Podcasts about deletionsmutante

  • 4PODCASTS
  • 6EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Jan 10, 2011LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about deletionsmutante

Latest podcast episodes about deletionsmutante

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
Untersuchung der Adaptation des humanpathogenen Schimmelpilzes Aspergillus fumigatus an Stress: Die funktionelle Charakterisierung eines CipC-homologen Proteins

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06

Play Episode Listen Later Jan 10, 2011


Vor Beginn dieser Arbeit war ein A. fumigatus-Protein (Chp: CipC homologes Protein) mit unbekannter Funktion und hoher Homologie zum CipC-Protein aus A. nidulans als prominentes hyphenspezifisches Protein identifiziert worden (Schwienbacher, 2005). Weiterhin gab es zu diesem Zeitpunkt Hinweise, dass ein zu CipC homologes Protein in C. neoformans eine wichtige Rolle während der Virulenz spielt (Steen et al., 2003). In dieser Arbeit sollte die biologische Funktion des pilzspezifischen Proteins genauer untersucht werden. Zu diesem Zweck wurden monoklonale Antikörper gegen Chp, mehrere Reporterstämme sowie eine Deletionsmutante hergestellt. Die erhobenen Daten zeigen, dass Chp als Monomer im Cytosol der Hyphen vorliegt. Dabei zeigte sich eine gleichmäßige Verteilung eines GFP-Fusionsproteins innerhalb der Hyphen; nur die Vakuolen schienen ausgespart. Die Identifikation des Proteins auf der Sporenoberfläche von A. fumigatus (Asif et al., 2006) wurde wiederlegt und die differentielle Expression des Proteins bestätigt. Anders als in A. nidulans (Melin et al., 2002) wirkt das Antibiotikum Concanamycin A auf die Bildung von Chp in A. fumigatus nicht induzierend. Da diese Tatsache sowohl für die Na-mensgebung von CipC, als auch für die Namensgebung von Chp verantwortlich war, sollte das A. fumigatus-Protein umbenannt werden. Die Wahl des Namens fiel auf NrpA (Nitrogen regulated protein A), da die Bildung des Proteins von der N-Quelle abhängig ist. Die N-abhängige Regulation war für ein homologes F. fujikuroi Gen auf RNA-Ebene bereits bekannt (Teichert et al., 2004). In der vorliegenden Arbeit konnte sie in A. fumigatus und erstmals auf Proteinebene bestätigt werden. Desweiteren wurden auch neue N-Quellen untersucht. Dabei zeigte sich, dass NrpA in Anwesenheit der N-Quellen Glutamat, Nitrat oder Harnstoff nicht gebildet wird, wohin-gegen Komplexmedien sowie die N-Quellen Ammonium, Glutamin, Asparaginsäure, Asparagin, Valin und Tryptophan zur Bildung des Proteins führen. In Kombination einer induzierenden und einer unterdrückenden N-Quelle dominiert stets die induzierende. In Reporterstämmen (gfp; lacZ) fand diese negative Regulation der Bildung von NrpA nicht statt. Das Protein wurde sowohl in Anwesenheit einer normalerweise unterdrückenden N-Quelle, als auch in den Sporen gebildet. Weiterhin nimmt die gebildete Menge von NrpA sowohl bei längeren Inkubationszeiten, als auch bei Verwendung höherer Animpfdichten zu. Wird der Pilz zunächst mit einer die NrpA-Bildung unterdrückenden N-Quelle angezogen und dann in Medium mit einer induzierenden N-Quelle umgesetzt, dauert es 6 h bis eine Bildung von NrpA verzeichnet werden kann. Diese Zeitspanne blieb auch in einem inversen Experiment gleich. Als nächstes wurde untersucht, ob NrpA in A. fumigatus unter Stressbedingungen von Bedeutung ist. Dabei konnte gezeigt werden, dass sowohl osmotischer Stress, als auch oxidativer Stress, der durch Menadion verursacht wird, kei-ne Auswirkung auf die gebildete NrpA-Menge hat. Dagegen führt durch H2O2 verursachter Stress zu einem veränderten Laufverhalten von NrpA in SDS-Gelen. Das Protein scheint unter diesen Umständen ein höheres Molekulargewicht zu haben. Mithilfe eines A. fumigatus-Reporterstammes, der ein NrpA-GFP-Fusionsprotein bildet, konnte gezeigt werden, dass H2O2 auch zu einer veränderten Lokalisation von NrpA führt. Das sonst gleichmäßig in den Hyphen verteilte Protein formierte sich in punktförmigen Strukturen. Auch unter Mangelbedingungen spielt NrpA keine wichtige Rolle, denn weder ein C- noch ein N-Mangel verändert die gebildete Menge des