POPULARITY
References Guerra, DJ. 2024. ImmunoBiochemistry lectures. Commun Biol. 2022; 5: 1292. ACS Chem. Biol. 2017, 12, 4, 958–968 Telemann, GP., 1750. Sonata in D major, TWV 44:1 https://youtu.be/xx8ooc-s7OQ?si=1vAKmdcLroNISa-P Vivaldi, A., 1708. - Gloria (RV 589) https://youtu.be/2eWjQOdYzMQ?si=hYSOqRuXkYUA8ATl --- Send in a voice message: https://podcasters.spotify.com/pod/show/dr-daniel-j-guerra/message Support this podcast: https://podcasters.spotify.com/pod/show/dr-daniel-j-guerra/support
References Guerra, DJ. ImmunoBiochemistry lectures 2024. ACS Chem. Biol. 2017, 12, 4, 958–968 Genome Biol. 2005; 6(8): 227 Manfredini, FO. 1718. 12 Concerti Grossi | Op. 3 https://youtu.be/4t-E3wlMkDQ?si=GX0GCLUm48J4V8OY --- Send in a voice message: https://podcasters.spotify.com/pod/show/dr-daniel-j-guerra/message Support this podcast: https://podcasters.spotify.com/pod/show/dr-daniel-j-guerra/support
In this episode of the Epigenetics Podcast, we caught up with Luciano Di Croce from the Center of Genomic Regulation in Barcelona to talk about his work on epigenetic landscapes in cancer. The Di Croce Lab focuses on the Polycomb Complex and its influence on diseases like cancer. Luciano Di Croce started out his research career investigating the oncogenic transcription factor PML-RAR. They could show that in leukemic cells knockdown of SUZ12, a key component of Polycomb repressive complex 2 (PRC2), reverts not only histone modification but also induces DNA de-methylation of PML-RAR target genes. More recently the team focused on two other Polycomb related proteins Zrf1 and PHF19 and were able to characterize some of their functions in gene targeting in different disease and developmental contexts. References Di Croce, L., Raker, V. A., Corsaro, M., Fazi, F., Fanelli, M., Faretta, M., Fuks, F., Lo Coco, F., Kouzarides, T., Nervi, C., Minucci, S., & Pelicci, P. G. (2002). Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science (New York, N.Y.), 295(5557), 1079–1082. https://doi.org/10.1126/science.1065173 Richly, H., Rocha-Viegas, L., Ribeiro, J. D., Demajo, S., Gundem, G., Lopez-Bigas, N., Nakagawa, T., Rospert, S., Ito, T., & Di Croce, L. (2010). Transcriptional activation of polycomb-repressed genes by ZRF1. Nature, 468(7327), 1124–1128. https://doi.org/10.1038/nature09574 Jain, P., Ballare, C., Blanco, E., Vizan, P., & Di Croce, L. (2020). PHF19 mediated regulation of proliferation and invasiveness in prostate cancer cells. eLife, 9, e51373. https://doi.org/10.7554/eLife.51373 Related Episodes Oncohistones as Drivers of Pediatric Brain Tumors (Nada Jabado) Transcription and Polycomb in Inheritance and Disease (Danny Reinberg) Targeting COMPASS to Cure Childhood Leukemia (Ali Shilatifard) Contact Epigenetics Podcast on Twitter Epigenetics Podcast on Instagram Epigenetics Podcast on Mastodon Active Motif on Twitter Active Motif on LinkedIn Email: podcast@activemotif.com
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.03.13.532406v1?rss=1 Authors: Nishino, M., Imaizumi, H., Yokoyama, Y., Katahira, J., Kimura, H., Matsuura, N., Matsumura, M. Abstract: Cell motility is related to the higher-order structure of chromatin. Stimuli that induce cell migration change chromatin organization; such stimuli include elevated histone H3 lysine 9 trimethylation (H3K9me3). We previously showed that depletion of histone H3 lysine 9 methyltransferase, SUV39H1, suppresses directional cell migration. However, the molecular mechanism underlying this association between chromatin and cell migration remains elusive. The Golgi apparatus is a cell organelle essential for cell motility. In this study, we show that loss of H3K9 methyltransferase SUV39H1 but not SETDB1 or SETDB2 causes dispersion of the Golgi apparatus throughout the cytoplasm. The Golgi dispersion triggered by SUV39H1 depletion is independent of transcription, centrosomes, and microtubule organization, but is suppressed by depletion of any of the following three proteins: LINC complex components SUN2, nesprin-2, or microtubule plus-end-directed kinesin-like protein KIF20A. In addition, SUN2 is closely localized to H3K9me3, and SUV39H1 affects the mobility of SUN2 in the nuclear envelope. Further, inhibition of cell motility caused by SUV39H1 depletion is restored by suppression of SUN2, nesprin-2, or KIF20A. In summary, these results show the functional association between chromatin organization and cell motility via the Golgi organization regulated by the LINC complex. