe have an edge? Does time have a beginning? Philosophers have tried to answer these questions since time immemorial. More recently, they have been joined by scientists and mathematicians. Indeed, a whole branch of mathematics has become dedicated to the study of infinity. So what have we learned? Can we finally understand infinity? And what has this quest taught us about ourselves? To explore this topic, I am joined by philosopher Adrian W. Moore. Professor Moore is a special guest for two reasons. First, he is a world expert on infinity, known for an excellent BBC series, "History of the Infinite". More personally, he is the head tutor of Philosophy at St Hugh's College, Oxford, where I studied my BA in Philosophy and Psychology. It has now been ten years since Prof Moore interviewed me and, for whatever reason, accepted me as a student. I feel honoured to mark the occasion with this episode. In this episode, we discuss: (02:35) Why infinity fascinates (12:20) Greeks on infinity (20:05) A finite cosmos? (25:00) Zeno's paradoxes (32:35) Answering Zeno (42:35) Measuring infinities? Georg Cantor (54:05) Infinity vs human understanding (66:20) Mystics on infinity As always, we finish with Prof Moore's reflections on humanity. LINKS Want to support the show? Checkout Patreon.com/OnHumans Want to read and not just listen? Get the newsletter on OnHumans.Substack.com MENTIONS Names: Aristotle; Zeno; Archytus; Ludwig Wittgenstein; Kurt Gödel; Alan Turing; Georg Cantor; William Blake; Immanuel Kant Terms: Pythagoreans; Zeno's paradoxes; calculus; transfinite arithmetic; counting numbers, i.e. positive integers; absolute infinities, or inconsistent totalities Books: The Infinite (Moore) Other scholarship: For games on infinite boards, see e.g. the work of Davide Leonessi: https://leonessi.org/
"All the facts of science aren't enough to understand the world's meaning. For this, you must step outside the world." Welcome back to another episode of Made You Think! In this episode, we're adventuring into the world of Logicomix, a graphic novel that takes us on a journey through the intricate life of mathematician Bertrand Russell. From the quest for precision that borders on madness to the historical events Russell was embroiled in, we'll explore the complexities of logic, philosophy, and mathematics. We cover a wide range of topics including: Why seeking precision in understanding the world can drive one mad Bertrand Russell's historical involvements and achievements The rapid progress of aviation and technology How mathematics, logic, and philosophy remain connected Discovering the lives and contributions of various mathematicians And much more. Please enjoy, and make sure to follow Nat, Neil, and Adil on Twitter and share your thoughts on the episode. Links from the Episode: Mentioned in the Show: Prolific (1:06) Agrippan Trilemma (12:33) Münchhausen Trilemma (13:04) Kate Middleton photo (30:48) House of Lords (32:06) The Flaw in Gödel's proof (57:59) Arnold (1:03:50) Political ETFs (1:13:49) Books Mentioned: Logicomix East of Eden (0:03) (Nat's Book Notes) Of Mice and Men (0:21) The Grapes of Wrath (0:22) Watchmen (6:10) V for Vendetta (6:11) In Praise of Idleness (7:12) (Book Episode) (Nat's Book Notes) Gödel, Escher, Bach (12:01) (Book Episode) (Nat's Book Notes) The First World War (36:16) The Second World War (36:16) Banana King (1:00:45) Chip War (1:01:01) The Prize (1:01:23) Bad Therapy (1:02:46) Kon-Tiki (1:08:17) Endurance (1:09:40) People Mentioned: Apostolos Doxiadis Christos Papadimitriou John Steinbeck (0:01) Bertrand Russell (6:51) Kurt Gödel (14:46) Ludwig Wittgenstein (20:49) Jordan Peterson (53:03) Show Topics: (0:00) We kick off the episode by sharing John Steinbeck's journal writing process for East of Eden, his collaborative relationship with his publisher, and how he landed on the title. (5:25) Though we are not talking about East of Eden today (but...stay tuned for that episode up next!), we're covering Logicomix, a graphic novel by Apostolos Doxiadis and Christos Papadimitriou. (8:16) We give an overview of the book and how it shares different intricacies and stories from Bertrand Russell's life. From his parents being in a throuple to schizophrenia running in his family, we try to decipher which parts were real vs. fabricated. (10:36) Why you shouldn't necessarily look for precision and formal rules about how the world works. We tie this idea into Taoism which we've seen commonly in a few of our other recent reads. In short, no system can fully explain itself. You need to step outside of it. (13:42) Is it possible to build a perfect map of everything that mathematics entails? We talk about the connection between logic, philosophy, and mathematics. (20:25) There were several mathematicians in the book. How many of them are you familiar with? (23:36) Russell's involvement in a variety of historical events from the Cuban Missile Crisis to JFK's assassination, as he was not convinced that Oswald was guilty of the crime. (28:34) If you've been up-to-date with the news lately, you may be just as interested in the Kate Middleton conspiracies as we are. Tangent time! (31:38) Russell was sat in the House of Lords, a chamber of UK Parliament which is generally not up for election. Plus, we brainstorm some ideas of who would be considered Bertrand Russell's equivalent in the US. (36:48) We dive in to some different historical events and wars. The Ottoman Empire, World War 1 and 2, the Persian Gulf War, and how warfare and aircraft carriers changed during these ages. (41:26) Aviation and its rapid improvements in technology in such a short span of time. (45:07) "Shouldn't we get back to the book?" Nat, Neil, and Adil discuss some of the main concepts from the book, including the pursuit of truth in the world of mathematics. You're never going to fully understand reality, but for some, that's a hard truth that they don't want to accept. (49:44) What does it mean to know, and how can you be justified in knowing something? Remember, a belief can be true while at the same time not satisfying the conditions of logic. (56:05) Unlike the other mathematicians discussed in the book, Gödel constructed a proof to his theorem that hasn't yet been disproven. Regardless of whether their desires for absolute truth was achieved or not, a lot of the findings are fundamentally useful in many other ways. (1:00:34) We talk about some of the books that we have coming up on the podcast, and throw around some ideas. Which book would you like to see us do an episode on? Let us know here! (1:05:04) Is it true that the more you think about how you're feeling, the worse you feel? (1:10:07) Nat, Neil, and Adil share some more of their upcoming reads they're excited about, and different war books, including Martin Gilbert's books on WW1 and WW2. (1:13:24) Political ETFs that you can buy into. $NANC and $KRUZ, anyone? (1:17:22) That concludes this episode! Next up on Made You Think, we have the long awaited episode covering East of Eden by John Steinbeck. Make sure to grab a copy of the book and read along with us before the next episode. Check out our new website to stay updated on what's to come. If you enjoyed this episode, let us know by leaving a review on iTunes and tell a friend. As always, let us know if you have any book recommendations! You can say hi to us on Twitter @TheRealNeilS, @adilmajid, @nateliason and share your thoughts on this episode. You can now support Made You Think using the Value-for-Value feature of Podcasting 2.0. This means you can directly tip the co-hosts in BTC with minimal transaction fees. To get started, simply download a podcast app (like Fountain or Breez) that supports Value-for-Value and send some BTC to your in-app wallet. You can then use that to support shows who have opted-in, including Made You Think! We'll be going with this direct support model moving forward, rather than ads. Thanks for listening. See you next time!