Proteins. Dient die normalerweise die NrpA-Bildung induzierende N-Quelle Glutamin als C- und N-Quelle wird NrpA nicht gebildet. Ebenso wie in F. fujikuroi (Teichert et al., 2002) wird die Bildung des NrpA-Proteins durch MSX, einem Inhibitor der Glutaminsynthetase, fast vollständig inhibiert. Anders als in F. fujikuroi (Teichert et al., 2006) verursachte die Inhibierung der TOR-Kinase durch Rapamycin keinen Effekt auf die Bildung von NrpA. Auch durch eine her-gestellte Deletionsmutante konnte die biologische Funktion von NrpA nicht geklärt werden. In zahlreichen vergleichenden Untersuchungen verhielt sich die Mutante ebenso wie der Wildtyp. Der einzige dokumentierte Unterschied zwischen Mutante und Wildtyp ist eine verstärkte Bil-dung der Katalase 1 in der Deletionsmutante. Anders als angenommen spielt NrpA während der Virulenz von A. fumigatus keine Rolle. In einem Virulenzmodell in embryonierten Hühnereiern verhielten sich Deletionsmutante und Wildtyp gleich. Auch in murinen Makrophagen führten die Deletionsmutante und der Wildtyp etwa zu vergleichbaren Mengen an ausgeschüttetem IL-10 und TNFα. Ein potentieller Nutzen von NrpA bei der Diagnose der allergischen bronchoalveolaren Aspergillose (ABPA) konnte ebenso ausgeschlossen werden. Neben NrpA waren im Vergleich der Proteinmuster der verschiedenen A. fumigatus-Morphotypen auch weitere differentiell exprimierte Proteine aufgefallen. Eines davon war eine MnSOD (Aspf6), die bis dahin auch als mitochondriale MnSOD bezeichnet wurde (Rementeria et al., 2007). Da im Genom von A. fumigatus aber eine weitere MnSOD kodiert ist, die über eine putative Mitochondriensignalsequenz verfügt, sollte in einem zweiten Teil der Arbeit die tat-sächliche Lokalisation dieses Proteins gezeigt werden. Dafür wurden zunächst monoklonale Antikörper gegen das Protein hergestellt. Eine mitochondriale Lokalisation der MnSOD mit puta-tiver Signalsequenz konnte gezeigt werden. Dabei wurden sowohl Western-Blots als auch ein A. fumigatus-GFP-Reporterstamm verwendet. Weiterhin konnte das Protein genauer charakteri-siert werden. Im Gegensatz zu Aspf6, das nur in den Hyphen des Pilzes zu finden ist, wurde die mitochondriale MnSOD sowohl in den Sporen, als auch in den Hyphen nachgewiesen. Die gebil-dete Menge des Proteins verändert sich im Zeitverlauf nicht. Lediglich zu sehr späten Wachs-tumszeitpunkten in der späten stationären Phase war ein leichter Anstieg zu beobachten. Die gebildete Menge des Proteins hing auch nicht von der Animpfdichte der Kultur ab. Anders als Aspf6, das bekannterweise ein Homotetramer bildet (Flückiger et al., 2002), scheint die mitochondriale MnSOD als Dimer vorzuliegen. Auch in Antwort auf oxidativen Stress verhielten sich die beiden MnSODs unterschiedlich. Menadion, das innerhalb der Zelle die Bildung von Su-peroxidanionen bewirkt, führte zu einem leichten Anstieg der Proteinmenge der mitochondrialen MnSOD, während Aspf6 unverändert blieb. Als Folge von oxidativem Stress, der durch H2O2 verursacht wird, zeigte Aspf6 eine leichte Verringerung, während die mitochondriale MnSOD schnell abgebaut wird. In einem dritten Teil dieser Arbeit wurde die Rolle der Atmung während der Auskeimung von A. fumigatus genauer untersucht. Dabei konnte gezeigt werden, dass die Proteinbiosynthese für den Auskeimungsprozess unbedingt notwendig ist. Desweiteren wurde mit Hilfe unterschiedli-cher Methoden eine sehr frühe Aktivierung der Atmungskette während des Auskeimungspro-zesses nachgewiesen. Ebenso konnte gezeigt werden, dass die Anwesenheit von Sauerstoff für das Wachstum von A. fumigatus unbedingt erforderlich ist. Im anaeroben Milieu konnten die Konidien weder anschwellen noch auskeimen. Auch bereits vorhandene Hyphen konnten unter Abwesenheit von Sauerstoff nicht weiterwachsen. Weitere Untersuchungen zeigten, dass A. fu-migatus anders als A. nidulans (Takasaki et al., 2004) nicht über die Fähigkeit verfügt, im Anae-roben durch eine Fermentation von Ammonium zu überleben. In dieser Arbeit wurde ebenso wie in anderen aktuellen Arbeiten (Williger et al., 2008) die Fähigkeit von A. fumigatus, in hypoxischen Umgebungen zu wachsen, nachgewiesen.

Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 02/07
IRAG als funktionales Element der NO/cGMP Signalkaskade im Gastrointestinaltrakt

Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 02/07

Play Episode Listen Later Feb 10, 2006


Die cGMP-abhängige Proteinkinase (cGKI) vermittelt den relaxierenden Effekt der NO/cGMP Signalkaskade im glatten Muskel. Die Phosphorylierung des IP3-Rezeptor assoziierten cGMP-Kinase Substrats (IRAG) ist ein Prozess, der in diesem Mechanismus involviert ist. Um dieses Modell genauer zu verifizieren, wurde die cGMP-abhängige Relaxation in Mäusen, die ein modifiziertes IRAG expremieren, untersucht. Bei der IRAGD12/D12 Maus handelt es sich um eine Deletionsmutante, bei der die Interaktionsstelle von IRAG mit dem IP3-Rezeptor Typ I zerstört wurde, was dazu führt, dass IRAG nicht mit dem IP3-Rezeptor Typ I interagieren kann. Diese Mäuse zeigen eine normale Futteraufnahme, der Kotabsatz ist aber signifikant geringer als bei Wildtypmäusen. Eine Röntgenkontrastuntersuchung mit Hilfe von Bariumsulfat offenbarte eine deutliche Verlängerung der Darmpassagezeit, einen Megaoesophagus sowie ein Megacolon. In situ-Erhebungen an der eröffneten Bauchhöhle bestätigen diese Befunde. Gründe für diese Veränderungen könnten Funktionsstörungen in der glatten Muskulatur sein. Zur Stützung dieser Vermutung wurden die cGMP-abhängigen Effekte an der glatten Muskulatur des Darmtraktes untersucht. Die Untersuchung des Hormon induzierten Tonus im Jejunum ergab keinen signifikanten Unterschied in der cGMP-Wirkung zwischen den Wildtyp- und den IRAGD12/D12 Mäusen. Der CCh induzierte Tonus im Colon der Wildtypmäuse wird im Gegensatz zu den IRAGD12/D12 Mäusen durch 8 Br- cGMP um ca. 90% reduziert. Bei den IRAGD12/D12 Mäusen bewirkt 8 Br cGMP nur eine sehr geringe Relaxation (16%) des Hormon induzierten Tonus am Längsmuskel des Colons. Eine Vorinkubation mit dem Phosphatase-Hemmstoff Calyculin A in Präparaten von Wildtypmäusen hebt den relaxierenden Effekt von 8-Br-cGMP im glatten Muskel des Dünndarms auf, im glatten Muskel des Colons findet dagegen keine Aufhebung statt. Die Ergebnisse zeigen, dass IRAG eine entscheidende Bedeutung für die cGMP/cGKI-vermittelte Relaxation im Colon, aber nicht im Jejunum hat. Eine cGMP/cGKI-vermittelte Aktivierung einer Phosphatase kann als möglicher Mechanismus der cGMP abhängigen Relaxation im Jejunum in Frage kommen. Eine mögliche Phosphatase könnte hierbei die Myosin leichte Ketten Phosphatase (MLCP) sein. Es ist aber nach wie vor unklar, ob diese Ergebnisse Grund für die geringe Lebenserwartung der IRAGD12/D12 Mäuse sind. Um die Ursachen dafür zweifelsfrei feststellen zu können, bedarf es weiterführender Untersuchungen.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Biochemische Charakterisierung von Histon-Methyltransferasen aus Drosophila melanogaster