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2022.12.30.522321v1?rss=1 Authors: Hogan, C. A., Gratz, S. J., Dumouchel, J. M., Delgado, A., Lentini, J. M., Madhwani, K. R., Thakur, R. S., Fu, D., O'Connor-Giles, K. M. Abstract: Nervous system function relies on the formation and function of synaptic connections between neurons. Through a genetic screen in fDrosophila for new conserved synaptic genes, we identified CG42261/Fid/ TRMT9B as a negative regulator of synaptogenesis. TRMT9B has been studied for its role as a tumor suppressor in multiple carcinomas and is one of two metazoan homologs of yeast tRNA methyltransferase 9 (Trm9), which methylates tRNA wobble uridines. Members of the expanded family of tRNA methyltransferases are increasingly being associated with neurological disorders and new biochemical functions. Interestingly, whereas Trm9 homolog ALKBH8/CG17807 is ubiquitously expressed, we find that TRMT9B is enriched in the nervous system, including at synapses. However, in the absence of animal models the role of TRMT9B in the nervous system has remained unknown. Here, we generated null alleles of TRMT9B and ALKBH8, and through liquid chromatography-mass spectrometry find that ALKBH8 is responsible for canonical tRNA wobble uridine methylation under basal conditions. In the nervous system, we find that TRMT9B negatively regulates synaptogenesis through a methyltransferase-dependent mechanism in agreement with our modeling studies. Finally, we find that neurotransmitter release is impaired in TRMT9B mutants. Our findings reveal a role for TRMT9B in regulating synapse formation and function, and highlight the importance of the expanded family of tRNA methyltransferases in the nervous system. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2022.10.20.513009v1?rss=1 Authors: Zhao, Z., Hong, L., Huang, G., He, Y., Zuo, X., Han, W. Abstract: Cells sense physical cues, such as changes in extracellular matrix (ECM) stiffness, and translate these stimuli into biochemical signals that control various aspects of cellular behavior, thereby facilitating physiological and pathological processes in various organs. Evidence from multiple studies suggests that the anterior vaginal wall stiffness is higher in POP patients than in non-POP patients. Our experiments found that the expression of -smooth muscle actin (-SMA) in the anterior vaginal wall of patients with POP was increased, and the expression of DNMT1 was decreased. We used polyacrylamide gel to simulate matrix stiffening in vitro, and substrate stiffening induced the high expression of myofibroblast markers -SMA and CTGF in L929 cells. Inhibition of DNMT1 promotes fibroblast differentiation into myofibroblasts in vitro. The results of bioinformatics analysis showed that the expression of DNMT1 was significantly correlated with microtubule polymerization-related proteins. The experiment showed that the microtubule polymerization inhibitor nocodazole could eliminate the decrease of DNMT1 expression in fibroblasts induced by high stiffness. We conclude that fibroblasts sense an increase in the stiffness of the surrounding matrix and regulate fibroblast differentiation by regulating the expression of DNA methyltransferase 1 (DNMT1) through the regulation of microtubule polymerization. This study may help to elucidate the complex crosstalk between vaginal fibroblasts and their surrounding matrix in both healthy and pathological conditions, and provide new insights into the implications of potentially targeted phenotypic regulation mechanisms in material-related therapeutic applications. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Laura and Trevor Ward knew something was wrong with their firstborn son early in his life, but doctors thought it was first-time parent jitters. They learned to advocate for their child and themselves, finally receiving a diagnosis and treatment for a rare genetic disorder, Guanidinoacetate methyltransferase deficiency or GAMPT. Because they had learned to advocate for their older child’s health, when their second son fell ill and knowing it was not GAMPT due to newly imposed newborn screenings, they fought for his own diagnosis of Infant Botulism. Laura Ward joins this episode of Relentlessly Resilient to share her story of how she learned to trust her mother’s instinct through her sons’ illness, stay at Primary Children’s Hospital, diagnosis, and treatment. Even though we live in challenging times we can become Relentlessly Resilient as we lean on and learn from one another’s experiences. Hosts Jennie Taylor and Michelle Scharf are no strangers to overcoming adversity; Michelle lost her husband to cancer, while Jennie’s husband Major Brent Taylor was killed in the service of our country. Their stories bond them together and now listeners can join them weekly as they visit with others enduring challenges and who teach us how they are exercising resiliency, finding value in their grief, and purpose in moving forward. Listen to the Relentlessly Resilient Podcast regularly on your favorite platform, at kslpodcasts.com, kslnewsradio.com, or on the KSL App. Join the Resiliences conversation on Facebook at @RelentlesslyResilient and Instagram @RelentlesslyResilientPodcast. Produced by KellieAnn Halvorsen.See omnystudio.com/listener for privacy information.
