Podcasts about chromatins

  • 7PODCASTS
  • 11EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • May 2, 2013LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about chromatins

Latest podcast episodes about chromatins

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 15/19
Analyse von posttranslationalen Histonmodifizierungen und Chromatin-Effektorproteinen während Mitose und Apoptose

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 15/19

Play Episode Listen Later May 2, 2013


Desoxyribonuklerinsäure (DNA), die Erbinformation, definiert die Struktur und Funktion jeder Zelle. In Eukaryoten ist sie um Oktamere aus den Histonen H2A, H2B, H3 und H4 gewunden. Sie bilden mit der DNA höhere Strukturen, das sog. Chromatin. Die Struktur des Chromatins beeinflusst direkt die Aktivität der gebundenen DNA. Eukaryoten besitzen daher viele molekulare Mechanismen zu ihrer Veränderung, z.B. posttranslationale Modifizierungen (PTMs) von Histonproteinen oder den Austausch von kanonischen Histonen mit Histonvarianten (z.B. H3.1, H3.2, H3.3, u.a.). Für einige Varianten sind ihnen eigene, charakteristische PTMs beschrieben, z.B. die Phosphorylierung des Serins 31 der Variante H3.3 (H3.3S31ph). Die Histone Code Hypothesis postuliert, dass PTMs von Histonen in festen Mustern vorliegen können. Die Switch Hypothesis beschreibt die Regulation von Bindemolekülen an Histone durch benachbarte PTMs. Auf ihrer Grundlage wurde die These der Doppelmodifizierung einer bekannten Trimethylierung der Aminosäure (AS) Lysin 79 mit einer mutmaßlichen Phosphorylierung der AS Threonin 80 auf Histon H3 aufgestellt (H3K79me3T80ph). Neben der Etablierung eines einfachen Systems zur Identifizierung bisher unbeschriebener Phosphorylierungen bestand ein zweites Ziel dieser Arbeit im Nachweis der Phosphorylierung von H3 Threonin 80 in vivo. Eine weitere Zielsetzung lag in der genaueren Charakterisierung der bereits beschriebenen Varianten-spezifischen PTM H3.3S31ph, deren Expression zwar eng umschrieben ist, über deren spezifische Funktionen, Kinase und mögliche Effektorproteine aber wenig bekannt ist. Um einen Überblick über Phosphorylierungen verschiedener Histonroteine zu gewinnen, wurden unterschiedliche Polyacrylamidgel-Elektrophoresen Verfahren (PAGE) etabliert. Zum Einsatz kamen A/U-, T/A/U- und 2D-T/A/U-PAGE Verfahren. Sie ermöglichten in Übereinstimmung mit der Literatur die Auftrennung bekannter PTM und stehen nun für weiterführende Studien zur Verfügung. Der massenspektrometrische Nachweis der putativen PTM H3K79me3T80ph in vivo gelang nicht. Trotz optimierter Versuchsbedingungen konnte die Phosphorylierung weder in der MALDI-ToF, noch in der Orbitrap MS/MS nachgewiesen werden. Initiale Antikörperdaten wurde aufgrund einer aufgedeckten Kreuzreaktivität in Frage gestellt. Obgleich nicht mit letzter Sicherheit gesagt werden kann, dass H3K79me3T80ph in vivo nicht existiert, wurde die These letztlich verworfen. Die molekularbiologische Untersuchung der Varianten-spezifischen PTM H3.3S31ph ergab bei verifizierter Überexpression und Chromatin-Integration punktmutierter Histone übereinstimmend Hinweise auf einen Effekt der PTM auf die Zellteilung. Es konnte gezeigt werden, dass Serin 31 bzw. ihre PTM H3.3S31ph sowohl Zellzyklus, als auch Wachstums- und Proliferationsgeschwindigkeiten von HeLa Zellen beeinflusst. Dies argumentiert für eine aktivierende Funktion von H3.3S31ph in der Mitose. Weiter konnten mithilfe eines ELISAs fünf potentielle Proteinkinasen für H3.3S31ph identifiziert werden. Vorrangig kommt dabei die nukleäre Kinase PIM1 in Betracht. Zur weiteren Untersuchung potentieller Effektorproteine wurde in vitro ein molekularbiologisches Modellsystem etabliert. Es steht nun für weiterführende Studien zur Verfügung. Erste Vorarbeiten konnten bereits zeigen, dass hier evtl. Interaktionen mit dem Linkerhiston H1 eine wichtige Rolle spielen.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06