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Nov 22, 2004


In der vorliegenden Arbeit wurden die beiden Histon-Methyltransferasen Su(var)3-9 und E(Z) aus Drosophila melanogaster charakterisiert. Die Histonmethylierung als Modifikation war schon länger bekannt gewesen, bis zum Jahr 2000 war jedoch vor allem die Acetylierung etwas genauer untersucht worden. Su(var)3-9 war die einzige bekannte Histon-Lysin-Methyltransferase, als diese Arbeit begonnen wurde. Zur Charakterisierung wurde das myc-getagte Enzym aus Drosophila-Kernextrakt durch Affinitätschromatographie aufgereinigt und zunächst die Substratspezifität festgestellt. Wie das humane Enzym Suv39H1 methyliert es ebenfalls spezifisch H3-K9 (Lysin 9 im Histon H3). Das aus den Kernextrakten aufgereinigte Enzym besitzt aber auch die Fähigkeit, ein an H3-K9 präacetyliertes Substrat zu methylieren. Die Vermutung, dass Su(var)3-9 mit einer Histondeacetylase assoziiert ist, konnte durch Verwendung von TSA als HDAC-Inhibitor bestätigt werden. Es stellte sich heraus, dass HDAC1 (Rpd3) mit Su(var)3-9 assoziiert ist. Um das Enzym besser untersuchen zu können, wurde es als Volllängenprotein und als Deletionsmutante in E. coli exprimiert. Die Aufreinigung des rekombinanten Enzyms sowie seine Lagerbedingungen wurden optimiert. Das Volllängenprotein Su(var)3-9 liegt – wie durch Gelfiltration festgestellt - als Dimer vor, die Interaktion mit sich selbst ist über den N-Terminus vermittelt. Su(var)3-9 bindet an sein eigenes, bereits methyliertes Substrat. Dies wurde an Peptiden untersucht, die den ersten 20 Aminosäuren des Histons H3 entsprechen, und entweder an Lysin 9 dimethyliert oder unmodifiziert waren. Die Interaktion mit dem methylierten Substrat ist auf die Chromodomäne von Su(var)3-9 zurückzuführen, ist jedoch schwächer als die Wechselwirkung von HP1 mit methyliertem H3-K9. Des weiteren wurde eine Drosophila-Zelllinie stabil mit Su(var)3-9 transfiziert. Das überexprimierte Protein ist jedoch nur schwach aktiv. Die Tatsachen, dass Su(var)3-9 mit HDAC1 interagiert sowie mit seinem eigenen Substrat assoziiert, ermöglichen die Aufstellung von Hypothesen über die bis jetzt kaum erhellte Ausbreitung von Heterochromatin in euchromatische Bereiche. Durch die Wechselwirkung mit der Deacetylase könnte Su(var)3-9 auch in aktiv transkribierte Bereiche vordringen und diese methylieren. Die Acetylierung, Zeichen für aktive Transkription, würde durch die Methylierung ersetzt werden. Die Interaktion mit seinem umgesetzten Substrat könnte verhindern, dass das Enzym sich nach der Reaktion entfernt, vielmehr könnte Su(var)3-9 entlang eines DNA-Stranges sukzessive alle Nukleosomen methylieren. Die darauffolgende Bindung von HP1 an methyliertes H3-K9 könnte den heterochromatischen Charakter des Chromatins verstärken und für längere Zeit festlegen. Aus Drosophila-Kernextrakten gelang es weiterhin, den E(Z)/ESC-Komplex über Säulenchromatographie aufzureinigen. Dieser enthält neben E(Z), ESC, p55 und Rpd3 auch