Welcome to the Instant Trivia podcast episode 1099, where we ask the best trivia on the Internet. Round 1. Category: Waits And Measures 1: This name for a type of ounce used to measure gold comes from a city in medieval France, not ancient Turkey. the troy ounce. 2: One U.S. beer barrel contains 31 of these units; that's nearly 4,000 delicious ounces. gallons. 3: Glidden says it takes about an hour for latex this to dry; wanna watch?. paint. 4: A 2019 study found that Newark Airport had the longest average wait time, 23 minutes, in this 3-letter agency's lines. the TSA. 5: In 2019 more than 130,000 fans had their names on the Green Bay Packers' waiting list for these. season tickets. Round 2. Category: Czechs 1: In the 1890s he moved briefly from Prague to New York City, inspiring his best-known symphony. Dvořák. 2: Czech-born director Forman and Czech prime minister Zeman share this first name. Milos. 3: After 74 years together, it was splitsville for the Czech Republic and this nation on January 1, 1993. Slovakia. 4: This international alliance welcomed the Czech Republic as a member in March 1999. NATO. 5: The Bohemian Czech king Charles IV held this "Holy" title from 1355 to 1378. Holy Roman Emperor. Round 3. Category: Who Wants Dessert? 1: No dillydallying after taking this eggy dessert out of the oven; it will only stay fully risen for a minute or 2. souffle. 2: Colorful sprinkles baked in the batter turn ordinary birthday cake into this festive type, but don't toss it in celebration. Funfetti (Confetti). 3: This tangy dessert is an official state food of Florida. key lime pie. 4: At Christmas time we want traditional English this, slices of cake soaked in sherry and layered with fruit, custard and whipped cream. trifle. 5: Made with purple yams, ube hopia is a specialty of this country. the Philippines. Round 4. Category: Proofreading 1: Using 3 right triangles, president and former math teacher James Garfield gave an original proof of this. the Pythagorean Theorem. 2: A proof that shows a statement to be true by building an example is called this, like helpful criticism. constructive. 3: There's no "di" in this term for a short theorem used to prove a larger one--but watch out for the horns anyway. lemma. 4: In 1637 he wrote, "I have discovered a truly remarkable proof, but this margin is too small to contain it". Pierre de Fermat. 5: Mathematicians were shocked to read his 1931 proof of the incompleteness of any given formal system. Kurt Gödel. Round 5. Category: I Got A Strait 1: Bearing the name of an 8th century Berber conqueror, this strait separates 2 continents. the Strait of Gibraltar. 2: Some ancestors of Native Americans are believed to have crossed from Asia over what's now this about 13,000 years ago. the Bering Strait. 3: The Channel Tunnel travels under this strait for more than 20 miles. Strait of Dover. 4: The 1905 Battle of Tsushima Strait near Korea was a decisive victory for Japan over this nation. Russia. 5: The Sunda Strait connects the Indian Ocean with this sea that shares its name with an island. the Java Sea. Thanks for listening! Come back tomorrow for more exciting trivia!Special thanks to https://blog.feedspot.com/trivia_podcasts/ AI Voices used
The nature of proof and mathematics as a creative enterprise. Not all that is true can be proved as such, the high hopes of David Hilbert for placing the entirety of mathematics on a "firm foundation", the mathematical world-shattering results of Kurt Gödel which frustrated that project, a history of proof and finally Roger Penrose and whether human brains are computers in the Turing sense. And some very long remarks by me, especially in the introduction. Become a subscriber at https://patreon.com/tokcast?utm_medium=unknown&utm_source=join_link&utm_campaign=creatorshare_creator&utm_content=copyLink
Join us for a conversation with Edward Frenkel, mathematician, Berkeley professor and author of the international bestseller Love and Math, as we explore the nature of reality and the fallacy of the naive ideas of determinism and computationalism. Drawing on the landmark achievements of modern mathematics and quantum physics, Frenkel makes the case that consciousness is not computational, that intuition and imagination cannot be captured by algorithms. A regular presenter at the SAND conferences, Frenkel has long argued that the debate about the capabilities and dangers of artificial intelligence can be traced to the question “Who am I?” Hence it creates an opportunity for us to go deeper on the path of self-inquiry. To facilitate this process, it is essential to let go of the misconceptions of the science of the 19th century and to update our worldview with the paradigms of the science of the 21st century. A mind-expanding dialogue about the Infinite nature of consciousness, limits of knowledge, and the alchemy of transformation. Edward Frenkel is a professor of mathematics at University of California, Berkeley, member of the American Academy of Arts and Sciences, and winner of the Weyl Prize in Mathematical Physics. He is the author of the international bestseller Love and Math which has been published in 19 languages. Links Website YouTube Edward's SAND 2014 Talk Edward's SAND 2015 talk Brian Grene's interview quoted in this conversation Robert Sapolsky's interview Jerome Feldman's article about the incompleteness of current theories of neural computation Edward's article “AI Safety: A First-Person Perspective“ Topics: 00:00:00 – Introduction 00:04:36 – Journey to Mathematics 00:11:06 – Pythagoras 00:17:15 – Going Against Dogma 00:19:15 – First-Person Perspective 00:22:12 – Dogmas in Modern Science 00:36:47 – Kurt Gödel 00:40:58 – Agency and Free Will 00:58:20 – On AI 01:07:44 – Brain and Consciousness (with Peter Russell)
I denne første av to fotnoter til episode 58 forteller Thure Erik Lund om håndtverket bak romanen Vertebrae og hva romanen Vertebrae egentlig dreier seg om. Hva er selvreferensialitet? Burde man ha kjent til logikeren Kurt Gödel som et dannet menneske i 2023? Kan man lese Vertebrae eller en hvilken som helst moderne roman uten forkunnskaper?Hva har vertebrae til felles med utviklingen av liv? Er det håp for Jonas som leser?
Science comes in three forms: objective observation, and the same applied to either reductionist views or those of the whole. The former means reducing everything to the importance of individual parts, while the latter is the acknowledgment of the whole. As with astronomy and astrology, science and theology were also once intertwined, asking questions like: What is the meaning of existence and what are nature's secrets?Kurt Gödel, an Austrian mathematician, demonstrated in 1931 the futility of using only reductionist thought in order to model a complex system. Although complex, such systems - i.e., all of nature - are comprised of their individual parts which themselves are whole systems. The seemingly logical nature of A relates to B and thus must cause C is an oversimplified way of looking at the world and works great if you desire to build a machine, bomb, or narrative around disease. It's easy to create associations using fallacies: one could easily say that since all humans have skin and die, that these two things are the leading causes of death! In reality things are far more complicated and with this understanding it becomes clear how many things are made worse by solving problem A with solution B, since the result is usually the creation of problem X. This type of science is based on established opinion, not fact, but in fact dogma. Science has thus become a theological narrative itself, ironically mirroring the opposition it once had in the dogma of the Church, which still rejects certain scientific findings. But findings are not facts and proofs are only such of one reductionist part, not the whole.