Verschiedene Arbeiten der letzten Jahre konnten zeigen, dass sich in vielen, verschiedenen Zelltypen genreiches, transkriptionell aktives und früh replizierendes Chromatin bevorzugt im Inneren der Zellkerne aufhält, während das genarme, transkriptionell inaktive und spät replizierende Chromatin vorrangig an der Zellkernperipherie zu finden ist. Dennoch ist bislang noch nicht wirklich verstanden, welche der Chromatineigenschaften, wie die lokale Gendichte, die Expression oder die Replikationszeit, tatsächlich einen ausschlaggebenden Einfluss auf die räumliche Anordnung im Zellkern haben und welche dieser Eigenschaften nur aufgrund ihrer Korrelation mit diesen „dominanten“ Merkmalen eine spezifische Verteilung im Interphasekern aufweisen. Um dieses Problem zu untersuchen, stellten wir Pools aus BAC Klonen von HSA 11, 12, 18 und 19 für R-und G-Banden-spezifische Regionen, genreiche bzw. genarme Segmente sowie für hoch bzw. niedrig exprimierte Gene zusammen. Mit Hilfe der multicolor 3D-FISH Technik, Bildverarbeitung und computergestützter, quantitativer Auswertungen wurde die Lage dieser BAC Pools im Zellkern sowie ihre Anordnung bezüglich ihrer Chromosomenterritorien analysiert. Sowohl in den humanen Lymphozyten wie in den humanen Fibroblasten fanden wir den R-Banden Pool, den genreichen Pool sowie den Pool, der die hoch exprimierten Gene enthielt, weiter im Zellkerninneren als ihre jeweils korrespondierenden Pools (G-Banden, genarmer Pool, bzw. niedrig exprimierte Gene). Für jeden BAC Pool wurde mittels sorgfältiger Datenbankrecherche die mittlere lokale Gendichte, der mittlere GC Gehalt, die Replikationszeit sowie das mittlere Expressionsniveau bestimmt. Anschließend wurde eine Korrelationsanalyse dieser Parameter mit der berechneten mittleren, relativen Position der Pools im Zellkern durchgeführt. Die höchste Korrelation ergab sich für die Gendichte, während wir zeigen konnten, dass das Expressionsniveau, die Zuordnung zu einer R- oder G.Bande, sowie das Replikationstiming offensichtlich so gut wie keinen Einfluss auf die radiale Anordnung des Chromatins im Zellkern hat. Diese radiale Positionierung der verschiedenen Pools spiegelte sich auch in ihrer Anordnung bezüglich der Chromosomenterritorien wieder. Diese zeigen eine polare Anordnung in Bezug auf den Zellkern: Genreiche Segmente waren zum Mittelpunkt des Zellkerns hin orientiert, während die genarmen Segmente in der Hälfte des CTs zu finden waren, die sich in Richtung der Peripherie erstreckte. Etwas weniger deutlich ausgeprägt wurde diese Anordnung auch für die R-/G-Banden Pools sowie für die von der transkriptionellen Aktivität abhängigen Pools beobachtet. Dies spricht für eine deutliche strukturelle Transformation bei der Umwandlung der Metaphasenchromosomen zu den CTs der Interphase, die Territorien haben eine hohe Plastizität. Wir konnten bestätigen, dass die extrem genreiche und hoch transkriptionell aktive Region 11p15.5 oft weit aus ihrem CT herausragt. Ein ähnliches Verhalten konnte jedoch nicht für die ebenfalls sehr genreichen und transkriptionell aktiven Segmente des Chromosoms 12 beobachtet werden, was gegen die Annahme spricht, das dieses Phänomen des „looping outs“ ein typische Anordnung für Chromatinabschnitte mit solchen extremen Eigenschaften ist. Wir konnten ebenfalls keine Unterschiede für die Verteilung der BAC Pools der Chromosomen 12, 18 und 19 bezüglich der Oberfläche der CTs finden. R- und G-Banden, genreiche und genarme Segmente sowie hoch und niedrig exprimierte Gene scheinen gleichmäßig im gesamten Territorium verteilt zu sein. Die äußere, das CT einschließende Oberfläche scheint entgegen der Erwartung offensichtlich kein wichtiger Reaktionsort für besonders genreiche bzw. hoch exprimierte Sequenzen zu sein.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Anordnung und Struktur von Chromosomenterritorien in Mauszellen: Zelltypspezifische Unterschiede und Gemeinsamkeiten