Su(z)12. E(Z), ESC und Su(z)12 gehören der Polycomb-Gruppe an. Deren Funktion ist die dauerhafte Repression der homöotischen Gene. Sie spielen daher eine wichtige Rolle im „Zellgedächtnis“ während der frühen Entwicklung von Drosophila. Es konnte gezeigt werden, dass der E(Z)/ESC-Komplex Lysin 9 sowie Lysin 27 im Histon H3 methyliert. Außerdem wurde in vitro ein Teilkomplex aus rekombinantem E(Z), p55 und ESC rekonstituiert, der das Histon H3 methylieren kann. Ein Teilkomplex, der E(Z) mit mutierter SET-Domäne enthält, ist nicht in der Lage, H3 zu methylieren. Die Vorhersage, dass E(Z) aufgrund seiner SET-Domäne eine Methyltransferase sein müsse, konnte durch vorliegende Untersuchungen bestätigt werden. Polycomb ist ein weiteres Protein aus der Polycomb-Gruppe. In dieser Arbeit konnte gezeigt werden, dass dieses Protein spezifisch an das Histon H3 bindet, das an K27 trimethyliert ist. Polycomb besitzt wie HP1 eine Chromodomäne. Aus den vorliegenden Daten kann folgendes Modell aufgestellt werden: Nach der Methylierung von H3-K9 sowie H3-K27 durch den E(Z)/ESC-Komplex in homöotischen Genen, die schon abgeschaltet sind und weiterhin reprimiert werden müssen, bindet Polycomb an dieses Methylierungsmuster. Polycomb befindet sich in einem großen Komplex mit weiteren Polycomb-Gruppen-Proteinen. Die Bindung dieses Komplexes an Chromatin könnte ein denkbarer Mechanismus sein, wie die dauerhafte Repression der homöotischen Gene vermittelt wird. Um den E(Z)/ESC-Komplex genauer untersuchen zu können, wurden Viren für das Baculosystem hergestellt, so dass eine Einzel- oder auch Coexpression der Proteine möglich ist. Die Aktivität von E(Z), das im Baculosystem exprimiert wurde, ist nicht besonders hoch. Es bindet unter den in dieser Arbeit verwendeten Bedingungen weder an DNA, noch an Histone noch an H3-Peptide, die methyliert sind. Innerhalb des E(Z)/ESC-Komplexes bindet E(Z) an p55, Rpd3, ESC sowie Su(z)12. Su(z)12 interagiert mit p55, Rpd3 und E(Z). Die weiteren Interaktionen werden am besten durch eine bildliche Darstellung (siehe Abb. 86) vermittelt. In einem Luciferase-Assay wurde eine repressive Wirkung von E(Z) festgestellt. Dieses Experiment bedarf allerdings eines aktivierten Systems. Ferner muss durch Mutationsanalysen sichergestellt werden, dass die repressive Wirkung auf die Methyltransferase-Aktivität von E(Z) zurückzuführen ist. Kürzlich wurde entdeckt, dass E(Z) sowie Su(z)12 in verschiedenen Tumoren überexprimiert sind. Noch ist weder deren Funktion in den Tumorzellen klar, noch weiss man, ob die Überexpression der Grund oder eine Folge der Tumorbildung ist, noch kennt man alle Zielgene, die durch eine Überexpression von E(Z) und Su(z)12 beeinflusst werden. In nächster Zeit sind hier Einsichten in die Wirkungsweise von E(Z), Su(z)12 und anderen Polycomb-Gruppen-Proteinen zu erwarten.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Identifizierung und Charakterisierung von Proteinen, die Fusion und Teilung von Mitochondrien vermitteln