Nuclear factor interleukin 3 (NFIL3, also known as E4-binding protein 4, E4BP4) is a repressor of numerous genes. NFIL3 contains a basic leucine zipper domain, comprising amino acids 73–146, among 462 residues; the N-terminal part of this domain directly binds to DNA, while the C-terminal region is responsible for homo- or heterodimerization of the protein. Amino acids 299–363 comprise a transcriptional repression domain where the N-terminal part of this domain directly binds to DNA, while the C-terminal region is responsible for homo- or heterodimerization of the protein and amino acids 299–363 comprise a transcriptional repression domain. Please SUBSCRIBE and help out with $ donations! --- Support this podcast: https://anchor.fm/dr-daniel-j-guerra/support
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.09.05.283978v1?rss=1 Authors: Al-Hamashi, A. A., Chen, D., Deng, Y., Dong, G., Huang, R. Abstract: Protein arginine methyltransferases (PRMTs) have been implicated in the progression of many diseases. Understanding substrate recognition and specificity of individual PRMT would facilitate the discovery of selective inhibitors towards future drug discovery. Herein, we reported the design and synthesis of bisubstrate analogues for PRMTs that incorporate a S-adenosylmethionine (SAM) analogue moiety and a tripeptide through an alkyl substituted guanidino group. Compound AH237 is a potent and selective inhibitor for PRMT4 and PRMT5 with a half-maximal inhibition concentration (IC50) of 2.8 nM and
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.07.10.197442v1?rss=1 Authors: Cathrin Bayer, Georg Pitschelatow, Nina Hannemann, Jenice Linde, Julia Reichard, Daniel Pensold, Geraldine Zimmer-Bensch Abstract: The limited regenerative capacity of neuronal cells requires tight orchestration of cell death and survival regulation in the context of longevity, as well as age-associated and neurodegenerative diseases. Subordinate to genetic networks, epigenetic mechanisms, like DNA methylation and histone modifications, are involved in the regulation of neuronal functionality, and emerge as key contributors to the pathophysiology of neurodegenerative diseases. DNA methylation, a dynamic and reversible process, is executed by DNA methyltransferases (DNMTs). DNMT1 was previously shown to regulate neuronal survival in the aged brain, whereby a DNMT1-dependent modulation of processes relevant for protein degradation was proposed as underlying mechanism. Functional proteostasis networks are a mandatory prerequisite for the functionality and long-term survival of neurons. Malfunctioning proteostasis is found, inter alia, in neurodegenerative contexts. Here, we investigated whether DNMT1 affects critical aspects of the proteostasis network by a combination of expression studies, life cell imaging and biochemical analyses. We found that DNMT1 negatively impacts retrograde trafficking and autophagy, both being involved in the clearance of aggregation-prone proteins by the aggresome-autophagy pathway. In line with this, we found that the transport of GFP-labeled mutant HTT to perinuclear regions, proposed to by cytoprotective, also depends on DNMT1. Depletion of Dnmt1 accelerated HTT perinuclear HTT aggregation and improved the survival of cells transfected with mutant HTT. This suggests that mutant HTT-induced cytotoxicity is at least in part mediated by DNMT1-dependent modulation of degradative pathways.Competing Interest StatementThe authors have declared no competing interest. Copy rights belong to original authors. Visit the link for more info