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Jul 12, 2006


Der Aufbau des Zellkerns und die höheren Organisationsmuster von Chromosomen gehorchen Regeln, die bisher in menschlichen Zellen und Zellen einiger Primaten bestätigt werden konnten. In dieser Arbeit sollte an einem anderen Säuger, der Maus, untersucht werden, in wie weit sich die bisher gewonnenen Erkenntnisse auch auf den molekularbiologisch intensiv studierten Modellorganismus der modernen Genomforschung übertragen lassen. Besonders interessant ist die Frage, weil der Karyotyp der Maus nur akrozentrische Chromosomen enthält und viel homogener in Bezug auf Chromosomengröße und Gendichte ist, als der Karyotyp des Menschen oder verschiedener Primaten. Die letzten gemeinsamen Vorfahren von Mäusen und Menschen lebten vor über 80 Mio. Jahren, in dieser Zeitspanne fanden die zahlreichen Veränderungen am Genom der Maus statt. Die vorliegende Arbeit untersucht, ob Gemeinsamkeiten in Bezug auf die Organisation des Chromatins nachzuweisen sind und ob evolutionär konservierte Organisationsmuster zu finden sind. Die quantitative Untersuchung der Topologie von Chromosomenterritorien und Zentromerregionen erfolgte mit Fluoreszenz-in-situ-Hybridisierung auf Zellkernen von vier Zelltypen der Maus. Auf Kerne von Lymphozyten, Fibroblasten, ES-Zellen und Makrophagen wurden die Territorien von sechs Chromosomen mittels Chromosomen-Paint-Sonden hybridisiert. Das ausgewählte Chromosomenset enthielt genreiche, genarme, große und kleine Chromosomen in verschiedenen Kombinationen. Bilddaten wurden mit einem konfokalen Laser-Scanning-Mikroskop aufgenommen und einer digitalen quantitativen Bildanalyse unterzogen. In allen Mauszelltypen zeigten sich klare Korrelationen zwischen sowohl Gengehalt als auch Größe und radialer Verteilung von Chromosomenterritorien. Bei kugeligen Lymphozytenkernen korreliert die Gendichte stärker mit der radialen Verteilung als es die Chromosomengrößen tun. In Fibroblasten sind beide Korrelationen schwächer, aber nachweisbar, in ES-Zellen sind die Korrelationskoeffizienten wieder etwas höher und für beide Verteilungsmodelle gleich, in Makrophagen überwiegt die größenabhängige Verteilung der Chromosomenterritorien. Das genreichste Chromosom MMU 11 zeigt in den Lymphozyten die meisten Unterschiede zu anderen Chromosomenterritorien, während sich das genarme MMU X in den untersuchten männlichen ES Zellen durch seine extreme Randlage von den anderen unterscheidet. Innerhalb der Fibroblasten und Makrophagen gibt es vergleichsweise wenig signifikante Unterschiede zwischen den radialen Positionen der untersuchten Chromosomenterritorien. Zelltypspezifische Verlagerungen von Chromosomenterritorien zeigten sich auch nach einem Differenzierungsschritt von ES-Zellen zu Makrophagen. Die Lage der Chromozentren ist zelltypspezifisch. Im Gegensatz zu den untersuchten Chromosomenterritorien liegen die Chromozentren in Fibroblasten und Makrophagen in relativ zentralen Positionen. In Lymphozyten sind die Chromozentren am weitesten nach außen zum Zellkernrand gelangt, gefolgt von den ES-Zellen. Die Anzahl der Chromozentren ist ebenfalls zelltypspezifisch. Ausgehend von der Chromozentrenzahl in ES Zellen nimmt die Zahl der Chromozentren in differenzierteren Zellen zu (Lymphozyten, Fibroblasten) oder bleibt gleich (Makrophagen). Aufgrund der Ergebnisse lässt sich ausschließen, dass die äußere Form des Zellkerns alleine für die beobachteten Verteilungsunterschiede verantwortlich ist. Allerdings waren die beobachteten Unterschiede kleiner als bei vergleichbaren menschlichen Zelltypen. Mit ein Grund dafür ist sicher die geringere Variabilität der Chromosomengröße und Gendichte im Genom der Maus. Zellkernvolumina lagen zwischen 470 und 650 µm3. Lymphozyten besitzen im Durchschnitt die kleinsten Kerne der zyklierenden Zelltypen, ES-Zellen die größten. Makrophagen befanden sich in der G0-Phase, ihre Zellkerne waren am kleinsten und wiesen die geringste Standardabweichung auf. Die Analyse der Winkel und Abstände innerhalb der Chromosomenterritorien zeigte eine sehr flexible Positionierung innerhalb der Grenzen radialer Ordnungsprinzipien. Diese Resultate sind unvereinbar mit einem früher vorgeschlagenen Modell der Trennung des parentalen Genoms. Es gibt keine Hinweise für eine Abweichung von einer zufälligen Verteilung, von einer Häufung nahe beieinanderliegender MMU 1 Homologen in Makrophagen abgesehen. Zur Untersuchung der Struktur von Chromosomenterritorien wurden Programme angewandt, bei denen steigende Schwellwerte zu Zerfällen von Objekten führten, die analysiert wurden. Zwei unabgängige Methoden zur Berechnung von Objektzahlen in Bildstapeln führten zu gleichen Ergebnissen. Mit dem Programm OC-2 konnten Unterschiede in der Textur von Chromosomenterritorien bei der Maus innerhalb eines Zelltyps, als auch zwischen Zelltypen festgestellt werden. Dabei wurden die individuellen Chromosomengrößen mit berücksichtigt. Es konnte kein allgemeiner Zusammenhang zwischen den durchschnittlichen maximalen Objektzahlen und dem Gengehalt der entsprechenden Chromosomen festgestellt werden, vielmehr scheint die Textur des Chromatins von noch unbekannten, zelltypspezifischen Faktoren beeinflusst zu sein. Die Analyse der Chromatinstruktur in normalen menschlichen Zelltypen und in Tumorzelllinien mit dem Objektzählprogramm OC-2 ergab allgemein erhöhte Objektzahlen in Tumorzellen, verglichen mit normalen Zelltypen. Davon unabhängig waren auch immer die genreichen HSA 19 durch höhere Objektzahlen charakterisiert als die etwas größeren genarmen HSA 18 in den selben Zell-typen. Vergleiche zwischen den Objektzahlen eines Chromosoms in normalen Zelltypen und Tumorzelllinien ergaben mehr Unterschiede, als Vergleiche nur innerhalb der normalen Zelltypen. Die hier untersuchten Tumorzelllinien weisen eine objektreichere Chromatinstruktur auf, als die ihnen gegenübergestellten normalen Zelltypen.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Kernpositionierung und funktionelle Regulation von Genen der humanen CFTR-Region auf Chromosom 7

