POPULARITY
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 11/19
Macrophage migration inhibitory factor (MIF) ist ein 12,5 kDa großes Protein, das als Homotrimer in fast allen Körpergeweben konstitutionell exprimiert wird und proinflammatorische wie wachstumsregulierende Eigenschaften aufweist. Die experimentelle Datenlage über die Wirkmechanismen von MIF zeigen, dass MIF sowohl extrazelluläre Wirkung als Zytokin/Chemokin wie auch eine intrazelluläre Wirkung als Regulator von Ubiquitylierung und proteasomaler Aktivität oder als Enzym mit Tautomerase-Aktivität besitzt. Für alle Mechanismen ist ein Einfluss von MIF auf Wachstumsregulation beschrieben. Die Evidenz für MIF als Tautomerase ist allerdings schlecht belegt und es wird diskutiert, ob dies ein Artefakt oder ein Relikt aus evolutionären Vorformen von MIF ist. Ziel dieser Arbeit ist es, über genetisch modifizierte Mäuse, die entweder eine komplette Deletion des MIF-Gens (MIF Knock-Out-Maus) oder eine Punktmutation mit Verlust der Enzymaktivität tragen, die funktionelle Rolle von MIF bei der Hauttumorgenese zu bestimmen und zu testen, ob die Tautomerase-Aktivität von MIF von funktioneller Relevanz bei der Tumorgenese ist. Unsere Ergebnisse zeigen, dass die Abwesenheit von MIF in der murinen Haut während der chemischen One Stage-Karzinogenese mit Benzo[α]pyren zu verstärkter Tumorbildung führt. Der Verlust von Prolin 1 und damit der Tautomeraseaktivität alleine führt zu einem Phänotyp, welcher zwischen dem des Knock-Outs und dem des Wildtyps liegt. Dies weist daraufhin, dass Prolin 1 oder alternativ die Tautomeraseaktivität eine wichtige biologische Rolle für die Funktion von MIF bei der malignen Transformation von Keratinozyten spielt.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
In der vorliegenden Arbeit wurden die beiden Histon-Methyltransferasen Su(var)3-9 und E(Z) aus Drosophila melanogaster charakterisiert. Die Histonmethylierung als Modifikation war schon länger bekannt gewesen, bis zum Jahr 2000 war jedoch vor allem die Acetylierung etwas genauer untersucht worden. Su(var)3-9 war die einzige bekannte Histon-Lysin-Methyltransferase, als diese Arbeit begonnen wurde. Zur Charakterisierung wurde das myc-getagte Enzym aus Drosophila-Kernextrakt durch Affinitätschromatographie aufgereinigt und zunächst die Substratspezifität festgestellt. Wie das humane Enzym Suv39H1 methyliert es ebenfalls spezifisch H3-K9 (Lysin 9 im Histon H3). Das aus den Kernextrakten aufgereinigte Enzym besitzt aber auch die Fähigkeit, ein an H3-K9 präacetyliertes Substrat zu methylieren. Die Vermutung, dass Su(var)3-9 mit einer Histondeacetylase assoziiert ist, konnte durch Verwendung von TSA als HDAC-Inhibitor bestätigt werden. Es stellte sich heraus, dass HDAC1 (Rpd3) mit Su(var)3-9 assoziiert ist. Um das Enzym besser untersuchen zu können, wurde es als Volllängenprotein und als Deletionsmutante in E. coli exprimiert. Die Aufreinigung des rekombinanten Enzyms sowie seine Lagerbedingungen wurden optimiert. Das Volllängenprotein Su(var)3-9 liegt – wie durch Gelfiltration festgestellt - als Dimer vor, die Interaktion mit sich selbst ist über den N-Terminus vermittelt. Su(var)3-9 bindet an sein eigenes, bereits methyliertes Substrat. Dies wurde an Peptiden untersucht, die den ersten 20 Aminosäuren des Histons H3 entsprechen, und entweder an Lysin 9 dimethyliert oder unmodifiziert waren. Die Interaktion mit dem methylierten Substrat ist auf die Chromodomäne von Su(var)3-9 zurückzuführen, ist jedoch schwächer als die Wechselwirkung von HP1 mit methyliertem H3-K9. Des weiteren wurde eine Drosophila-Zelllinie stabil mit Su(var)3-9 transfiziert. Das überexprimierte Protein ist jedoch nur schwach aktiv. Die Tatsachen, dass Su(var)3-9 mit HDAC1 interagiert sowie mit seinem eigenen