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.05.30.124230v1?rss=1 Authors: Bangalore Yogananda, C. G., Shah, B. R., Nalawade, S., Murugesan, G. K., Yu, F. F., Pinho, M. C., Wagner, B. C., Mickey, B., Patel, T. R., Fei, B., Madhuranthakam, A. J., Maldjian, J. A. Abstract: PURPOSE: Methylation of the O6-Methylguanine-DNA Methyltransferase (MGMT) promoter results in epigenetic silencing of the MGMT enzyme and confers an improved prognosis and treatment response in gliomas. The purpose of this study was to develop a deep-learning network for determining the methylation status of the MGMT Promoter in gliomas using T2-w magnetic resonance images only. METHODS: Brain MRI and corresponding genomic information were obtained for 247 subjects from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA). 163 subjects had a methylated MGMT promoter. A T2-w image only network (MGMT-net) was developed to determine MGMT promoter methylation status and simultaneous single label tumor segmentation. The network was trained using 3D-Dense-UNets. Three-fold cross-validation was performed to generalize the network's performance. Dice-scores were computed to determine tumor segmentation accuracy. RESULTS: MGMT-net demonstrated a mean cross validation accuracy of 94.73% across the 3 folds (95.12%, 93.98%, and 95.12%, standard dev=0.66) in predicting MGMT methylation status with a sensitivity and specificity of 96.31% +/-0.04 and 91.66% +/-2.06, respectively and a mean AUC of 0.93 +/-0.01. The whole tumor segmentation mean Dice-score was 0.82 +/- 0.008. CONCLUSION: We demonstrate high classification accuracy in predicting the methylation status of the MGMT promoter using only T2-w MR images that surpasses the sensitivity, specificity, and accuracy of invasive histological methods such as pyrosequencing, methylation-specific PCR, and immunofluorescence methods. This represents an important milestone toward using MRI to predict glioma histology, prognosis, and response to treatment. Copy rights belong to original authors. Visit the link for more info
CHI interviews Drs. Trevor Perrior, Research Director at Domainex, and Gregg Siegel, CEO of ZoBio about the current challenges in developing novel chemical matter targeting HMTs and HDMs, novel tools and technologies enabling discovery, and emerging targets within this space. Discussion questions include: 1. How have you seen this field evolve over the past few years? 2. What are some of the challenges in developing novel chemical matter targeting these enzymes? 3. What are some of the tools and technologies that are aiding epigenetic inhibitor discovery? 4. What are some other interesting and emerging HMT or HDM targets? 5. You are giving a lecture during the upcoming Targeting Histone Methyltransferases and Demethylases meeting, part of Discovery on Target 2015 this September 23-24 in Boston. What do you hope to share with attendees during your lecture? Find more information at http://www.DiscoveryOnTarget.com/
Bonus Podcast for CHI's interview with Drs. Trevor Perrior, Research Director at Domainex, and Gregg Siegel, CEO of ZoBio Listen to the full podcast here: https://soundcloud.com/chi-podcasts/histone-methyltransferase-and-demethylase-inhibitor-discovery Find more information about the conference here: http://www.DiscoveryOnTarget.com/
Tilman Borggrefe describes how CARM1-mediated methylation promotes degradation of the Notch intracellular domain to enable transient Notch signaling during development.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06
Wed, 30 Apr 2014 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/18378/ https://edoc.ub.uni-muenchen.de/18378/1/Schneider_Katrin.pdf Schneider, Katrin ddc:570, ddc:500,
Arginine methylation of RAF determines the specificity of the biological response to growth factors that activate the same signaling cascade.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
Tue, 23 Aug 2011 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/14769/ https://edoc.ub.uni-muenchen.de/14769/1/Qin_Weihua.pdf Qin, Weihua ddc:570, ddc:500, Fakultät für Biologie
Background: We analyzed prospectively whether MGMT (O(6)-methylguanine-DNA methyltransferase) mRNA expression gains prognostic/predictive impact independent of MGMT promoter methylation in malignant glioma patients undergoing radiotherapy with concomitant and adjuvant temozolomide or temozolomide alone. As DNA-methyltransferases (DNMTs) are the enzymes responsible for setting up and maintaining DNA methylation patterns in eukaryotic cells, we analyzed further, whether MGMT promoter methylation is associated with upregulation of DNMT expression. 