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Jun 25, 2004


Die Kontinuität des mitochondrialen Kompartiments wird durch fortlaufende Membranfusions- und Teilungsereignisse aufrechterhalten. Das Verständnis der Prozesse, die wichtig für die Funktion und die Vererbung der Mitochondrien sind, erfordert die Identifizierung und Charakterisierung der daran beteiligten molekularen Komponenten. Im Rahmen der hier vorgelegten Arbeit wurde eine neue Komponente, MDM33, identifiziert und charakterisiert. Dabei handelt es sich um ein Gen, welches für ein Protein der mitochondrialen Innenmembran kodiert, und dessen Deletionsmutante einen völlig neuartigen Phänotyp aufweist. Zellen, denen das Mdm33-Protein fehlt, enthalten ringähnliche, miteinander verbundene Mitochondrien, welche große Hohlkugeln ausbilden können. Diese Organellen weisen extrem auseinander gezogene Abschnitte der Außen- und Innenmembran auf, die einen sehr schmalen Matrixspalt umschließen. Die Überexpression von Mdm33 führt zur Einstellung des Wachstums, die Mitochondrien aggregieren, und es entwickelt sich eine stark veränderte Innenmembranstruktur. Es bilden sich verstärkt Septen aus, die den Matrixraum mehrfach unterteilen, oder die Innenmembran verliert die Cristae und fragmentiert. Genetische Hinweise zeigen, dass das Mdm33-Protein vor den Komponenten der Teilungsmaschine der Außenmembran agiert, und dass die mitochondriale Fusion eine Voraussetzung für die Ausbildung der ausgedehnten ringähnlichen Mitochondrien in mdm33-Zellen ist. Mdm33 assembliert zu einem oligomeren Komplex in der Innenmembran und bildet homotypische Protein-Protein-Interaktionen aus. Diese Ergebnisse deuten darauf hin, dass Mdm33 bei der Teilung der mitochondrialen Innenmembran involviert ist. Das Fzo1-Protein ist eine zentrale Komponente der mitochondrialen Fusionsmaschinerie in der Außenmembran. Fzo1 assembliert sowohl in S. cerevisiae als auch in N. crassa in einen großen Proteinkomplex. Es sollte untersucht werden, welche Proteine Bestandteile dieses Komplexes sind. Daher wurde ein N. crassa-Stamm erzeugt, der stabil Fzo1 mit einem Hexahistidinanhang exprimiert, um den Fzo1-Komplex in größeren Mengen reinigen und mögliche Interaktionspartner identifizieren zu können. Dieser gereinigte Fzo1-Komplex ermöglicht nun auch mechanistische Studien zur Funktionsweise der Fusionsmaschine.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Biochemische und molekularbiologische Charakterisierung von CybL und Saip, zweier dominant apoptoseinduzierender Gene