Substrat assoziiert, ermöglichen die Aufstellung von Hypothesen über die bis jetzt kaum erhellte Ausbreitung von Heterochromatin in euchromatische Bereiche. Durch die Wechselwirkung mit der Deacetylase könnte Su(var)3-9 auch in aktiv transkribierte Bereiche vordringen und diese methylieren. Die Acetylierung, Zeichen für aktive Transkription, würde durch die Methylierung ersetzt werden. Die Interaktion mit seinem umgesetzten Substrat könnte verhindern, dass das Enzym sich nach der Reaktion entfernt, vielmehr könnte Su(var)3-9 entlang eines DNA-Stranges sukzessive alle Nukleosomen methylieren. Die darauffolgende Bindung von HP1 an methyliertes H3-K9 könnte den heterochromatischen Charakter des Chromatins verstärken und für längere Zeit festlegen. Aus Drosophila-Kernextrakten gelang es weiterhin, den E(Z)/ESC-Komplex über Säulenchromatographie aufzureinigen. Dieser enthält neben E(Z), ESC, p55 und Rpd3 auch Su(z)12. E(Z), ESC und Su(z)12 gehören der Polycomb-Gruppe an. Deren Funktion ist die dauerhafte Repression der homöotischen Gene. Sie spielen daher eine wichtige Rolle im „Zellgedächtnis“ während der frühen Entwicklung von Drosophila. Es konnte gezeigt werden, dass der E(Z)/ESC-Komplex Lysin 9 sowie Lysin 27 im Histon H3 methyliert. Außerdem wurde in vitro ein Teilkomplex aus rekombinantem E(Z), p55 und ESC rekonstituiert, der das Histon H3 methylieren kann. Ein Teilkomplex, der E(Z) mit mutierter SET-Domäne enthält, ist nicht in der Lage, H3 zu methylieren. Die Vorhersage, dass E(Z) aufgrund seiner SET-Domäne eine Methyltransferase sein müsse, konnte durch vorliegende Untersuchungen bestätigt werden. Polycomb ist ein weiteres Protein aus der Polycomb-Gruppe. In dieser Arbeit konnte gezeigt werden, dass dieses Protein spezifisch an das Histon H3 bindet, das an K27 trimethyliert ist. Polycomb besitzt wie HP1 eine Chromodomäne. Aus den vorliegenden Daten kann folgendes Modell aufgestellt werden: Nach der Methylierung von H3-K9 sowie H3-K27 durch den E(Z)/ESC-Komplex in homöotischen Genen, die schon abgeschaltet sind und weiterhin reprimiert werden müssen, bindet Polycomb an dieses Methylierungsmuster. Polycomb befindet sich in einem großen Komplex mit weiteren Polycomb-Gruppen-Proteinen. Die Bindung dieses Komplexes an Chromatin könnte ein denkbarer Mechanismus sein, wie die dauerhafte Repression der homöotischen Gene vermittelt wird. Um den E(Z)/ESC-Komplex genauer untersuchen zu können, wurden Viren für das Baculosystem hergestellt, so dass eine Einzel- oder auch Coexpression der Proteine möglich ist. Die Aktivität von E(Z), das im Baculosystem exprimiert wurde, ist nicht besonders hoch. Es bindet unter den in dieser Arbeit verwendeten Bedingungen weder an DNA, noch an Histone noch an H3-Peptide, die methyliert sind. Innerhalb des E(Z)/ESC-Komplexes bindet E(Z) an p55, Rpd3, ESC sowie Su(z)12. Su(z)12 interagiert mit p55, Rpd3 und E(Z). Die weiteren Interaktionen werden am besten durch eine bildliche Darstellung (siehe Abb. 86) vermittelt. In einem Luciferase-Assay wurde eine repressive Wirkung von E(Z) festgestellt. Dieses Experiment bedarf allerdings eines aktivierten Systems. Ferner muss durch Mutationsanalysen sichergestellt werden, dass die repressive Wirkung auf die Methyltransferase-Aktivität von E(Z) zurückzuführen ist. Kürzlich wurde entdeckt, dass E(Z) sowie Su(z)12 in verschiedenen Tumoren überexprimiert sind. Noch ist weder deren Funktion in den Tumorzellen klar, noch weiss man, ob die Überexpression der Grund oder eine Folge der Tumorbildung ist, noch kennt man alle Zielgene, die durch eine Überexpression von E(Z) und Su(z)12 beeinflusst werden. In nächster Zeit sind hier Einsichten in die Wirkungsweise von E(Z), Su(z)12 und anderen Polycomb-Gruppen-Proteinen zu erwarten.