12 Hide Figures Abstract Introduction Methods Results Discussion Acknowledgments Author Contributions References Reader Comments (0) Figures Abstract Background We analyzed prospectively whether MGMT (O6-methylguanine-DNA methyltransferase) mRNA expression gains prognostic/predictive impact independent of MGMT promoter methylation in malignant glioma patients undergoing radiotherapy with concomitant and adjuvant temozolomide or temozolomide alone. As DNA-methyltransferases (DNMTs) are the enzymes responsible for setting up and maintaining DNA methylation patterns in eukaryotic cells, we analyzed further, whether MGMT promoter methylation is associated with upregulation of DNMT expression. Methodology/Principal Findings: Adult patients with a histologically proven malignant astrocytoma (glioblastoma: N = 53, anaplastic astrocytoma: N = 10) were included. MGMT promoter methylation was determined by methylation-specific PCR (MSP) and sequencing analysis. Expression of MGMT and DNMTs mRNA were analysed by real-time qPCR. Prognostic factors were obtained from proportional hazards models. Correlation between MGMT mRNA expression and MGMT methylation status was validated using data from the Cancer Genome Atlas (TCGA) database (N = 229 glioblastomas). Low MGMT mRNA expression was strongly predictive for prolonged time to progression, treatment response, and length of survival in univariate and multivariate models (p
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
Fri, 1 Oct 2010 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/12129/ https://edoc.ub.uni-muenchen.de/12129/1/Frauer_Carina.pdf Frauer, Carina ddc:570, ddc:500, Fakultät für Biologie
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 03/06
Thu, 5 Jun 2008 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/9490/ https://edoc.ub.uni-muenchen.de/9490/1/Kuch_David.pdf Kuch, David ddc:540, ddc:500, Fakultät
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Wed, 19 Mar 2008 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/11550/ https://edoc.ub.uni-muenchen.de/11550/1/Zolghadr_Kourosh.pdf Zolghadr, Kourosh ddc:5
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
In der vorliegenden Arbeit wurden die beiden Histon-Methyltransferasen Su(var)3-9 und E(Z) aus Drosophila melanogaster charakterisiert. Die Histonmethylierung als Modifikation war schon länger bekannt gewesen, bis zum Jahr 2000 war jedoch vor allem die Acetylierung etwas genauer untersucht worden. Su(var)3-9 war die einzige bekannte Histon-Lysin-Methyltransferase, als diese Arbeit begonnen wurde. Zur Charakterisierung wurde das myc-getagte Enzym aus Drosophila-Kernextrakt durch Affinitätschromatographie aufgereinigt und zunächst die Substratspezifität festgestellt. Wie das humane Enzym Suv39H1 methyliert es ebenfalls spezifisch H3-K9 (Lysin 9 im Histon H3). Das aus den Kernextrakten aufgereinigte Enzym besitzt aber auch die Fähigkeit, ein an H3-K9 präacetyliertes Substrat zu methylieren. Die Vermutung, dass Su(var)3-9 mit einer Histondeacetylase assoziiert ist, konnte durch Verwendung von TSA als HDAC-Inhibitor bestätigt werden. Es stellte sich heraus, dass HDAC1 (Rpd3) mit Su(var)3-9 assoziiert ist. Um das Enzym besser untersuchen zu können, wurde es als Volllängenprotein und als Deletionsmutante in E. coli exprimiert. Die Aufreinigung des rekombinanten Enzyms sowie seine Lagerbedingungen wurden optimiert. Das Volllängenprotein Su(var)3-9 liegt – wie durch Gelfiltration festgestellt - als Dimer vor, die Interaktion mit sich selbst ist über den N-Terminus vermittelt. Su(var)3-9 bindet an sein eigenes, bereits methyliertes Substrat. Dies wurde an Peptiden untersucht, die den ersten 20 Aminosäuren des Histons H3 entsprechen, und entweder an Lysin 9 dimethyliert oder unmodifiziert waren. Die Interaktion mit dem methylierten Substrat ist auf die Chromodomäne von Su(var)3-9 zurückzuführen, ist jedoch schwächer als die Wechselwirkung von HP1 mit methyliertem H3-K9. Des weiteren wurde eine Drosophila-Zelllinie stabil mit Su(var)3-9 transfiziert. Das überexprimierte Protein ist jedoch nur schwach aktiv. Die Tatsachen, dass Su(var)3-9 mit HDAC1 interagiert sowie mit seinem eigenen Substrat assoziiert, ermöglichen die Aufstellung von Hypothesen über