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Dec 16, 2005


Die vorliegende Arbeit hatte zum Ziel, die komplexen Zusammenhänge zwischen der Kernlokalisation, der transkriptionellen Aktivität und dem Replikationsverhalten von Zelltyp-spezifisch regulierten Genen in menschlichen Zellen besser zu verstehen. Im ersten Teil dieser Arbeit wurde die Kernlokalisation der drei benachbarten, jedoch funktionell unabhängigen Gene GASZ, CFTR und CORTBP2 der humanen CFTR-Region auf Chromosom 7q31 ermittelt und mit dem Expressionsverhalten verglichen. Durch eine 2D-Erosionsanalyse wurde die radiale Positionierung dieser Gene in einer Reihe von Zelllinien und primären Zelltypen untersucht. Die Ergebnisse haben gezeigt, dass transkriptionell aktive Gene der CFTR-Region bevorzugt im Zellkerninneren lokalisierten, nicht exprimierte Gene waren dagegen eng mit der Kernperipherie assoziiert. Die benachbarten Genloci wiesen dabei eine voneinander weitgehend unabhängige Lokalisation auf. Unter Verwendung hoch auflösender konfokaler Mikroskopie und dreidimensionaler Bildrekonstruktion konnte diese Korrelation durch eine 3D-Erosionsanalyse im Wesentlichen bestätigt werden. Um zu ermitteln, ob die unterschiedlich positionierten Genloci mit verschiedenen Chromatin-Fraktionen assoziiert sind, wurde eine Kolokalisationsanalyse vorgenommen. Die Daten haben gezeigt, dass inaktive Genloci der CFTR-Region zu einem hohen Anteil mit dem perinukleären Heterochromatin assoziiert sind, aktive Genloci lokalisierten dagegen bevorzugt in dem hyperazetylierten Euchromatin im Kerninneren. Mehrfarben-FISH Experimente haben gezeigt, dass die eng benachbarten Genloci entsprechend ihrer transkriptionellen Aktivität simultan mit unterschiedlichen Bereichen im Zellkern assoziiert sein können und vermutlich die intergenischen Bereiche zwischen den Genen als flexible Linker dienen. Die Ergebnisse dieser Arbeit legen im Gegensatz zu früheren Studien (Sadoni et al., 1999; Volpi et al., 2000; Williams et al., 2002; Mahy et al., 2002) die Vermutung nahe, dass die Positionierung subchromosomaler Regionen auf der Ebene einzelner Gene reguliert wird. Durch die Behandlung der Zellen mit TSA wurde außerdem gezeigt, dass eine erhöhte Histonazetylierung zu der Dissoziation eines inaktiven Genlokus von heterochromatischen Bereichen führt, die transkriptionelle Aktivität davon jedoch nicht beeinflusst wird. Im zweiten Teil dieser Arbeit wurde untersucht, welcher funktionelle Zusammenhang zwischen dem Replikationsverhalten von GASZ, CFTR und CORTBP2 und der transkriptionellen Aktivität und Kernlokalisation dieser Gene besteht. Die Bestimmung der Replikationszeitpunkte wurde durch die Untersuchung des Auftretens von FISH-Dubletten während definierter S-Phase Stadien vorgenommen. Da bei dieser Analyse die Möglichkeit besteht, den Anteil an Dubletten durch eine verlängerte Schwester-Chromatid Kohäsion zu unterschätzen (Azuara et al., 2003), wurden die ermittelten Zeitpunkte darüber hinaus durch verschiedene Fixierungsmethoden überprüft. Die Ergebnisse haben gezeigt, dass transkriptionell aktive Genloci, die in dem hyperazetylierten Euchromatin lokalisierten, zu einem früheren Zeitpunkt replizierten als nicht exprimierte Genloci, die eng mit dem perinukleären Heterochromatin assoziiert waren. Durch eine TSA-Behandlung der Zellen wurde nachgewiesen, dass vor allem die Assoziation mit definierten Chromatin-Fraktionen einen Einfluss auf das Replikationsverhalten ausübt, die transkriptionelle Aktivität und das Replikationsverhalten jedoch nur indirekt miteinander in Zusammenhang stehen. Auf der Basis dieser Daten und früherer Studien wurde ein Modell erstellt, das die epigenetischen Mechanismen zueinander in Beziehung setzt, die an der Aktivierung Zelltyp-spezifisch regulierter Gene beteiligt sind. Der letzte Teil dieser Arbeit war der Frage gewidmet, ob Komponenten der Zellkernlamina an der perinukleären Positionierung des reprimierten CFTR-Lokus beteiligt sind. Dazu wurden HeLa S6 Zellen mit Lamin A/C-, Lap2- oder Emerin-siRNAs transfiziert. Nach erfolgreichem Knockdown wurde die Kernlokalisation des CFTR-Lokus durch Erosionsanalysen und Abstandsmessungen zu der Kernperipherie ermittelt. Die Ergebnisse haben gezeigt, dass nach dem Knockdown von Lamin A/C, Lap2 oder Emerin der CFTR-Lokus signifikant weiter im Kerninneren lokalisierte. Dabei schienen Lamin A/C und Lap2 einen stärkeren Einfluss auf die Lokalisation von CFTR auszuüben als Emerin. Auch wenn in früheren Arbeiten bereits gezeigt wurde, dass die Kernlamina für die Positionierung peripheren Chromatins von Bedeutung ist (Sullivan et al., 1999; Goldman et al., 2004; Zastrow et al., 2004), konnte hier zum ersten Mal ein direkter Einfluss auf die Lokalisation eines einzelnen Genlokus demonstriert werden. In einem ergänzenden Ansatz wurde die Kernlokalisation von CFTR in Fibroblasten von HGPS-Patienten untersucht, die auf Grund der Akkumulation von mutiertem Lamin A/C Deformationen der Zellkernlamina und Zellzyklus-Defekte aufwiesen (Eriksson et al., 2003; Goldman et al., 2004). Durch Abstandsmessungen zu der Kernperipherie und durch Kolokalisationsanalysen wurde gezeigt, dass der CFTR-Lokus in HGPS-Zellen einen größeren Abstand zur Kernperipherie aufwies und häufiger im hyperazetylierten Euchromatin lokalisierte als in Fibroblasten eines gesunden Probanden. Insgesamt unterstützen diese Daten die Vermutung, dass die Misslokalisation von reprimierten Genen in ein verändertes Chromatin-Umfeld an dem Krankheitsbild dieser und anderer Laminopathien beteiligt sein könnte.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19
Charakterisierung von Chromatinfaktoren mit Hilfe von Antikörpern: Von der Fruchtfliege zum humanen Prostatakarzinom und zurück