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Apr 8, 2004


Der programmierte Zelltod (Apoptose), ist ein evolutiv konserviertes Selbstmordprogramm der Zelle, um auf äußere oder endogene Signale zu reagieren. Es dient dazu, überflüssige und/oder geschädigte Zellen zu entfernen. Dieser Prozess ist bei Krankheiten wie z.B. Krebs teilweise außer Kraft gesetzt, und bei Parkinson- oder Alzheimer-Erkrankung zu stark ausgeprägt. Im Rahmen dieser Arbeit wurden zwei Gene biochemisch und molekularbiologisch näher charakterisiert. Bei diesen zwei Genen, die mit Hilfe eines speziell zur Identifikation dominanter, Apoptose–induzierender Gene entwickelten Screnningsverfahrens identifiziert wurden, handelt es sich um CybL, eine Komponente von Komplex II der Atmungskette, und um Saip (Small apoptosis inducing protein) einem Protein, das am endoplasmatischen Retikulum (ER) lokalisiert ist. Bisher war bekannt, daß die Atmungskettenkomplexe I und III bei der Fas-Ligand und der Ceramid-vermittelten Apoptose beteiligt sind. Über einen Zusammenhang von Komplex II und Apoptose-Induktion war zu Beginn dieser Arbeit nichts beschrieben. Im Rahmen dieser Arbeit wurde entdeckt, daß neben CybL kann auch noch die kleine Untereinheit von Komplex II (CybS) Apoptose auslösen kann, wohingegen die übrigen Komponenten von Komplex II, das Flavinprotein (FAD) und das Eisen–Schwefelprotein (FeS), nicht in der Lage sind, Apoptose zu induzieren. Die laut Datenbank vorhergesagten vier Transmembrandomänen von CybL sind für die apoptoseinduzierende Eigenschaft notwendig. Darüber hinaus führt nur eine 3,8–fache Induktion von CybL über dem endogenen CybL zu Apoptose in Säugetierzellen. In der vorliegenden Arbeit konnte auch gezeigt werden, daß CybL einerseits bei Überexpression Apoptose induzieren kann, und andererseits Apoptose durch seine Inaktivierung reduziert wird. Daß CybL damit ein spezifischer Sensor für Apoptose ist, konnte dadurch ermittelt werden, daß eine Reihe verschiedener Apoptosestimuli (Doxorubicin, Etoposid, Menadion, Cisplatin, Taxol) und der Fas-Rezeptor einen intakten Komplex II zur Signalvermittlung benötigen. Dazu wurde mit sogenannten B9/B30 Zellen gearbeitet. B9/B30-Zellen sind Lungenfibroblasten aus Hamsterzellen, in denen CybL inaktiv ist (B9), wohingegen die B30-Zellen ein Fusionsprotein zwischen CybL und GFP enthalten, welches die physiologische Aktivität von Komplex II wiederherstellt. In den B9-Zellen ist die Apoptoseinduktion durch Cytostatika (Ausnahme Arsentrioxid) bzw. durch den Fas-Rezeptor reduziert, verglichen mit den B30-Zellen. Auch Untersuchungen an HeLa WT- bzw. HeLa 0-Zellen (die keine intakte Atmungskette besitzen) zeigten, daß für die Apoptoseinduktion mit den oben genannten Reagenzien eine intakte Atmungskette benötigt wird. Im Jahre 2000 wurde CybL als Tumosupressor beschrieben. Es ist daher zu vermuten, daß die Tumorsuppressor-Eigenschaften von CybL auf der Fähigkeit von Komplex II beruhen, proapoptotische Signale aufzunehmen und weiterleiten zu können. Bisher war bekannt, daß eine transiente Inhibition einiger Atmungskettenkomplexe (Komplex I, II, III) zur Bildung von reaktiven Sauerstoffintermediaten (ROI) führt. Es konnte gezeigt werden, daß auch CybL bei Überexpression reaktive Sauerstoffintermediate produziert, und daß viele proapoptotische Signale zur spezifischen Inhibition von Komplex II führt. Da bereits eine geringe Expression von CybL ausreichend ist, um Komplex II zu inhibieren, und dadurch Apoptose ausgelöst wird, kann Komplex II als spezifischer Sensor für Apoptose angesehen werden. Das bisher unbekannte Gen mit dem Namen Saip löst dominant Apoptose in Säugetierzellen aus. Die proapoptotische Eigenschaft von Saip ist vermutlich auf einen evolutiv konservierten Mechanismus zurückzuführen, da auch ein Homolog aus C.elegans nach transienter Transfektion in Säugerzellen Apoptose auslöst. Dabei induziert Saip Caspase-abhängige Apoptosewege, die zur Apoptose-typischen DNA–Fragmentierung und Bildung von apoptotischen Körperchen (Membran blebbing) führt. Es konnte auch eine physikalische Protein-Proteininteraktion (mittels Co-Immunpräzipitation) mit Bap31 gefunden werden. Dieses Protein ist ebenfalls am ER lokalisiert und Bestandteil eines lokalen Apoptose-Sensors, der einen Proteinkomplex mit Procaspase-8L sowie antiapoptotischen Mitgliedern der Bcl-2-Familie (Bcl-2 bzw. Bcl-XL) bildet. Des weiteren interagiert Saip auch mit einer Deletionsmutante von Spike (Small protein with inherent killing effect-SpikeN19), einem neuen proapoptotischen BH3-only Protein, das ebenfalls am ER lokalisiert ist, und an Bap31 bindet. Saip ist ein ubiquitäres Protein und wird in sehr vielen der getesteten Gewebe und Zelltypen exprimiert. Im Northern-Blot-Verfahren konnte vergleichsweise eine hohe Expression an humaner Saip-mRNA in Niere, Placenta, Herz, Leber, Dünndarm und Skelettmuskulatur detektiert werden. Mit Hilfe von weiteren Northern-Blots wurde herausgefunden, daß Saip durch diverse Reagenzien, die bekanntermaßen Apoptose induzieren können, transkriptionell hochreguliert wird. So ist zum Beispiel das Signal von Saip nach 5-Fluorouracil-Behandlung (5FU), um das 80-fache gegenüber der Kontrolle erhöht. 5FU ist ein sehr effektives und bekanntes Zytostatikum, das in der Klinik zur Behandlung von Colon- und Mammakarzinomen erfolgreich eingesetzt wird. Wird Saip mittels der RNAi–Methode deaktiviert, wird die 5FU-induzierte Apoptose um 1/3 reduziert. Saip könnte somit eine wichtige Rolle in der Behandlung von Tumoren spielen, die mit 5FU therapiert werden.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Untersuchungen über die funktionelle Rolle des Neurotrophinrezeptors p75NTR