die bis jetzt kaum erhellte Ausbreitung von Heterochromatin in euchromatische Bereiche. Durch die Wechselwirkung mit der Deacetylase könnte Su(var)3-9 auch in aktiv transkribierte Bereiche vordringen und diese methylieren. Die Acetylierung, Zeichen für aktive Transkription, würde durch die Methylierung ersetzt werden. Die Interaktion mit seinem umgesetzten Substrat könnte verhindern, dass das Enzym sich nach der Reaktion entfernt, vielmehr könnte Su(var)3-9 entlang eines DNA-Stranges sukzessive alle Nukleosomen methylieren. Die darauffolgende Bindung von HP1 an methyliertes H3-K9 könnte den heterochromatischen Charakter des Chromatins verstärken und für längere Zeit festlegen. Aus Drosophila-Kernextrakten gelang es weiterhin, den E(Z)/ESC-Komplex über Säulenchromatographie aufzureinigen. Dieser enthält neben E(Z), ESC, p55 und Rpd3 auch Su(z)12. E(Z), ESC und Su(z)12 gehören der Polycomb-Gruppe an. Deren Funktion ist die dauerhafte Repression der homöotischen Gene. Sie spielen daher eine wichtige Rolle im „Zellgedächtnis“ während der frühen Entwicklung von Drosophila. Es konnte gezeigt werden, dass der E(Z)/ESC-Komplex Lysin 9 sowie Lysin 27 im Histon H3 methyliert. Außerdem wurde in vitro ein Teilkomplex aus rekombinantem E(Z), p55 und ESC rekonstituiert, der das Histon H3 methylieren kann. Ein Teilkomplex, der E(Z) mit mutierter SET-Domäne enthält, ist nicht in der Lage, H3 zu methylieren. Die Vorhersage, dass E(Z) aufgrund seiner SET-Domäne eine Methyltransferase sein müsse, konnte durch vorliegende Untersuchungen bestätigt werden. Polycomb ist ein weiteres Protein aus der Polycomb-Gruppe. In dieser Arbeit konnte gezeigt werden, dass dieses Protein spezifisch an das Histon H3 bindet, das an K27 trimethyliert ist. Polycomb besitzt wie HP1 eine Chromodomäne. Aus den vorliegenden Daten kann folgendes Modell aufgestellt werden: Nach der Methylierung von H3-K9 sowie H3-K27 durch den E(Z)/ESC-Komplex in homöotischen Genen, die schon abgeschaltet sind und weiterhin reprimiert werden müssen, bindet Polycomb an dieses Methylierungsmuster. Polycomb befindet sich in einem großen Komplex mit weiteren Polycomb-Gruppen-Proteinen. Die Bindung dieses Komplexes an Chromatin könnte ein denkbarer Mechanismus sein, wie die dauerhafte Repression der homöotischen Gene vermittelt wird. Um den E(Z)/ESC-Komplex genauer untersuchen zu können, wurden Viren für das Baculosystem hergestellt, so dass eine Einzel- oder auch Coexpression der Proteine möglich ist. Die Aktivität von E(Z), das im Baculosystem exprimiert wurde, ist nicht besonders hoch. Es bindet unter den in dieser Arbeit verwendeten Bedingungen weder an DNA, noch an Histone noch an H3-Peptide, die methyliert sind. Innerhalb des E(Z)/ESC-Komplexes bindet E(Z) an p55, Rpd3, ESC sowie Su(z)12. Su(z)12 interagiert mit p55, Rpd3 und E(Z). Die weiteren Interaktionen werden am besten durch eine bildliche Darstellung (siehe Abb. 86) vermittelt. In einem Luciferase-Assay wurde eine repressive Wirkung von E(Z) festgestellt. Dieses Experiment bedarf allerdings eines aktivierten Systems. Ferner muss durch Mutationsanalysen sichergestellt werden, dass die repressive Wirkung auf die Methyltransferase-Aktivität von E(Z) zurückzuführen ist. Kürzlich wurde entdeckt, dass E(Z) sowie Su(z)12 in verschiedenen Tumoren überexprimiert sind. Noch ist weder deren Funktion in den Tumorzellen klar, noch weiss man, ob die Überexpression der Grund oder eine Folge der Tumorbildung ist, noch kennt man alle Zielgene, die durch eine Überexpression von E(Z) und Su(z)12 beeinflusst werden. In nächster Zeit sind hier Einsichten in die Wirkungsweise von E(Z), Su(z)12 und anderen Polycomb-Gruppen-Proteinen zu erwarten.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Totalynthese des antimykotisch aktiven Steroid-Alkaloids Plakinamin B; Synthese von Strukturanaloga; Testung auf antimikrobielle Aktivität in einem Agar-Diffusionstest; Ergosterol-Biosynthese-Inhibitor-Screening und Bestimmung des jeweiligen Zielenzyms; Ableitung von Struktur-Wirkungs-Beziehungen.