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19

Play Episode Listen Later Apr 7, 2005


Die Organisation der DNA in Nukleosomen hat einen großen Einfluss auf die Regulation von grundliegenden Prozessen wie Transkription, Replikation oder Reparatur der DNA im Zellkern. Um die hinderliche Natur des Chromatins bei diesen fundamentalen Prozessen zu überwinden, existieren mehrere verschiedene Chromatin modifizierende Proteinkomplexe im Zellkern. Chromatin Remodelling Komplexe nützen die Energie der ATP-Hydrolyse um die Position der Nukleosomen so zu verändern, dass verschiedene Abschnitte der DNA für die Interaktion mit regulierenden Faktoren zugänglich werden. Ein Klasse solcher Remodelling Faktoren beinhalten die ATPase ISWI als katalytische Untereinheit. Das Protein wurde zuerst in Drosophila entdeckt und die drei verschiedenen ISWI enthaltenden Komplexe, nämlich NURF, ACF und CHRAC, wurden ausführlich in diesem Modellorganismus untersucht. Homolog zur Fruchtfliege existieren sehr ähnliche Protein Komplexe beim Menschen. Wir haben das humane ISWI mit den Isoformen Snf2h und Snf2L im Prostatakarzinom untersucht. In einem Tissue Microarray wurden Gewebeproben mit Hilfe von polyklonalen Antikörpern gegen ISWI gefärbt. Es folgte ein quantitativer Vergleich der Färbungsintensitäten im Karzinomgewebe sowie in gutartigem Gewebe der Prostata durch Anwendung von digitaler Bildanalyse. Das Ergebnis war eine signifikant stärkere Färbung im neoplastischen Gewebe. Eine Anreicherung von ISWI in Krebszellen ist besonders interessant im Kontext der bekannten Funktionen des Proteins für DNA-Replikation, Zellproliferation und Regulation der Chromatinstruktur. In einem zweiten Projekt sind wir zum Modell der Fruchtfliege zurückgekehrt und entwickelten monoklonale Antikörper gegen Toutatis, das zu einer Proteinfamilie gehört, die auch einige bekannte Interaktionspartner von ISWI umfasst. Die Proteine dieser Familie haben vermutlich eine regulatorische Funktion in den Remodelling Komplexen, denn am Beispiel von Acf1 wurde gezeigt, dass sie die nukleosomale Bindung sowie die Effizienz und Richtung der Mobilisierung von Nukleosomen modifizieren. Unsere Antikörper wurden etabliert, um Toutatis enthaltende Komplexe durch Western Blot Analyse von gereinigten Drosophila-Extrakten und Immunfluoreszenz zu charakterisieren. Mit diesen Methoden fanden wir eine Koelution von Toutatis mit der ATPase Brahma und dem Strukturprotein Spectrin alpha sowie eine Lokalisation in der Lamina des Zellkerns. Ein mögliches Zusammenspiel dieser Proteine in einem neuen Chromatin Remodelling Komplex mit einer Beteiligung an der DNA-Reparatur wird diskutiert.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Biochemische Darstellung funktionaler Proteome und großer Proteinkomplexe

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Feb 22, 2005


Proteine leisten den entscheidenden Beitrag zur Struktur und Funktion der Zellen aller Lebewesen.Vieles spricht daher für eine Betrachtung des Proteoms oder einer Teilmenge davon (Subproteom), um den Zustand lebender Zellen zu beschreiben. Mit optimierten und neuen Methoden wurde das regulatorische Netzwerk, welches auf der Ebene der Trankription die Expression von Proteinen entscheidend mitbestimmt, genauer betrachtet. Hierzu wurden Zellfraktionierungsprotokolle optimiert, um die Proteine des Zellkerns und des Chromatins anzureichern und in nachfolgenden Analysen verwenden zu können. Es wurden Antikörper gegen verbreitete, funktional relevante Peptidmotive generiert. Aufbauend auf dem Konzept der Motivantikörper wurde eine Färbemethode für Zellkernproteine mit Kernlokalisationssignal entwickelt. Schließlich wurde mit den Methoden der Zellfraktionierung und spezifischeren Antikörpertechniken eine Analyse des humanen Mediator-Komplexes der RNA Polymerase II unternommen, die zur Entdeckung neuer Untereinheiten, potentiell interagierender Proteine und Phosphorylierungen im Komplex führte.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Biochemische Charakterisierung von Histon-Methyltransferasen aus Drosophila melanogaster