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Dec 5, 2002


Neurotrophine sind für die Entwicklung und Funktion des Nervensystems von Wirbeltieren unabdingbar. Sie entfalten ihre vielfältigen Funktionen über zwei Typen von Transmembranrezeptoren. Einerseits binden sie an die Trk-Rezeptoren, andererseits an den Neurotrophinrezeptor p75NTR. Obwohl p75NTR der erste klonierte Neurotrophinrezeptor war, wird die Wirkungsweise von Trk-Rezeptoren heute besser verstanden als von p75NTR. Erstens besitzen Trk-Rezeptoren als Rezeptortyrosinkinasen im Gegensatz zu p75NTR eine intrinsische enzymatische Aktivität, was die Aufklärung ihrer Signaltransduktionsmechanismen bedeutend erleichtert hat. Zweitens vermitteln Trk-Rezeptoren die klassische trophische Funktion der Neurotrophine, p75NTR hingegen neuartige Funktionen von Neurotrophinen, die zuvor noch nicht bekannt waren. Diese nicht-klassischen Funktionen, wie beispielsweise die Zelltod auslösende Wirkung von NGF, werden erst seit den letzten Jahren untersucht. Drittens konnte die Funktion der Trk-Rezeptoren in vollständigen Deletionsmutanten der Maus analysiert werden, wohingegen von p75NTR erst seit kurzem ein vollständiger Knockout existiert. In unserem Labor war nämlich gefunden worden, dass eine Spleißvariante von p75NTR in der bereits beschriebenen Deletionsmutante noch exprimiert wird. Am Beginn dieser Doktorarbeit stand die nähere Charakterisierung dieser Spleißvariante im Vordergrund. Um ihre physiologische Relevanz zu klären, wurde zunächst versucht, die Spleißvariante als endogenes Protein zu detektieren. Dies gelang in Kulturen aus primären Schwannzellen. Wie zudem gezeigt wurde, ist diese Rezeptorisoform in einer in unserem Labor generierten Deletionsmutante von p75NTR nicht mehr vorhanden. Darüber hinaus wurde ein erheblich stärkerer Schwannzellphänotyp in der neuen Deletionsmutante gefunden im Vergleich zur bereits beschriebenen. Letztere stellt somit einen Hypomorph dar. Die Funktion von p75NTR konnte nunmehr erstmals mit Hilfe eines vollständigen Knockouts untersucht werden. Wurde p75NTR zunächst lediglich eine die Trk-Rezeptoren modulierende Funktion zugeschrieben, war bei Beginn dieser Doktorarbeit in mehreren Ansätzen gezeigt worden, dass p75NTR unabhängig von den Trk-Rezeptoren eigenständige Signalaktivität besitzt, die zudem derjenigen der Trk-Rezeptoren entgegengerichtet sein kann. Für eine detaillierte molekulare Analyse der Funktion von p75NTR ist ein In-vitro-Assay unverzichtbar. Ein zentrales Ziel dieser Arbeit war deshalb die Etablierung eines solchen Assays. Ein In-vitro-Assay für p75NTR unter Verwendung der vollständigen Deletionsmutante konnte in cerebellären Körnerzellen etabliert werden. Aktivierung von p75NTR mit NGF führt zu einer Erhöhung der RhoA-Aktivität. Darüber hinaus konnte gezeigt werden, dass auch TNFR, wie p75NTR ein Mitglied der TNFR-Überfamilie, RhoA aktiviert, obgleich mit einer klar unterschiedlichen Kinetik. Die TNFa-vermittelte Regulation von RhoA hemmte das Auswachsen von Neuriten. Im cerebellären Kultursystem konnte jedoch kein Effekt von NGF auf das Neuritenwachstum festgestellt werden. Weil Rho aber auch die Transkription steuern kann, wurde die Wirkung von NGF auf das Genexpressionsmuster von Körnerzellen mit einem ‘Gene-Profiling’-Experiment analysiert. Es wurden 69 Gene, die durch NGF entweder hoch- oder hinunterreguliert werden und zum Teil ‘Cluster’ bilden, gefunden. Mit Hilfe der vollständigen Deletionsmutante wurden bisher GAP-5 und GluR2 als neue Zielgene von p75NTR identifiziert. GluR2 kodiert für eine der vier AMPA-Rezeptor-Untereinheiten und spielt eine zentrale Rolle für die synaptische Plastizität. Da in einem unabhängigen Ansatz ein Defekt bei der Ausprägung von hippocampalem LTD (‘long term depression’), einer Form von synaptischer Plastizität, im vollständigen Knockout von p75NTR gefunden worden war, wurde der weitere Schwerpunkt dieser Arbeit auf den AMPA-Rezeptor gelegt. Die weitere Untersuchung aller AMPA-Rezeptor-Untereinheiten im Hippocampus ergab, dass neben GluR2 auch GluR3 ein Zielgen von p75NTR ist und dass zudem GluR2 wie auch GluR3, jedoch nicht GluR1 und GluR4, in vivo im p75NTR-Knockout im Vergleich zum Wildtyp in ihrer Expression signifikant verändert sind. Diese Befunde legen eine veränderte Stöchiometrie des AMPA-Rezeptors im p75NTR-Knockout nahe und liefern einen Erklärungsansatz für das veränderte LTD in der p75NTR-Deletionsmutante. Zudem erweitern sie das Konzept der Bedeutung von Neurotrophinen für die synaptische Plastizität im Allgemeinen und der von p75NTR im Speziellen.