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Das Epstein-Barr Virus (EBV) infiziert primäre humane B-Zellen und kann deren unbegrenzte Proliferation induzieren. Dieser Prozess der Wachstumstransformation von B–Zellen ist ein Modellsystem, das die pathogenen Mechanismen bei der Tumorentstehung widerspiegelt. Das Epstein-Barr Virus nukleäre Antigen 1 (EBNA1) wurde als essentiell für den Prozess der Wachstumstransformation primärer humaner B-Lymphozyten beschrieben, weil es an der latenten Replikation über den viralen Replikations-Ursprung oriP, der extrachromosomalen Erhaltung des Virus-Episoms und der transkriptionellen Trans-aktivierung der latenten Gene beteiligt ist (Rickinson und Kieff, 2001). Dieses Postulat wurde nie experimentell untersucht, da die genetische Analyse mit den bisherigen Methoden nicht möglich war. Das Maxi-EBV-System macht das Genom von EBV einer genetischen Manipulation zugänglich und erlaubt auch die Herstellung von Viren, denen essentielle Gene fehlen (Delecluse et al., 1998). Ein Ziel meiner Doktorarbeit war die Herstellung und Analyse eines EBNA1-negativen Virus. Entgegen der Lehrmeinung war es mit EBNA1-negativem Maxi-EBV möglich, wachstums-transformierte Zellklone nach Infektion von primären humanen B-Lymphozyten zu etablieren. Das virale Genom war in sämtlichen erhaltenen lymphoblastoiden Zelllinien so integriert, dass alle untersuchten latenten EBV-Proteine exprimiert wurden. Meine Ergebnisse zeigen eindeutig, dass EBNA1 prinzipiell für die Wachstumstransformation entbehrlich ist. Mit EBNA1-positiven Viren werden die primären B-Zellen jedoch mindestens um den Faktor 10.000 besser wachstumstransformiert. Da EBNA1 den episomalen Status des Virusgenoms vermittelt, scheint die Etablierung des EBV-Genoms in infizierten Zellen der limitierende Schritt zu sein. Auch in vivo im SCID-Maus-Modell erwies sich EBNA1 als entbehrlich für die Tumorbildung, womit es nicht als essentielles Onkogen von EBV betrachtet werden kann. Ein weiterer im Rahmen dieser Doktorarbeit untersuchter Aspekt war die Frage, ob EBNA1 für die extrachromosomale Erhaltung und Replikation des EBV-Episoms durch heterologe Genprodukte ersetzt werden kann. Zu diesem Zweck wurden Fusionsproteine aus der DNA-Bindedomäne von EBNA1 mit den zellulären Proteinen Histon H1 bzw. HMG-I (Mitglied der hoch mobilen Protein-Gruppe) hergestellt. Ich konnte zeigen, dass HMG-I:EBNA1- und H1:EBNA1-Fusionsproteine in der Lage sind, kleine oriP-enthaltende Plasmide und Maxi-EBVs episomal zu erhalten und die zelluläre Replikations-Maschinerie zu rekrutieren. Zusätzlich dazu unterstützen die Fusionsproteine im EBNA1-negativen Maxi-EBV die Produktion infektiöser Viren. Für ein konditional regulierbares Vektorsystem wurden Fusionsproteine aus der EBNA1-Transaktivierungsdomäne und der DNA-Bindedomäne des Tet-Repressors (TetR) hergestellt. Diese Proteine sollten mit Tet-Operator-Sequenzen (TetO, TetR-Bindemotiv) interagieren, die multimerisiert auf oriP-basierte Vektoren kloniert wurden. Dadurch sollte die Erhaltung der oriP-basierten Vektoren in der Zelle konditional regulierbar gestaltet werden. Es gelang in dieser Doktorarbeit zum ersten Mal ein System zu etablieren, mit dem Plasmide episomal erhalten werden und bei Zugabe von Doxyzyklin konditional regulierbar verloren gehen. Dieses erstmals realisierte konditional regulierbare Vektorsystem schafft neue Wege, die virale und zelluläre Replikation genauer zu untersuchen. Außerdem öffnen sich Möglichkeiten für eine sicherere Gentherapie, da die viralen Anteile auf ein Minimum reduziert werden können. Mit einem solchen System könnten EBV-Genvektoren in B-Zellen eingeführt werden und nach Expression des auf dem Vektor kodierten, therapeutischen Gens könnte die Genfähre durch Tetrazyklin-Applikation wieder aus dem Patienten entfernt werden.