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Nov 22, 2004


In der vorliegenden Arbeit wurden die beiden Histon-Methyltransferasen Su(var)3-9 und E(Z) aus Drosophila melanogaster charakterisiert. Die Histonmethylierung als Modifikation war schon länger bekannt gewesen, bis zum Jahr 2000 war jedoch vor allem die Acetylierung etwas genauer untersucht worden. Su(var)3-9 war die einzige bekannte Histon-Lysin-Methyltransferase, als diese Arbeit begonnen wurde. Zur Charakterisierung wurde das myc-getagte Enzym aus Drosophila-Kernextrakt durch Affinitätschromatographie aufgereinigt und zunächst die Substratspezifität festgestellt. Wie das humane Enzym Suv39H1 methyliert es ebenfalls spezifisch H3-K9 (Lysin 9 im Histon H3). Das aus den Kernextrakten aufgereinigte Enzym besitzt aber auch die Fähigkeit, ein an H3-K9 präacetyliertes Substrat zu methylieren. Die Vermutung, dass Su(var)3-9 mit einer Histondeacetylase assoziiert ist, konnte durch Verwendung von TSA als HDAC-Inhibitor bestätigt werden. Es stellte sich heraus, dass HDAC1 (Rpd3) mit Su(var)3-9 assoziiert ist. Um das Enzym besser untersuchen zu können, wurde es als Volllängenprotein und als Deletionsmutante in E. coli exprimiert. Die Aufreinigung des rekombinanten Enzyms sowie seine Lagerbedingungen wurden optimiert. Das Volllängenprotein Su(var)3-9 liegt – wie durch Gelfiltration festgestellt - als Dimer vor, die Interaktion mit sich selbst ist über den N-Terminus vermittelt. Su(var)3-9 bindet an sein eigenes, bereits methyliertes Substrat. Dies wurde an Peptiden untersucht, die den ersten 20 Aminosäuren des Histons H3 entsprechen, und entweder an Lysin 9 dimethyliert oder unmodifiziert waren. Die Interaktion mit dem methylierten Substrat ist auf die Chromodomäne von Su(var)3-9 zurückzuführen, ist jedoch schwächer als die Wechselwirkung von HP1 mit methyliertem H3-K9. Des weiteren wurde eine Drosophila-Zelllinie stabil mit Su(var)3-9 transfiziert. Das überexprimierte Protein ist jedoch nur schwach aktiv. Die Tatsachen, dass Su(var)3-9 mit HDAC1 interagiert sowie mit seinem eigenen Substrat assoziiert, ermöglichen die Aufstellung von Hypothesen über die bis jetzt kaum erhellte Ausbreitung von Heterochromatin in euchromatische Bereiche. Durch die Wechselwirkung mit der Deacetylase könnte Su(var)3-9 auch in aktiv transkribierte Bereiche vordringen und diese methylieren. Die Acetylierung, Zeichen für aktive Transkription, würde durch die Methylierung ersetzt werden. Die Interaktion mit seinem umgesetzten Substrat könnte verhindern, dass das Enzym sich nach der Reaktion entfernt, vielmehr könnte Su(var)3-9 entlang eines DNA-Stranges sukzessive alle Nukleosomen methylieren. Die darauffolgende Bindung von HP1 an methyliertes H3-K9 könnte den heterochromatischen Charakter des Chromatins verstärken und für längere Zeit festlegen. Aus Drosophila-Kernextrakten gelang es weiterhin, den E(Z)/ESC-Komplex über Säulenchromatographie aufzureinigen. Dieser enthält neben E(Z), ESC, p55 und Rpd3 auch Su(z)12. E(Z), ESC und Su(z)12 gehören der Polycomb-Gruppe an. Deren Funktion ist die dauerhafte Repression der homöotischen Gene. Sie spielen daher eine wichtige Rolle im „Zellgedächtnis“ während der frühen Entwicklung von Drosophila. Es konnte gezeigt werden, dass der E(Z)/ESC-Komplex Lysin 9 sowie Lysin 27 im Histon H3 methyliert. Außerdem wurde in vitro ein Teilkomplex aus rekombinantem E(Z), p55 und ESC rekonstituiert, der das Histon H3 methylieren kann. Ein Teilkomplex, der E(Z) mit mutierter SET-Domäne enthält, ist nicht in der Lage, H3 zu methylieren. Die Vorhersage, dass E(Z) aufgrund seiner SET-Domäne eine Methyltransferase sein müsse, konnte durch vorliegende Untersuchungen bestätigt werden. Polycomb ist ein weiteres Protein aus der Polycomb-Gruppe. In dieser Arbeit konnte gezeigt werden, dass dieses Protein spezifisch an das Histon H3 bindet, das an K27 trimethyliert ist. Polycomb besitzt wie HP1 eine Chromodomäne. Aus den vorliegenden Daten kann folgendes Modell aufgestellt werden: Nach der Methylierung von H3-K9 sowie H3-K27 durch den E(Z)/ESC-Komplex in homöotischen Genen, die schon abgeschaltet sind und weiterhin reprimiert werden müssen, bindet Polycomb an dieses Methylierungsmuster. Polycomb befindet sich in einem großen Komplex mit weiteren Polycomb-Gruppen-Proteinen. Die Bindung dieses Komplexes an Chromatin könnte ein denkbarer Mechanismus sein, wie die dauerhafte Repression der homöotischen Gene vermittelt wird. Um den E(Z)/ESC-Komplex genauer untersuchen zu können, wurden Viren für das Baculosystem hergestellt, so dass eine Einzel- oder auch Coexpression der Proteine möglich ist. Die Aktivität von E(Z), das im Baculosystem exprimiert wurde, ist nicht besonders hoch. Es bindet unter den in dieser Arbeit verwendeten Bedingungen weder an DNA, noch an Histone noch an H3-Peptide, die methyliert sind. Innerhalb des E(Z)/ESC-Komplexes bindet E(Z) an p55, Rpd3, ESC sowie Su(z)12. Su(z)12 interagiert mit p55, Rpd3 und E(Z). Die weiteren Interaktionen werden am besten durch eine bildliche Darstellung (siehe Abb. 86) vermittelt. In einem Luciferase-Assay wurde eine repressive Wirkung von E(Z) festgestellt. Dieses Experiment bedarf allerdings eines aktivierten Systems. Ferner muss durch Mutationsanalysen sichergestellt werden, dass die repressive Wirkung auf die Methyltransferase-Aktivität von E(Z) zurückzuführen ist. Kürzlich wurde entdeckt, dass E(Z) sowie Su(z)12 in verschiedenen Tumoren überexprimiert sind. Noch ist weder deren Funktion in den Tumorzellen klar, noch weiss man, ob die Überexpression der Grund oder eine Folge der Tumorbildung ist, noch kennt man alle Zielgene, die durch eine Überexpression von E(Z) und Su(z)12 beeinflusst werden. In nächster Zeit sind hier Einsichten in die Wirkungsweise von E(Z), Su(z)12 und anderen Polycomb-Gruppen-Proteinen zu erwarten.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Untersuchungen zur Organisation der Transkription und DNA-Replikation im Kontext der Chromatinarchitektur im Kern von Säugerzellen