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Ribonukleoproteinpartikel (RNPs) sind Komplexe aus RNA und Proteinen, die entscheidende Funktionen bei Prozessen wie Translation, Telomer-Synthese, Protein-Import in das endoplasmatische Retikulum oder RNA-Prozessierung übernehmen. Obwohl stets neue Beispiele die Bedeutung von RNPs untermauern, sind grundlegende Aspekte ihrer Funktion noch unklar. So stellte sich zu Beginn dieser Arbeit die Frage, wie sich die Komponenten von RNPs zu funktionellen Gebilden zusammenlagern. In frühen in-vitro-Studien war beobachtet worden, dass sich RNPs spontan ausbilden und dieser Vorgang keine weiteren Faktoren benötigt. Daraus war die Hypothese abgeleitet worden, dass dies möglicherweise auch der in vivo Situation entsprechen könnte. Unerwartete Einblicke in die Biogenese von RNPs lieferten schliesslich Studien zum "survival motor neurons"-Protein (SMN), dem Krankheitsgenprodukt der spinalen Muskelatrophie. Antikörper gegen SMN und seinem Bindungspartner Gemin2 inhibierten in Xenopus laevis Oocyten die Ausformung von RNP-Untereinheiten des Spleißosoms - den U snRNPs und nährten den Verdacht, dass diese Proteine Hilfsfaktoren der U snRNP-Biogenese sein könnten. Das Ziel der vorliegenden Arbeit war daher, mechanistische Details über die Zusammenlagerung von U snRNPs in vivo zu ermitteln und die Rolle von SMN und Gemin2 zu untersuchen. Die wesentlichen Schritte der Biogenese von U snRNPs können experimentell in X. laevis Oocyten verfolgt werden. Nach dem Export der U snRNAs U1, U2, U4 und U5 in das Cytosol lagern sich dort jeweils sieben sogenannte Sm-Protein an ein gemeinsames Motiv der U snRNAs an und formen so die Grundstruktur jedes U snRNPs, die Sm-Core-Domäne. Hierauf folgen die Hypermethylierung der U snRNA-Kappe und der Import der Sm-Core-Domäne in den Zellkern, wo sich U snRNP-spezifische Proteine anlagern, ehe die reifen snRNPs am Spleißprozess teilnehmen. In der vorliegenden Arbeit wurde zunächst ein zellfreies System entwickelt, durch das die Zusammenlagerung von U snRNPs in der Komplexität des Cytosols untersucht werden konnte. Unter Verwendung von Extrakten aus Xenopus laevis-Eiern oder HeLa-Zellen konnte gezeigt werden, dass die Ausbildung der Sm-Core-Domäne, entgegen bisheriger Vermutungen, nicht spontan erfolgt, sondern Energie in Form von ATP benötigt. Aus Depletionsversuchen wurde deutlich, dass SMN unter diesen zellähnlichen Bedingungen für die snRNP-Biogenese unbedingt erforderlich ist. SMN, dies zeigten immunbiochemische Reinigungen, ist in der Zelle mit 17 verschiedenen Proteinen assoziiert, die hier erstmals vollständig identifiziert wurden. Dieser SMN-Komplex enthält bereits alle Sm-Proteine, jedoch keine U snRNAs. Anhand direkten Sm-Protein-Transferstudien wurde klar, dass der SMN-Komplex allein nicht nur notwendig sondern auch hinreichend für die Ausbildung der Sm-Core-Domäne, ist. Dennoch konnte mit dem pICln-Komplex ein Proteinkomplex entdeckt werden, der mit dem SMN-Komplex interagiert und dessen Aktivität erheblich steigert. Der pICln-Komplex enthält eine neuartige Methyltransferase, die Arginylreste in den Sm-Proteinen B/B’, D1 und D3 zu symmetrischen Dimethylargininen modifiziert. Es ist bekannt, dass hierdurch die Bindung von Sm-Proteinen an SMN verstärkt wird. Die vorliegenden Daten weisen darauf hin, dass SMN- und pICln-Komplexe eine funktionelle Einheit bilden, in der Modifikation und Transfer der Sm-Proteine koordiniert ablaufen. Erste Erkenntnisse aus Versuchen mit HeLa-Zellen und Patientenzelllinien deuten an, dass reduzierte Menge des SMN-Komplexes mit einer reduzierten U snRNP-Zusammenlagerungsaktivität einhergehen, und dass dies einen biochemischen Defekt in Spinaler Muskelatrophie darstellen könnte. In einem weiteren Projekt wurde mit Hilfe von Datenbankanalysen und biochemischen Strategien das SMN-homologe Protein SMNrp identifiziert und charakterisiert. Biochemische Studien zeigten, dass SMNrp eine Komponente des U2 snRNPs ist und eine essentielle Rolle beim Spleißen ausführt. Kernextrakte die kein SMNrp enthalten wiesen einen Defekt der Spleißosomen-Zusammenlagerung auf der Stufe des „prä-Spleißosoms“ auf. SMNrp ist demnach ein Zusammenlagerungsfaktor des Spleißosoms und bezüglich dieser Funktion dem U snRNP-Zusammenlagerungsfaktor SMN ähnlich.