Matematiken har gäckat många elever genom historien. En anledning är att skillnaden mellan att begripa och inte begripa är så definitiv. Helena Granström reflekterar över denna avgrund. Lyssna på alla avsnitt i Sveriges Radio Play. ESSÄ: Detta är en text där skribenten reflekterar över ett ämne eller ett verk. Åsikter som uttrycks är skribentens egna.Under de år som jag ägnade mig åt att studera matematik, minns jag att det som tilltalade mig mest var ämnets – ja, jag tror att det bästa ordet kan vara renhet. Det fanns formler och procedurer, algoritmer och smarta knep, men kärnan bestod inte i något av dessa. Istället fanns den gömd, innesluten i bevisen för dessa formlers giltighet: bevis som ofta inte krävde mycket mer än bekantskap med några grundläggande definitioner: Det, och en förmåga att ta steget från det ena till det andra med den rena tankens hjälp.Det kändes som tänkande i ordets egentliga mening, till sin natur helt olikt allt annat som fyller ens medvetande under en dag – eller, snarare var det som allt annat tänkande nedgnagt till benet, så att bara skelettet av tankens logik fanns kvar. Men när man inte förstår – vilket förr eller senare kommer att vara fallet för de flesta av oss – kan samma förhållande te sig djupt provocerande. Den hänförande känslan när det ena leder till det andra leder till det tredje med logikens hela ofrånkomlighet ersätts med en minst lika stark känsla av förtvivlad vanmakt när denna kedja av slutsatser förblir bruten, så att det ena leder till det andra som inte tycks leda till någonting alls.Alec Wilkinson är en hyllad skribent och författare, uppenbart mångbegåvad och intelligent, men med en tydlig svaghet, nämligen matematiken. Som skolpojke klarade han med nöd och näppe av kurserna i grundläggande algebra, geometri och analys – och sedan dess har han hållit sig undan. Men så, som fyllda 65, bestämmer han sig: Han ska, med den mogne mannens samlade livserfarenhet, ta sig an skolmatematiken på nytt. Det som gäckade honom då kommer, föreställer han sig, säkerligen denna gång att framstå alldeles klart.Så blir det emellertid inte. Wilkinson finner sig snart, ännu en gång, i fullt krig med ekvationer, derivator och funktioner. Rasande försöker han beslå matematiken med felslut och motsägelser, besegra den på dess hemmaplan genom att triumferande hitta sprickor i dess fortverk av ren logik – men gagnlöst. Inför matematiken förblir han, all sin erfarenhet till trots, en skolpojke som inte förstår.Ett första faktum, skriver den franske matematikern Henri Poincaré, bör förvåna oss, eller snarare skulle det förvåna oss om vi inte vore så vana vid det. Hur kommer det sig att det finns människor som inte förstår matematik? Frågan pekar mot en av de mest fascinerande – och mest frustrerande – aspekterna av att ägna sig åt matematik, nämligen den matematiska insiktens plötslighet. Övergången mellan att inte förstå och att förstå kan ibland vara sekundsnabb, och när gränsen en gång överträtts är det oåterkalleligt: insiktens aha-upplevelse kommer en gång, och endast en. De yrkesmatematiker som haft lyckan att få erfara lösningens plötsligt blixtrande klarhet efter många års arbete med ett svårt problem vittnar om hur det skett i ett enda kort ögonblick – men också om hur de sedan ägnat resten av sitt liv åt strävan efter att få uppleva ett sådant ögonblick på nytt. Det är också denna skarpa gräns mellan förståelsen och dess frånvaro som gör att undervisning i matematik sätter lärarens inlevelsekraft på prov: Har man en gång förstått något, är det ofta nästan svårt att begripa hur man inte kunde förstå – och för den som likt Poincaré förstått, ofta svårt att finna förklaringen någonting annat än fullständigt klar, även när någon annan finner den ogenomtränglig.Förståelsen framstår i matematikens sammanhang – och kanske alltid – som en närmast mystisk kraft: den infinner sig eller infinner sig inte, kan lika gärna slå en till marken när den drabbar med sin fulla styrka, som att lämna en tom och suktande genom att utebli. Det är inte olikt den kreativa ingivelsen – och den matematiska processen är också i många avseenden besläktad med den konstnärliga. På samma sätt som hos en konstnär som arbetar med ett verk tar den matematiska problemlösningen omedvetna skikt av människan i anspråk, och gissningar och aningar kan spela en avgörande roll för att kunna göra framsteg. Den beskrivning som Charles Darwin en gång gav av matematikern som ”en blind man i ett mörkt rum som letar efter en svart katt som inte är där” bör varje författare lätt kunna känna igen sig i. Förmågan att misslyckas om och om igen utan att ge upp är för övrigt en som brukar framhållas av yrkesmatematikerna själva som deras främsta tillgång.Men det finns också avgörande skillnader, som Wilkinson konstaterar i sina försök att bättre lära känna det ämne som in i pensionsåldern fortsätter att gäcka honom. Ett konstnärligt verk kan i och för sig tyckas härbärgera sin egen inre logik, en tvingande riktning som kan göra det ena greppet rätt och det andra fel i en närmast absolut mening; men det är ett rätt och fel som aldrig helt kommer att kunna frigöras från betraktaren, och om en konstnär skulle misslyckas med att finna det rätta för sitt verk kommer det helt enkelt att förbli ofunnet. I matematiken är det annorlunda: Här väntar det rätta svaret, alltid bara ett enda, på sin upptäckt, och skulle en person misslyckas med att finna det, kommer en annan snart stå redo att försöka. Om konstens kreativa process försätter den skapande i direktkontakt med hans eller hennes omedvetna, kan man tänka sig att det matematiska skapandet fungerar som om flera personer hade tillgång till samma omedvetna värld, en sorts kollektivt omedvetet i närapå jungiansk mening. Matematikens uppgift, menade logikern och matematikern Kurt Gödel, är att ”ta reda på vad vi, kanske omedvetet, har skapat”. De satser vi bevisar och kallar för våra skapelser är, skriver kollegan G. H. Hardy i boken A mathematicians apology, egentligen inget annat än ”anteckningar om våra observationer”.Skapande och upptäckt kan, också för den skrivande, målande eller musicerande, tyckas svåra att skilja från varandra, saker kan stiga ur ens inre som man varken kan överblicka eller fullt ut förstå. Men i matematiken är de oupplösligt sammanbundna: Det inre landskapet av abstrakta symboler är på samma gång ett yttre, beläget någonstans utanför rum och tid, i vilket vi kan ströva tillsammans och bekanta oss med omgivningarna, okända och egenartade. Som Wilkinson formulerar det: Matematiken är som ett fängslande middagssällskap som man pratar med hela kvällen, ända till dess att man reser sig från bordet och inser att allt det spännande som sades kom från en själv.Eller, vill man tillägga, omvänt: Som att sitta och prata med sig själv, och plötsligt märka att jaget mitt emot reser sig och går.Går vart? Kanske någonstans i riktning mot den vilda, orumsliga talterräng där primtalen ligger och blänker, otaliga och svårbestämda, skapade av vår tanke och helt och hållet oberoende av den. Det enda som kan försätta oss i samtal med dem är vårt tänkande – och de små glimtar av förståelse som det, om vi har verklig tur, kan leda till.Helena Granström, författare med bakgrund inom fysik och matematik
Kate Molleson travels to Budapest to meet Hungary's greatest living composer, György Kurtág, now 97 years old. Kurtag talks to Kate about the musical homages that he has made to friends, his early focus on the clarity of single notes at the time he wrote his Op.1 String Quartet, the influence of languages on his compositional style, and his new opera, a work based on the life of the German mathematician, Georg Christoph Lichtenberg. Above all, he talks about his Marta, his wife of over 70 years, with whom he performed piano duets, and he reveals to Kate why he stayed in Hungary in 1956.Kurtag once said that his mother tongue is Bartok, and Kate visits the Bela Bartok Memorial House where she talks to the curator, Zoltán Farkas, about the composer's relationship with Hungary and the folk traditions that he collected both at home and in neighbouring countries. During a break in a busy rehearsal schedule, the conductor Ivan Fischer also shares his views on Bartok and the distinctive sound of the Budapest Festival Orchestra.Kate joins the director of the Hungarian Radio Choir, Zoltán Pad, and the composer Daniel Dinyes, to learn how the Hungarian language is expressed in music, and hear more about the unique sound of the choir. Kate also meets Hungary's queen of song, Márta Sebestyén, who is at the very heart of Hungary's folk music. Márta Sebestyén talks with pride about her mother, a celebrated student of Zoltan Kodaly, about her own travels in search of pure folk music. She treats Kate, too, to a traditional Christmas carol.