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Oct 31, 2003


In der vorliegenden Arbeit wurden verschiedene Fragestellungen zur funktionellen und dynamischen Organisation des Kerns von Säugerzellen untersucht. Der erste Teil der Arbeit widmete sich der Frage, in welchem Zusammenhang die Synthese naszenter RNA mit der Organisation des Chromatins im Zellkern steht. Dabei wurde speziell untersucht, ob naszente RNA bevorzugt in chromatinarmen Räumen lokalisiert, wie es das Chromosomen-Territorien/Interchromatin-Kompartiment Modell (CT/IC-Modell)(Cremer und Cremer, 2001) vorhersagt. Diese Untersuchungen wurden an HeLa-Zellen durchgeführt, die stabil eine Fusion zwischen dem „Green Fluorescent Protein” (GFP) und dem Histon H2B exprimierten (Kanda et al., 1998). Mit Hilfe dieses Fusionsproteins kann die Chromatinstruktur sehr gut dargestellt werden (Sadoni et al., 2001; Zink et al., 2003). Die naszente RNA wurde in diesen Zellen durch kurze Pulse von BrUTP markiert, das anschließend durch eine Immunfärbung nachgewiesen wurde. Die markierten Zellen wurden mit Hilfe hochaufl ösender konfokaler Laserscanning Mikroskopie aufgenommen. Für die Analyse der Bilddaten wurde eine Erosionsmethode entwickelt, welche die Auswertung der Daten unabhängig von subjektiv gewählten Schwellenwerten ermöglichte. Die Ergebnisse dieser Analysen zeigten keine bevorzugte Lokalisierung naszenter RNA in chromatinarmen Bereichen. Damit stützen die Ergebnisse nicht die entsprechenden Vorhersagen des ICD-Modells. Die hier gewonnenen Ergebnisse stehen nicht im Einklang mit den Ergebnissen anderer Studien (Politz et al., 1999; Verschure et al., 1999). Die unterschiedlichen Ergebnisse sind wahrscheinlich auf unterschiedliche Methoden zur Darstellung der Chromatinorganisation, beziehungsweise auf unterschiedliche Methoden zur Bildanalyse zurückzuführen. Eine weitere Fragestellung, die im Zusammenhang mit der dynamischen Organisation der RNA-Synthese und RNA-Prozessierung in der vorliegenden Arbeit untersucht wurde, war wie das Spleißfaktor-Kompartiment mit Chromatin interagierte. Diese Interaktion sollte in lebenden „Chinesischen Hamster Ovarien” (CHO)-Zellen untersucht werden. Speziell sollte der Frage nachgegangen werden, ob das Spleißfaktor-Kompartiment unterschiedlich mit funktionell unterschiedlichen Chromatinfraktionen assoziiert ist. Dafür wurde die DNA dieser Chromatinfraktionen mit Hilfe von Cy3-dUTP (Zink et al., 1998; Zink et al., 2003) spezifisch markiert. Das Spleißfaktor-Kompartiment der lebenden Zellen wurde simultan mit einem hier lokalisierenden GFP-Fusionsprotein dargestellt (freundlicherweise zur Verfügung gestellt von Dr. M. C. Cardoso, MDC, Berlin). Die so markierten lebenden Zellen wurden mit Hilfe der konfokalen Laserscanning Mikroskopie aufgenommen. Die Auswertung der Bilddaten ergab eine generelle enge Assoziation des Spleißfaktor-Kompartiments mit früh-replizierendem und transkriptionell aktivem Chromatin. Dagegen bestand eine solche Assoziation nicht mit spät-replizierendem und transkriptionell inaktivem Chromatin. Eine Behandlung der Zellen mit dem Transkriptions-Inhibitor α-Amanitin zeigte, dass die enge Assoziation des Spleißfaktor-Kompartiments mit früh-replizierendem und transkriptionell aktivem Chromatin direkt vom Prozess der Transkription abhängig war. Insgesamt zeigten die Daten zum ersten Mal, dass es in lebenden Zellen eine definierte Interaktion des Spleißfaktor-Kompartiments mit funktionell unterschiedlichen Chromatinfraktionen gibt, die abhängig ist vom Prozess der Transkription. Ein weiterer dynamischer Prozess im Zellkern, der in der vorliegenden Arbeit an lebenden HeLa-Zellen untersucht werden sollte, war der Prozess der DNA-Replikation. Von besonderem Interesse war hierbei die Frage, welchen dynamischen Reorganisationen die DNA während der S-Phase unterliegt. Daneben sollte auch untersucht werden, wie der spezifische zeitlich-räumliche Verlauf der S-Phase in Säugerzellen koordiniert wird. Zur Untersuchung dieser Fragen wurde die zu replizierende oder die naszente DNA lebender Zellen mit fluoreszensmarkierten Nukleotiden dargestellt. Simultan wurde die Replikationsmaschinerie mit Hilfe eines GFP-PCNA Fusionsproteins markiert (freundlicherweise zur Verfügung gestellt von Dr. M. C. Cardoso, MDC, Berlin). Diese Markierungstechniken erlaubten es zum ersten Mal, direkt die Interaktionen von replizierender DNA und der Replikationsmaschinerie zu beobachten und zu analysieren. Die Ergebnisse zeigten, dass die DNA während der S-Phase keine großräumigen Umlagerungen erfuhr. Nur einige lokal begrenzte Reorganisationen wurden beobachtet, die sich innerhalb von Distanzen von weniger als 1 µm abspielten. Die Ergebnisse zeigten ferner, dass DNA in stabile Aggregate organisiert war, die den Replikationsfoci entsprachen. 85 % dieser Aggregate, die auch als subchromosomale Foci bezeichnet werden (Zink et al., 1998), behielten ihren Replikationszeitpunkt von S-Phase zu SPhase stabil bei. Während des zeitlichen Fortschreitens der S-Phase schritt die Replikationsmaschinerie sequentiell durch benachbarte Gruppen von subchromosomalen Foci. Diese besaßen einen definierten Replikationszeitpunkt, und lokalisierten an de- finierten Positionen im Zellkern. Diese Ergebnisse legten nahe, dass die spezifische Anordnung von subchromosomalen Foci im Kern, die während der frühen G1-Phase etabliert wird (Dimitrova und Gilbert, 1999; Ferreira et al., 1997; Sadoni et al., 1999), die räumlich-zeitliche Organisation der S-Phase determiniert.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 01/19
Charakterisierung von HSS-2, einer B-zellspezifischen, regulatorischen DNA-Sequenz im Bereich des Ig(lambda)-Enhancers des Menschen