Fri, 1 Jan 1993 12:00:00 +0100 http://epub.ub.uni-muenchen.de/5001/ http://epub.ub.uni-muenchen.de/5001/1/5001.pdf Leonhardt, Heinrich; Bestor, Timothy H. Leonhardt, Heinrich und Bestor, Timothy H. (1993): Structure, function and regulation of mammalian DNA methyltransferase. In: Jost, Jean-Pierre und Saluz, Hans-Peter (Hrsg.), DNA methylation: molecular biology and biological significance. Bd. 64, EXS. Birkhäuser: Basel, pp. 109-119. Biologie
Tissue-specific patterns of methylated deoxycytidine residues in the mammalian genome are preserved by postreplicative methylation of newly synthesized DNA. DNA methyltransferase (MTase) is here shown to associate with replication foci during S phase but to display a diffuse nucleoplasmic distribution in non-S phase cells. Analysis of DNA MTase-β-galactosidase fusion proteins has shown that association with replication foci is mediated by a novel targeting sequence located near the N-terminus of DNA MTase. This sequence has the properties expected of a targeting sequence in that it is not required for enzymatic activity, prevents proper targeting when deleted, and, when fused to β-galactosidase, causes the fusion protein to associate with replication foci in a cell cycle-dependent manner.
Mammalian DNA cytosine-5-methyltransferase (MTase, EC 2.1.1.37) is an essential component for establishing and maintaining cell-type specific methylation patterns in the genome. The cDNAfor the murine enzyme was previously cloned in segments. We have reconstructed the entire gene, encoding a protein of 1517 amino acids, from a set of overlapping CDNA clones. We report the assembly of two expression constructs in bacterial/mammalian shuttle vectors. Transcription in the first construct (pEMT) is driven by the cytomegalovirus enhancer/promoter and encodes a fusion protein with 15 additional aa at the N terminus, while the second construct (pJMT) is driven by the simian virus 40 early promoter/enhancer upstream from the natural ATG codon. Immunofluorescence microscopy and immunoblot analysis have shown that both constructs direct the synthesis of MTase in COS-1 cells. Enzyme activity in whole-cell lysates of transfected COS-1 cells transfected with pEMT and pJMT are on average tenfold and fivefold higher than in control, respectively. The specific activities of the recombinant and endogenous mouse-cell enzyme are similar. These expression constructs will be of use in studies of DNA methylation in mammals.
The enzyme which transfers the CH3-group of S-adenosylmethionine to the nitrogen atom of (S)-tetrahydroberberine and (S)-stylopine is found to occur in a number of plant cell cultures originating from species containing alkaloids; it is located at an important branch point in isoquinoline alkaloid biosynthesis.
Suspension cultures of Berberis species are useful sources for the detection and isolation of a new enzyme which transfers the methyl group from S-adenosyl-L-methionine specifically to the 9-position of the (S)-enantiomer of scoulerine, producing (S)-tetrahydrocolumbamine. The enzyme was enriched 27-fold; it is not particle bound, has a pH optimum of 8.9, a molecular weight of 63 000 and shows a high degree of substrate specificity.
Suspension cultures of Berberis species are useful sources for the detection and isolation of a new enzyme which transfers the methyl group from S-adenosyl-L-methionine specifically to the 9-position of the (S)-enantiomer of scoulerine, producing (S)-tetrahydrocolumbamine. The enzyme was enriched 27-fold; it is not particle bound, has a pH optimum of 8.9, a molecular weight of 63 000 and shows a high degree of substrate specificity.
Sat, 1 Jan 1983 12:00:00 +0100 http://epub.ub.uni-muenchen.de/3633/ http://epub.ub.uni-muenchen.de/3633/1/3633.pdf Schumacher, H. M.; Rüffer, Martina; Nagakura, Naotaka; Zenk, Meinhart H. Schumacher, H. M.; Rüffer, Martina; Nagakura, Naotaka und Zenk, Meinhart H. (1983): Partial Purification and Properties of S-Adenosylmethionine. (R), (S)-Norlaudanosoline-6-O-Methyltransferase from Eschscholtzia tenuifolia Cell Cultures. In: Planta Medica, V
Sat, 1 Jan 1983 12:00:00 +0100 http://epub.ub.uni-muenchen.de/3632/ http://epub.ub.uni-muenchen.de/3632/1/3632.pdf Rüffer, Martina; Nagakura, Naotaka; Zenk, Meinhart H. Rüffer, Martina; Nagakura, Naotaka und Zenk, Meinhart H. (1983): A highly specific O-methyltransferase for nororientaline synthesis isolated from Argemone platyceras cell cultures. In: Planta Medica, Vol. 49: pp. 196-198.