fWotD Episode 2390: Quine–Putnam indispensability argument.Welcome to featured Wiki of the Day where we read the summary of the featured Wikipedia article every day.The featured article for Monday, 20 November 2023 is Quine–Putnam indispensability argument.The Quine–Putnam indispensability argument is an argument in the philosophy of mathematics for the existence of abstract mathematical objects such as numbers and sets, a position known as mathematical platonism. It was named after the philosophers Willard Quine and Hilary Putnam, and is one of the most important arguments in the philosophy of mathematics.Although elements of the indispensability argument may have originated with thinkers such as Gottlob Frege and Kurt Gödel, Quine's development of the argument was unique for introducing to it a number of his philosophical positions such as naturalism, confirmational holism, and the criterion of ontological commitment. Putnam gave Quine's argument its first detailed formulation in his 1971 book Philosophy of Logic. He later came to disagree with various aspects of Quine's thinking, however, and formulated his own indispensability argument based on the no miracles argument in the philosophy of science. A standard form of the argument in contemporary philosophy is credited to Mark Colyvan; whilst being influenced by both Quine and Putnam, it differs in important ways from their formulations. It is presented in the Stanford Encyclopedia of Philosophy:We ought to have ontological commitment to all and only the entities that are indispensable to our best scientific theories.Mathematical entities are indispensable to our best scientific theories.Therefore, we ought to have ontological commitment to mathematical entities. Nominalists, philosophers who reject the existence of abstract objects, have argued against both premises of this argument. An influential argument by Hartry Field claims that mathematical entities are dispensable to science. This argument has been supported by attempts to demonstrate that scientific and mathematical theories can be reformulated to remove all references to mathematical entities. Other philosophers, including Penelope Maddy, Elliott Sober, and Joseph Melia, have argued that we do not need to believe in all of the entities that are indispensable to science. The arguments of these writers inspired a new explanatory version of the argument, which Alan Baker and Mark Colyvan support, that argues mathematics is indispensable to specific scientific explanations as well as whole theories.This recording reflects the Wikipedia text as of 00:43 UTC on Monday, 20 November 2023.For the full current version of the article, see Quine–Putnam indispensability argument on Wikipedia.This podcast uses content from Wikipedia under the Creative Commons Attribution-ShareAlike License.Visit our archives at wikioftheday.com and subscribe to stay updated on new episodes.Follow us on Mastodon at @wikioftheday@masto.ai.Also check out Curmudgeon's Corner, a current events podcast.Until next time, I'm Kendra Neural.
Fala Galera, neste epsódio, vamos falar sobre o modernismo na história da matemática. O modernismo na matemática é um movimento que surgiu no final do século XIX e início do século XX. Ele foi caracterizado por um esforço para colocar a matemática em bases sólidas e axiomáticas. Filosoficamente, esse movimento foi influenciado pelo positivismo, que defendia que o conhecimento é baseado na experiência. Os matemáticos odernistas acreditavam que a matemática deveria ser fundamentada em axiomas e teoremas que fossem logicamente demonstráveis. Quando começou? É difícil dizer exatamente quando o modernismo começou. Alguns historiadores apontam para o trabalho de Georg Cantor na teoria dos conjuntos, que começou na década de 1870. Outros apontam para o trabalho de David Hilbert, que começou na década de 1900. O modernismo na matemática é semelhante ao movimento modernista nas artes. Ambos os movimentos rejeitaram as formas tradicionais e buscaram novas formas de expressão. Ele teve um impacto em todas as áreas da matemática. Alguns exemplos incluem: O axioma da completude para os números reais (Hilbert) O axioma do infinito (Cantor) Os paradoxos da teoria dos conjuntos (Russeot) Construtivistas e não construtivistas O modernismo teve um impacto profundo na história da matemática. Ele levou a um desenvolvimento da matemática mais rigoroso e formal. No que chamamos hoje de bases sólidas .Os modernistas também acreditavam que a matemática deveria ser uma unidade. Eles buscavam unificar as diferentes áreas da matemática sob um conjunto de axiomas e teoremas. Um exemplo do esforço dos modernistas para unificar a matemática foi a teoria abstrata desenvolvida pelo grupo Bourbaki. Outro destaque foi Kurt Gödel mostrou que não é possível provar a consistência da matemática usando apenas axiomas e teoremas. Isso foi um golpe para os modernistas, que acreditavam que a matemática era umsistema consistente. Sejam todos bem vindos ao maravilhoso mundo da Matemática! Participantes: Marcelo Rainha ( Professor UNIRIO) Marcelo Amadeo (Professor Unirio) Ronan Fardim (CEDERJ/UNIRIO - Polo Belford Roxo) Juliana Almeida (UFF) Edição e sonorização: Jorge Alves (UNIRIO) Leandro Rodrigo (UNIRIO) Dicas culturais: Hotel de Hilbert: https://www.youtube.com/watch?v=pjOVHzy_DVU&t=4s A Brieff History of Mathematics: https://open.spotify.com/show/2Gde5u4UPKOEwqmqcKIScH?si=8b80bd6c3f4f43fc Mariguela Plato's Ghost: The Modernist Transformation of Mathematics Referências: Gray,J.J. ; Ferreirrós, J. ; The Archteture of Modern Mathematics, Oxford, 2006, Cap Introcuction Gray,J.J.; Modernism in mathematics as a cultural phenomenon, 2006. Todo material dos jogos criados e elaborados pela equipe Jogos & Matemática está disponível GRATUITAMENTE no nosso site: https://www.jogosematematica.com.br/ Acompanhem nossas mídias e não perca nenhuma novidade! :) Inscreva-se no nosso canal do YOUTUBE: https://www.youtube.com/c/JogosMatemática Curta e siga nossa página no FACEBOOK: https://www.facebook.com/jogosematematica Siga-nos no INSTAGRAM: https://www.instagram.com/jogosematematica Siga-nos no SPOTIFY: https://open.spotify.com/show/65i8uB46F07p4WaTYqkb5Q?si=AtewFx8vRWqWnfHWvt-xKw&nd=1 Visite o nosso BLOG: https://jogosematematica.wordpress.com Dúvidas, críticas, sugestões? Escrevam para: jogosematematica@gmail.com A EDUCAÇÃO NO BRASIL PRECISA DE TODOS NÓS!!! JUNTOS SOMOS MAIS FORTES!!! MUITO OBRIGADO A TODOS!!!