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 01/19

Play Episode Listen Later Dec 18, 2002


Der menschliche Igl-Enhancer besteht aus den drei DNase I-hypersensitiven Regionen HSS-1, -2 und -3, wobei HSS-3 den eigentlichen Enhancer darstellt und HSS-1 und -2 gemeinsam auf HSS-3 synergistisch wirken. Ziel der vorliegenden Arbeit war es, die B-zellspezifische Region HSS-2 näher einzugrenzen und zu charakterisieren. Dazu wurden transiente Transfektionen und In-vivo-Footprinting-Versuche durchgeführt. Die Transfektionsexperimente erfolgten mit den reifen B-Zelllinien MN60 und Daudi. Dazu wurden Luciferasereportergenkonstrukte mit Punktmutationen in den beiden NFkB-Bindungsstellen von HSS-2 oder mit 5’- bzw. 3’-Deletionen in HSS-2 eingesetzt. Die Auswertung der Daten ergab, daß der Transkriptionsfaktor NFkB eine sehr wichtige Rolle in der Regulierung des humanen Igl-Locus spielt. Die Transkriptionskontrolle durch NFkB erfolgt als Bestandteil von Transkriptionskomplexen unter anderem über die Öffnung des Chromatins, womit die DNA auch für andere Faktoren zugänglich wird. Die anschließenden In-vivo-Footprinting-Versuche sollten Aufschluß über die Proteinbedeckung der genomischen DNA von B-Zellen in HSS-2 geben. Für die Untersuchungen wurden die reifen B-Zelllinien Daudi und MN60, die Prä-B-Zelllinie BV173, die T-Zelllinien Jurkat und CCRF-CEM und die myeloische Zelllinie K562 verwendet und zum Teil mit PMA oder TPCK vorbehandelt. Als Nachweismethode diente die LMPCR, als Vergleichs-DNA die freie Plazenta-DNA AF. Den meisten geschützten Sequenzbereichen, deren Anordnung eine Unterteilung von HSS-2 in zwei Teile ermöglicht, konnten mit der Datenbank Transfac bestimmte Faktoren zugeordnet werden. Einige der identifizierten Proteine spielen in der B-Zellentwicklung eine wichtige Rolle. Eine wahrscheinliche Bindung an die Sequenz des HSS-2-Bereichs ist von E47, Ikaros und NFkB anzunehmen. Alle drei stellen Transkriptionsfaktoren dar, die die B-Zellentwicklung und -differenzierung in verschiedenen Stadien steuern. Als Masterfaktor für die Chromatinöffnung im Igl-Locus kommt vermutlich E47 in Frage, die synergistische Wirkung von HSS-2 wird wahrscheinlich durch NFkB, Ikaros und E47 entscheidend beeinflußt.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 01/19
Charakterisierung von HSS-2, einer B-zellspezifischen, regulatorischen DNA-Sequenz im Bereich des Ig(lambda)-Enhancers des Menschen

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 01/19

Play Episode Listen Later Dec 18, 2002


Der menschliche Igl-Enhancer besteht aus den drei DNase I-hypersensitiven Regionen HSS-1, -2 und -3, wobei HSS-3 den eigentlichen Enhancer darstellt und HSS-1 und -2 gemeinsam auf HSS-3 synergistisch wirken. Ziel der vorliegenden Arbeit war es, die B-zellspezifische Region HSS-2 näher einzugrenzen und zu charakterisieren. Dazu wurden transiente Transfektionen und In-vivo-Footprinting-Versuche durchgeführt. Die Transfektionsexperimente erfolgten mit den reifen B-Zelllinien MN60 und Daudi. Dazu wurden Luciferasereportergenkonstrukte mit Punktmutationen in den beiden NFkB-Bindungsstellen von HSS-2 oder mit 5’- bzw. 3’-Deletionen in HSS-2 eingesetzt. Die Auswertung der Daten ergab, daß der Transkriptionsfaktor NFkB eine sehr wichtige Rolle in der Regulierung des humanen Igl-Locus spielt. Die Transkriptionskontrolle durch NFkB erfolgt als Bestandteil von Transkriptionskomplexen unter anderem über die Öffnung des Chromatins, womit die DNA auch für andere Faktoren zugänglich wird. Die anschließenden In-vivo-Footprinting-Versuche sollten Aufschluß über die Proteinbedeckung der genomischen DNA von B-Zellen in HSS-2 geben. Für die Untersuchungen wurden die reifen B-Zelllinien Daudi und MN60, die Prä-B-Zelllinie BV173, die T-Zelllinien Jurkat und CCRF-CEM und die myeloische Zelllinie K562 verwendet und zum Teil mit PMA oder TPCK vorbehandelt. Als Nachweismethode diente die LMPCR, als Vergleichs-DNA die freie Plazenta-DNA AF. Den meisten geschützten Sequenzbereichen, deren Anordnung eine Unterteilung von HSS-2 in zwei Teile ermöglicht, konnten mit der Datenbank Transfac bestimmte Faktoren zugeordnet werden. Einige der identifizierten Proteine spielen in der B-Zellentwicklung eine wichtige Rolle. Eine wahrscheinliche Bindung an die Sequenz des HSS-2-Bereichs ist von E47, Ikaros und NFkB anzunehmen. Alle drei stellen Transkriptionsfaktoren dar, die die B-Zellentwicklung und -differenzierung in verschiedenen Stadien steuern. Als Masterfaktor für die Chromatinöffnung im Igl-Locus kommt vermutlich E47 in Frage, die synergistische Wirkung von HSS-2 wird wahrscheinlich durch NFkB, Ikaros und E47 entscheidend beeinflußt.

Medizin - Open Access LMU - Teil 06/22
Gibt es eine zelltypspezifische Anordnung des Chromatins in Säugerzellkernen? Argumente von Ungläubigen, Agnostikern und Gläubigen.

Medizin - Open Access LMU - Teil 06/22

Play Episode Listen Later Jan 1, 1987


Thu, 1 Jan 1987 12:00:00 +0100 https://epub.ub.uni-muenchen.de/9326/1/9326.pdf Lichter, Peter; Emmerich, Patricia; Cremer, Thomas