91. EPIZÓDA / Einsteinov kamarát, matematik Kurt Gödel medzi dvoma svetovými vojnami dokázal dve vety o neúplnosti. Gödelove vety majú silný presah aj do nášho rozmýšľania o realite, lebo ukazujú, že ak je nejaký logický systém (ako matematika) konzistentný, tak nie je úplný, a naopak, ak je úplný, tak je vnútorne nekonzistentný. V diskusii sme vychádzali z knihy Incompleteness od Rebeccy Goldstein, ktorú naštudoval neurovedec Peter Jedlička, a s ním diskutovalo naše stále filozoficko-vedecké duo: Jakub a Jaro. ----more---- + + + všetky EXTRA ČASTI za 2 odrieknuté kávy mesačne
YouTube link https://youtu.be/zMPnrNL3zsE Gregory Chaitin discusses algorithmic information theory, its relationship with Gödel incompleteness theorems, and the properties of Omega number. Topics of discussion include algorithmic information theory, Gödel incompleteness theorems, and the Omega number. Listen now early and ad-free on Patreon https://patreon.com/curtjaimungal. Sponsors: - Patreon: https://patreon.com/curtjaimungal (early access to ad-free audio episodes!) - Crypto: https://tinyurl.com/cryptoTOE - PayPal: https://tinyurl.com/paypalTOE - Twitter: https://twitter.com/TOEwithCurt - Discord Invite: https://discord.com/invite/kBcnfNVwqs - iTunes: https://podcasts.apple.com/ca/podcast/better-left-unsaid-with-curt-jaimungal/id1521758802 - Pandora: https://pdora.co/33b9lfP - Spotify: https://open.spotify.com/show/4gL14b92xAErofYQA7bU4e - Subreddit r/TheoriesOfEverything: https://reddit.com/r/theoriesofeverything - TOE Merch: https://tinyurl.com/TOEmerch LINKS MENTIONED: - Meta Math and the Quest for Omega (Gregory Chaitin): https://amzn.to/3stCFxH - Visual math episode on Chaitin's constant: https://youtu.be/WLASHxChXKM - Podcast w/ David Wolpert on TOE: https://youtu.be/qj_YUxg-qtY - A Mathematician's Apology (G. H. Hardy): https://amzn.to/3qOEbtL - The Physicalization of Metamathematics (Stephen Wolfram): https://amzn.to/3YUcGLL - Podcast w/ Neil deGrasse Tyson on TOE: https://youtu.be/HhWWlJFwTqs - Proving Darwin (Gregory Chaitin): https://amzn.to/3L0hSbs - What is Life? (Erwin Schrödinger): https://amzn.to/3YVk8Xm - "On Computable Numbers, with an Application to the Entscheidungsproblem" (Alan Turing): https://www.cs.virginia.edu/~robins/T... - "The Major Transitions in Evolution" (John Maynard Smith and Eörs Szathmáry): https://amzn.to/3PdzYci - "The Origins of Life: From the Birth of Life to the Origin of Language" (John Maynard Smith and Eörs Szathmáry): https://amzn.to/3PeKFeM - Podcast w/ Stephen Wolfram on TOE: https://youtu.be/1sXrRc3Bhrs - Incompleteness: The Proof and Paradox of Kurt Gödel (Rebecca Goldstein): https://amzn.to/3Pf8Yt4 - Rebecca Goldstein on TOE on Godel's Incompleteness: https://youtu.be/VkL3BcKEB6Y - Gödel's Proof (Ernest Nagel and James R. Newman): https://amzn.to/3QX89q1 - Giant Brains, or Machines That Think (Edmund Callis Berkeley): https://amzn.to/3QXniYj - An Introduction to Probability Theory and Its Applications (William Feller): https://amzn.to/44tWjXI TIMESTAMPS: - 00:00:00 Introduction - 00:02:27 Chaitin's Unconventional Self-Taught Journey - 00:06:56 Chaitin's Incompleteness Theorem and Algorithmic Randomness - 00:12:00 The Infinite Calculation Paradox and Omega Number's Complexity (Halting Probability) - 00:27:38 God is a Mathematician: An Ontological Basis - 00:37:06 Emergence of Information as a Fundamental Substance - 00:53:10 Evolution and the Modern Synthesis (Physics-Based vs. Computational-Based Life) - 01:08:43 Turing's Less Known Masterpiece - 01:16:58 Extended Evolutionary Synthesis and Epigenetics - 01:21:20 Renormalization and Tractability - 01:28:15 The Infinite Fitness Function - 01:42:03 Progress in Mathematics despite Incompleteness - 01:48:38 Unconventional Academic Approach - 01:50:35 Godel's Incompleteness, Mathematical Intuition, and the Platonic World - 02:06:01 The Enigma of Creativity in Mathematics - 02:15:37 Dark Matter: A More Stable Form of Hydrogen? (Hydrinos) - 02:23:33 Stigma and the "Reputation Trap" in Science - 02:28:43 Cold Fusion - 02:29:28 The Stagnation of Physics - 02:41:33 Defining Randomness: The Chaos of 0s and 1s - 02:52:01 The Struggles For Young Mathematicians and Physicists (Advice) Learn more about your ad choices. Visit megaphone.fm/adchoices
In this episode of the Business Broken to Smokin' Podcast: Mark and Shane talk about a new tool Mark developed called “Pump the Brakes” - a hack to balance out making decisions with your gut and also with thinking! Download the tool here: https://lodestonetruenorth.com/podcast-episode-045-pump-the-brakes/ 0:00 Intro 4:20 A lot of visionaries are driven by ideas and they often have a sensory operating system. 5:50 How to approach this exercise Pressure test the idea Balance emotion with reality Forced objectivity Turn over big rocks and see what's underneath Help prevent ugly girlfriend syndrome Hopium antidote Take a personal retreat and journal all the answers Helps to get your thoughts in order Take a significant chunk of time to do this exercise, maybe half a day out of the office Landing spot for this work could be in your journal 12:21 Step 1 - Park a date in your calendar then go do it 12:29 Step 2 - Take a sheet of paper or your journal and park your idea right in the center. Try to write it out in 10 words or less. 14:09 Reference to the Incompleteness Theorems by Kurt Gödel https://plato.stanford.edu/entries/goedel-incompleteness/ 14:56 Questions to start to answer (not in any order): What are the essential operating principles? (Rabid to written) Can you paint a picture of failure? Can you paint a picture of success? What are your guiding principles? Reference to Ray Dalio's book Principles What are you trying solve? What are some other options? What is the harm in not doing it? What is at stake? What are the essential elements? (Ref to the Far Side cartoon What the?) What are some of the missing resources? What will have to change to do this? List your trusted advisors and their opinions about this idea Legal Financial Asset management Coach Describe the pressing need to do this 36:36 Book reference - American Icon: Alan Mulally and the Fight to Save Ford Motor Company by Bryce G. Hoffman 41:19 Movie reference Tall Tale https://www.imdb.com/title/tt0111359/ ** Credits** Music - What was I thinking by Dierks Bentley Website: https://www.lodestonetruenorth.comWebsite: https://www.bigeasydesk.com (The best co-working space in Northeast Ohio!)LinkedIn Book Club Group: https://www.linkedin.com/groups/14158790/ LinkedIn Mark: https://www.linkedin.com/in/mark-whitmore-lodestone/LinkedIn Lodestone: https://www.linkedin.com/company/lodestone-true-northLodestone Online Courses: https://lodestone.thinkific.com Podcast:YouTube (video)https://youtube.com/@lodestonetruenorth Spotify (video or audio)https://open.spotify.com/show/3QCsZ7fyKr4z804oTac3FUApple Podcasts (audio)https://apple.co/3O4uv4H Other Podcast Platforms https://lodestonetruenorth.com/podcast/
“An imaginative restructuring of a phantasmagoric life into an alternative phantasmagorical story. Oppenheimer fans will be intrigued.” —Martin J. Sherwin, co-author of the Pulitzer Prize-winning biography American Prometheus: The Triumph and Tragedy of J. Robert Oppenheimer, the basis for Christopher Nolan's movie OppenheimerWhile J. Robert Oppenheimer and his Manhattan Project team struggle to develop the atomic bomb, Edward Teller wants something even more devastating: a weapon based on nuclear fusion — the mechanism that powers the sun. But Teller's research leads to a terrifying discovery: by the mid-21st century, the sun will eject its outermost layer, destroying the entire planet Earth.Oppenheimer combines forces with Albert Einstein, Hans Bethe, Freeman Dyson, Enrico Fermi, Richard Feynman, Leo Szilard, John von Neumann, and Kurt Gödel — plus rocket scientist Wernher von Braun — in a race against time to save our planet.Support this show http://supporter.acast.com/houseofmysteryradio. Become a member at https://plus.acast.com/s/houseofmysteryradio. Hosted on Acast. See acast.com/privacy for more information.
Wie bringen wir der nächsten Generation, unseren Kindern, die Welt der Informatik und Software-Entwicklung näher?Über diese Frage sprechen wir mit der Expertin Dr. Diana Knodel. studierte Informatikerin mit Schwerpunkt Psychologie, Autorin von zwei Kinderbüchern zum Thema Programmieren für Kinder sowie Gründerin von zwei Firmen, AppCamps und fobizz, im Bereich Bildung mit Schwerpunkt IT und Softwareentwicklung. Wir sprechen über aktuelle Vorbilder in der Informatik bzw. Programmierung für Kinder, ab welchem Alter Kinder mit der Programmierung starten können, welche Code-Editoren sind speziell für Kinder geeignet, wie können wir Lehrkräfte weiterbilden, damit diese das Thema in den Schulen vorantreiben, wie ChatGPT und KI im Allgemeinen die Bildung verändert wird und vieles mehr. Viel Spaß.Bonus: Warum ChatGPT der neue Taschenrechner wird.Das schnelle Feedback zur Episode:
On today's ID the Future from the vault, we're pleased to feature a cross-post from our sister podcast Mind Matters. Here, host Robert J. Marks begins a conversation with trailblazing mathematician and computer scientist Gregory Chaitin. The two discuss Chaitin's beginnings in computer science, his growing up in the 1960s a stone's throw from Central Park, his thoughts on historic scientists in his field such as Leonard Euler and Kurt Gödel, and the story of Chaitin's thwarted meeting with the famed German-Austrian logician, mathematician, and philosopher. Also touched on: Gödel's ontological proof for the existence of God and how children can be said to have solved Chaitin's incompleteness problem! Source
Ioanna Georgiou, mathematics educator and author of “Mathematical Adventures!” and “Peculiar Deaths of Famous Mathematicians”, joins us to chat about Kurt Gödel! In this episode, we'll attempt to answer the following questions: What's the best way to point out typos in an important document? What if a statement cannot be proved? What do either of these have to do with math? Connect with Ioanna at her website https://ioannageorgiou.com/ or on one of her social channels: IG: @yoayeo.maths Twitter/TikTok: @YoaYeo Let us know your thoughts. Follow us on Facebook or email us at podcast@infinitelyirrational.com. For math and the research behind the episode, visit our webpage at www.infinitelyirrational.com We look forward to hearing from you!
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: The Control Problem: Unsolved or Unsolvable?, published by Remmelt on June 2, 2023 on LessWrong. td;lr No control method exists to safely contain the global feedback effects of self-sufficient learning machinery. What if this control problem turns out to be an unsolvable problem? Where are we two decades into resolving to solve a seemingly impossible problem? If something seems impossible. well, if you study it for a year or five, it may come to seem less impossible than in the moment of your snap initial judgment. Eliezer Yudkowsky, 2008 A list of lethalities.we are not on course to solve in practice in time on the first critical try; none of it is meant to make a much stronger claim about things that are impossible in principle Eliezer Yudkowsky, 2022 How do you interpret these two quotes, by a founding researcher, fourteen years apart? A. We indeed made comprehensive progress on the AGI control problem, and now at least the overall problem does not seem impossible anymore. B. The more we studied the overall problem, the more we uncovered complex sub-problems we'd need to solve as well, but so far can at best find partial solutions to. Which problems involving physical/information systems were not solved after two decades? Oh ye seekers after perpetual motion, how many vain chimeras have you pursued? Go and take your place with the alchemists. Leonardo da Vinci, 1494 No mathematical proof or even rigorous argumentation has been published demonstrating that the A[G]I control problem may be solvable, even in principle, much less in practice. Roman Yampolskiy, 2021 We cannot rely on the notion that if we try long enough, maybe AGI safety turns out possible after all. Historically, many researchers and engineers tried to solve problems that turned out impossible: perpetual motion machines that both conserve and disperse energy. uniting general relativity and quantum mechanics into some local variable theory. singular methods for 'squaring the circle', 'doubling the cube' or 'trisecting the angle'. distributed data stores where messages of data are consistent in their content, and also continuously available in a network that is also tolerant to partitions. formal axiomatic systems that are consistent, complete and decidable. Smart creative researchers of their generation came up with idealized problems. Problems that, if solved, would transform science, if not humanity. They plowed away at the problem for decades, if not millennia. Until some bright outsider proved by contradiction of the parts that the problem is unsolvable. Our community is smart and creative – but we cannot just rely on our resolve to align AI. We should never forsake our epistemic rationality, no matter how much something seems the instrumentally rational thing to do. Nor can we take comfort in the claim by a founder of this field that they still know it to be possible to control AGI to stay safe. Thirty years into running a program to secure the foundations of mathematics, David Hilbert declared “We must know. We will know!” By then, Kurt Gödel had constructed the first incompleteness theorem. Hilbert kept his declaration for his gravestone. Short of securing the foundations of safe AGI control – that is, through empirically-sound formal reasoning – we cannot rely on any researcher's pithy claim that "alignment is possible in principle". Going by historical cases, this problem could turn out solvable. Just really, really hard to solve. The flying machine seemed an impossible feat of engineering. Next, controlling a rocket's trajectory to the moon seemed impossible. By the same reference class, ‘long-term safe AGI' could turn out unsolvable – the perpetual motion machine of our time. It takes just one researcher to define the problem to be solved, reason from empirically sound premises, and arrive ...
durée : 01:28:40 - Peter Szendy, écrivain - par : Priscille Lafitte - Ses origines hongroises portent Peter Szendy vers Béla Bartók et György Kurtág, à l'écoute des grillons et du scintillement des eaux d'un lac de Transylvanie. Ce philosophe et musicologue se passionne aussi pour la voix, la ventriloquie et le bégaiement dans son dernier livre "La voix par ailleurs". - réalisé par : Claire Lagarde
Covering Part 6 of Alain Badiou's Being and Event on “The Impasse of Ontology,” Alex and Andrew discuss Badiou's critique of the discernible and constructible as foreclosures of the event. Guest Calvin Warren thinks the catastrophe through the post-metaphysics of anti-math and the problem of the one. Warren is a professor of African American Studies at Emory University. His research interests include Continental Philosophy (particularly post-Heideggerian and nihilistic philosophy), Lacanian psychoanalysis, queer theory, Black Philosophy, Afro-pessimism, and theology. He is the author of Ontological Terror: Blackness, Nihilism, and Emancipation (Duke University Press). Concepts related to The Impasse of Ontology The Cantor-Gödel-Cohen-Easton Symptom, Events as Decisions, James C Scott's Seeing Like a State, The Impasse of Ordinality/Cardinality Set/Number Situation/State and Belonging/Inclusion, Errancy and the Immeasurable, Cardinality, Diagonalization and Cantor/Continuum Hypothesis, Kurt Gödel and Paul Cohen, Jacques Lacan and the Impasse of Formalization, The Power Set and the Size of the State, The Subject and the Abyss, Critiques of Leibniz's Discernible and Constructible Worlds (and Analytic Philosophy's Symbolic Thought), Rousseau's General and Undifferentiated Being of Truth (and Paul Cohen's Absolutization of Errancy), and all Classic Metaphysics that includes Communist Eschatology (and Large Cardinals, the Virtual Being of Theology, and Transcendence). Interview with Calvin Warren Qui Parle on The Catastrophe, Ontological Terror, Alain Badiou and the One as Anti-Black, Denise Ferreira da Silva, Pure Form as Pure Violence, Black aesthetics, Katherine McKittrick, The Ledger as Both the Inclusion of Black Death and the Concealment of Black Life, Catastrophe, Abyss, Nihilism, Nothingness, Pessimism, Post-Metaphysics, Martin Heidegger, Jacques Lacan, Jean-Paul Sartre, Frantz Fanon and the Zone of Non-Being, Subtraction, Aesthetics, Romanticism, Afrofuturism Links Warren profile, https://aas.emory.edu/people/bios/warren-calvin.html Warren papers, https://emory.academia.edu/calvinwarren Warren, Ontological Terror: Blackness, Nihilism, and Emancipation, https://www.dukeupress.edu/ontological-terror Warren, "The Catastrophe: Black Feminist Poethics, (Anti)form, and Mathematical Nihilism," https://muse.jhu.edu/article/749148/pdf
Kurt G. Naber, MD, PhD - How Are We Tackling the Nemesis of Drug-Resistant Uropathogens?
Covering Part 3 of Alain Badiou's Being and Event on “Nature & Infinity,” Alex and Andrew complete the "arithmetic, natural story" that constitutes Badiou's presentation of being within the book so far. Guest Sarah Pourciau explores the history and philosophy of set theory, while also scrutinizing the conclusions Badiou tries to draw from it. Pourciau is a professor of German Studies at Duke University. Her expertise includes 19th Century German thought, including both philosophy and mathematics (Dedekind, Cantor). She is the author of the book The Writing of Spirit: Soul, System, and the Roots of Language Science. Concepts on Nature and Infinity Political Modernism, Math as the Difference between Real and Natural Numbers, Martin Heidegger's Poetic Ontology, Jacques Lacan's Matheme, Physis, Nature, Natural Multiples, the Non-existence of Nature, Cardinality and Ordinality, Ordinal Chain, Infinity and Finitude, Arithmetic and Natural Infinity, Georg Cantor and Richard Dedekind, Five Critiques of GWF Hegel's Notion of Infinity. Interview with Sarah Pourciau Digital Ocean, Richard Dedekind, Platonic Eidos, Georg Cantor and the Abyss, Gender and “The Feminine,” Kantian Intuition, Logos and the Origin of Set Theory, Politics, Naming and Numbers, Spontaneity, Différance, Alan Turing and Kurt Gödel, Computability. Links Pourciau profile, https://scholars.duke.edu/person/sarah.pourciau Pourciau, The Writing of Spirit: Soul, System, and the Roots of Language Science, https://www.fordhampress.com/9780823275632/the-writing-of-spirit/ Pourciau, "A/logos: An Anomalous Episode in the History of Number," https://muse.jhu.edu/article/728110 Pourciau, "On the Digital Ocean," https://www.journals.uchicago.edu/doi/abs/10.1086/717319
As I've mentioned before, ecumenical phenomenology has an enormous capacity to answer a wide range of difficult philosophical questions. This episode will be exploring some of those questions and the answers that ecumenical phenomenology provides. Transcript with citations available at asatanistreadsthebible.com --- Send in a voice message: https://podcasters.spotify.com/pod/show/asatanistreadsthebible/message Support this podcast: https://podcasters.spotify.com/pod/show/asatanistreadsthebible/support
Covering Part 1 of Alain Badiou's Being and Event on the topic of “Being,” Alex and Andrew introduce some foundational concepts and address Badiou's relation to other philosophers. Guest Knox Peden outlines where Badiou fits within the intellectual history of French philosophy, Marxism, and science. Peden is author of Spinoza Contra Phenomenology: French Rationalism from Cavaillès to Deleuze (published in 2014). Knox has also worked as an editor and translator including collaborations on Cahiers pour l'Analyse (published as Concept and Form, volumes 1 and 2) and On Logic and the Theory of Science by Jean Cavaillès. Schools of Philosophy Math and the Philosophy of Mathematics, a Mathematic Ontology based in Set Theory, Being Qua Being, Martin Heidegger and Badiou's Critique of Poetic Ontology, Post-Cartesian Theories of the Subject from Karl Marx, Sigmund Freud, and Jacques Lacan, Logical Positivism and the Vienna Circle. Key Thinkers and Concepts Jean Cavaillès, Albert Lautman, Georg Cantor, and Kurt Gödel, Axiomatic Set Theory (Axiom of Extensionality, Power Sets, Axiom of Union, Axiom of Separation, Axioms of Replacement and Substitution), The Count, The One, Void, ∅ (Mark Naught), Nature, Name, Cardinality. Interview with Knox Peden French Marxism, Marxist Science and Ideology, Rationalism, Empiricism, Phenomenology and Edmund Husserl, Gaston Bachelard and Philosophy of Science, Truth, Cahiers pour l'Analyse including Jacques-Alain Miller and Jean-Claude Milner, “Mark and Lack,” the Subject, Suture. Links Knox Peden profile, https://hass.uq.edu.au/profile/7697/knox-peden Peden, Spinoza Contra Phenomenology: French Rationalism from Cavaillès to Deleuze, https://www.sup.org/books/title/?id=22793 Hallward and Peden, Concept and Form, two volumes dedicated to Cahiers pour l'Analyse, https://www.versobooks.com/series_collections/35-concept-and-form Cahiers pour l'Analyse(electronic edition) http://cahiers.kingston.ac.uk/ Cavaillès, On Logic and the Theory of Science, translated by Peden and Mackay, https://www.urbanomic.com/book/logic-theory-science/
In this episode of the Business Broken to Smokin' Podcast, Lodestone True North's Head Coach Mark Whitmore and our guest Tim Campbell, CVO of Dearman Moving & Storage ( https://dearmanmoving.com/ ) discuss family business transitions, the importance of a great set of core values and more! 0:00 Intro 2:18 History of Dearman 7:47 A caution for every business owner 11:56 The default business model… 13:06 Tim's story 22:20 Needing a coach on your side… 22:30 Self learning, and unlearning bad habits 25:15 Need to get beyond fixing symptoms 25:48 Book references: Pinnacle by Steve Preda & Greg Cleary Rockefeller Habits by Verne Harnish The Advantage by Pat Lencioni Get a Grip by Mike Paton & Gino Wickman 27:41 What's different with the Dearman business now… 29:17 The importance of having a great set of core values… 32:24 There's a bit of disruption… Working on the business is like working on a moving vehicle 37:24 Another big hurdle beginning with a new business operating system 41:05 Dearman's Core Values 46:41 First big challenge/mistake about core values - you don't have any… 48:00 Second big mistake about core values - they are vague. They need to be clearly differentiated. 48:43 Jim Collins - the definition of the right person on the bus 54:14 Using core values in the interview process 50:55 Book reference - Grit by Angela Duckworth - chapter 12 is about culture https://angeladuckworth.com/ 58:44 Business expanding during an economy in contraction 1:00:29 What coaching does for the business… 1:01:11 The space here at Lodestone (the Coral Reef) 1:02:07 Reference to Kurt Gödel 1:05:51 Some advice to a business that could use an advisor or coach 1:07:01 “A business without a business coach is like a car without engine oil” 1:09:23 the BSAF analogy 1:12:33 (Good quote here from Tim - Shoutout to Mark) 1:18:15 All about epiphanies 1:20:21 Attention business owners… 1:23:07 Family businesses are messy… 1:24:56 A good indicator for Mark working with a future client… 1:26:35 Money is a terrible “why” 1:30:52 It doesn't have to be lonely and miserable at the top 1:37:50 What's your favorite Lodestone tool… 1:49:28 Book reference - Necessary Endings by Dr. Henry Cloud 1:56:08 Two things needed to make the tough decisions: A clear vision: 1 - Where are we heading 2 - Why is it important 3 - Who are we (culture) 1:56:23 A clear set of seats (organizationally) 1:57:03 The seven solutions to people issues… 1 - Do Nothing 2 - Observe 3 - Training/coaching 4 - Put in a different seat 5 - Put on some sort of notice 6 - Delayed termination 7 - Fire now 2:02:33 The Clarity Maze Tool 2:15:24 What would you tell a 30 something business person… 2:21:48 Don't let the business own you Website: www.lodestonetruenorth.com Website www.bigeasydesk.com LinkedIn Mark: https://www.linkedin.com/in/mark-whitmore-lodestone/ LinkedIn Lodestone: https://www.linkedin.com/company/lodestone-true-north Lodestone Online Courses: lodestone.thinkific.com Music - Truckin' by The Grateful Dead
Mickey implores Bob: “Leave Biden alone!” Bob proves incapable. ... Democrats' surprisingly good Senate race poll numbers ... Mickey: Immigration numbers are climbing, but the media isn't covering it ... The downsides of framing US foreign policy as a “struggle against autocracy” ... How courageous was Pence on January 6? ... Did Trump both plan and fan the violence on January 6? ... Mickey: Trump and DeSantis are neck and neck as 2024 prospects ... Will Biden lift Trump-era tariffs on China? ... Bob: Ukraine may soon run out of ammo for its Soviet-era artillery ... Parrot Room preview: Exciting child tax credit news, Jeffrey Epstein news, a new angle on the Dave Weigel affair, Stanford eliminates fun, a deep dive into Bob's views on consciousness, the dating habits of Richard Spencer, the US Open, Bob pummels an NYT headline, the Proud Boys, and Kurt Gödel ...
Mickey implores Bob: “Leave Biden alone!” Bob proves incapable. ... Democrats' surprisingly good Senate race poll numbers ... Mickey: Immigration numbers are climbing, but the media isn't covering it ... The downsides of framing US foreign policy as a “struggle against autocracy” ... How courageous was Pence on January 6? ... Did Trump both plan and fan the violence on January 6? ... Mickey: Trump and DeSantis are neck and neck as 2024 prospects ... Will Biden lift Trump-era tariffs on China? ... Bob: Ukraine may soon run out of ammo for its Soviet-era artillery ... Parrot Room preview: Exciting child tax credit news, Jeffrey Epstein news, a new angle on the Dave Weigel affair, Stanford eliminates fun, a deep dive into Bob's views on consciousness, the dating habits of Richard Spencer, the US Open, Bob pummels an NYT headline, the Proud Boys, and Kurt Gödel ...
Con i Teoremi di incompletezza, Kurt Gödel ha rivoluzionato lo sviluppo della Matematica dell'ultimo secolo. L'impatto delle sue ricerche, però, non si fermano nei confini della Matematica, segnando una cesura fondamentale anche a livello filosofico e influenzando significativamente lo sviluppo del sapere più in generale. Ma in che modo Gödel giunse ai suoi risultati rivoluzionari? In altre parole, in che modo Gödel divenne Gödel? Parleremo di tutto ciò con il Prof. Piergiorgio Odifreddi, professore di logica presso l'Università di Tornino e divulgatore scientifico di fama nazionale. *************************************************************************************************************************************************************** Evento svoltosi presso uniMI • Dipartimento di Matematica "Federigo Enriques", Milano il 14 marzo 2022. --- Send in a voice message: https://podcasters.spotify.com/pod/show/vito-rodolfo-albano7/message
Kurt Gödel's - Incompleteness Theorems - In Our Time GODEL INCOMPLETENESS THEOREM THE INTELLECTUAL DARK WEB PODCAST We Search the Web for the Best Intellectual Dark Web Podcasts, Lectures and Videos that can be understood by merely listening to save YOUR time. Then we make those Intellectual Dark Web Episodes available on Spotify and downloadable. IMPORTANT! GET THE MAIN WORKS OF HOBBES, LOCKE, ROUSSEAU / MACHIAVELLI AND THE US CONSTITUTION BOUND TOGETHER IN JUST ONE PRACTICAL BOOK: ||| MACHIAVELLI https://www.lulu.com/en/us/shop/niccolo-machiavelli-and-john-locke-and-thomas-hobbes-and-peter-kanzler/the-leviathan-1651-the-two-treatises-of-government-1689-and-the-constitution-of-pennsylvania-1776/paperback/product-69m6we.html XXX https://www.bookfinder.com/search/?author=peter%2Bkanzler&title=pennsylvania%2Bconstitution%2Bleviathan&lang=en&isbn=9781716844508&new_used=N&destination=us¤cy=USD&mode=basic&st=sr&ac=qr || ROUSSEAU https://www.lulu.com/en/us/shop/jean-jacques-rousseau-and-thomas-hobbes-and-john-locke-and-peter-kanzler/the-leviathan-1651-the-two-treatises-of-government-1689-the-social-contract-1762-the-constitution-of-pennsylvania-1776/paperback/product-782nvr.html XXX https://www.bookfinder.com/search/?author=peter%2Bkanzler&title=pennsylvania%2Bconstitution%2Bleviathan&lang=en&isbn=9781716893407&new_used=N&destination=us¤cy=USD&mode=basic&st=sr&ac=qr | Thank You Dearly For ANY Support! And God Bless You.
Wir rechnen ständig - um unsere Zeit einzuteilen, beim Einkaufen, Essen, Sport machen und während der Arbeit sowieso: Mathematik hat sich in vielfältiger Art und Weise im Alltag ausgebreitet. Mittlerweile sind wir sogar in der Lage, mittels mathematischer Ideen Maschinen zu bauen, die selbst komplizierte Rechnungen durchführen können, zu denen Menschen ohne diese Hilfsmittel längst nicht mehr in der Lage wären. Warum ist das so? Welche mathematische Revolution hat sich abgespielt beginnend im Jahr 1870 und endend ungefähr ein Jahrhundert später? Und was hat das mit Unendlichkeit zu tun? Aeneas Rooch ist promovierter Mathematiker und hat genau darüber gerade ein Buch geschrieben. Er erzählt in dieser Episode von den wichtigsten mathematischen Denkern in ihrer Zeit, von Leuten wie Georg Cantor, Bertrand Russel, David Hilbert oder Kurt Gödel, vom Unterschied zwischen Mathematik und Rechnen, von Logik und mehr.
Seconda lezione dedicata alla figura di Kurt Gödel dove viene approfondito il “teorema di Gödel” cercando di spiegare che cosa dice veramente e successivamente scavando nei meccanismi che regolano il teorema. --- Send in a voice message: https://podcasters.spotify.com/pod/show/vito-rodolfo-albano7/message
Questa lezione inizierà ad approfondire la figura del matematico austriaco Kurt Gödel attraverso la sua vita e le sue opere accennando al teorema di Gödel . Noto soprattutto per i suoi lavori sull'incompletezza delle teorie matematiche è ritenuto uno dei maggiori logici di tutti i tempi insieme ad Aristotele, le sue ricerche ebbero un significativo impatto, oltre che sul pensiero matematico e informatico, anche sul pensiero filosofico del XX secolo. --- Send in a voice message: https://podcasters.spotify.com/pod/show/vito-rodolfo-albano7/message
#Logos #LogosRising #Christianity In this stream I am joined by Jay Dyer to discuss the problem of circularity as it relates to foundationalism, worldviews, and why it is so important concerning Christian apologetics. We will be hitting on everything from induction (Hume & Kant), the work of Thomas Kuhn, Willard Quine, and Kurt Gödel, as well revelation and the coherency theory of truth. Make sure to check it out and let me know what you think. God bless Intro Music Follow Keynan Here: https://linktr.ee/keynanrwils b-dibe's Soundcloud: https://soundcloud.com/b-dibeSuperchat Here https://streamlabs.com/churchoftheeternallogosRokfin: https://rokfin.com/dpharryWebsite: http://www.davidpatrickharry.com GAB: https://gab.com/dpharrySupport COTEL with Crypto!Bitcoin: 3QNWpM2qLGfaZ2nUXNDRnwV21UUiaBKVsyEthereum: 0x0b87E0494117C0adbC45F9F2c099489079d6F7DaLitecoin: MKATh5kwTdiZnPE5Ehr88Yg4KW99Zf7k8d If you enjoy this production, feel compelled, or appreciate my other videos, please support me through my website memberships (www.davidpatrickharry.com) or donate directly by PayPal or crypto! Any contribution would be greatly appreciated. Thank you Logos Subscription Membership: http://davidpatrickharry.com/register/ Venmo: @cotel - https://account.venmo.com/u/cotel PayPal: https://www.paypal.me/eternallogos Donations: http://www.davidpatrickharry.com/donate/PayPal: https://www.paypal.me/eternallogos Website: http://www.davidpatrickharry.com Rokfin: https://rokfin.com/dpharryOdysee: https://odysee.com/@ChurchoftheEternalLogos:dGAB: https://gab.com/dpharryTelegram: https://t.me/eternallogosMinds: https://www.minds.com/DpharryBitchute: https://www.bitchute.com/channel/W10R...DLive: https://dlive.tv/The_Eternal_LogosInstagram: https://www.instagram.com/dpharry/ Twitter: https://twitter.com/eternal_logos
'Enlightenment Now' author Steven Pinker speaks with Quillette podcast host Jonathan Kay about his newly published book, 'Rationality: What It Is, Why It Seems Scarce, Why It Matters'