POPULARITY
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.04.27.538553v1?rss=1 Authors: Golombek, M., Tsigaras, T., Schaumkessel, Y., Haensch, S., Weidtkamp-Peters, S., Anand, R., Reichert, A. S., Kondadi, A. K. Abstract: Cristae membranes have been recently shown to undergo intramitochondrial merging and splitting events. Yet, the metabolic and bioenergetic factors regulating them are unclear. Here we investigated whether and how cristae membrane remodelling is dependent on oxidative phosphorylation (OXPHOS) complexes, the mitochondrial membrane potential ({Delta}{Psi}m), and the ADP/ATP nucleotide translocator. Advanced live-cell STED nanoscopy combined with in-depth quantification were employed to analyse cristae morphology and dynamics after treatment of mammalian cells with rotenone, antimycin A, oligomycin A and CCCP. This led to formation of enlarged mitochondria along with reduced cristae density but did not change the number of cristae remodelling events. CCCP treatment leading to {Delta}{Psi}m abrogation even enhanced the cristae dynamics showing their {Delta}{Psi}m-independent nature. Inhibition of OXPHOS complexes was accompanied by reduced ATP levels but did not affect cristae dynamics. However, inhibition of ADP/ATP exchange led to aberrant cristae morphology and impaired cristae dynamics in a mitochondrial subset. In sum, we provide quantitative data of cristae membrane remodelling under different conditions supporting an important interplay between OXPHOS, metabolite exchange and cristae membrane dynamics. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2022.10.25.513802v1?rss=1 Authors: Ouyang, Y., Cunningham, C. N., Berg, J. A., Toshniwal, A. G., Hughes, C. E., Van Vranken, J. G., Jeong, M.-Y., Cluntun, A. A., Lam, G., Winter, J. M., Akdogan, E., Dove, K. K., Gygi, S. P., Dunn, C. D., Winge, D. R., Rutter, J. Abstract: Mitochondrial membrane potential directly powers many critical functions of mitochondria, including ATP production, mitochondrial protein import, and metabolite transport. Its loss is a cardinal feature of aging and mitochondrial diseases, and cells closely monitor membrane potential as an indicator of mitochondrial health. Given its central importance, it is logical that cells would modulate mitochondrial membrane potential in response to demand and environmental cues, but there has been little exploration of this question. We report that loss of the Sit4 protein phosphatase in yeast increases mitochondrial membrane potential, both through inducing the electron transport chain and the phosphate starvation response. Indeed, a similarly elevated mitochondrial membrane potential is also elicited simply by phosphate starvation or by abrogation of the Pho85-dependent phosphate sensing pathway. This enhanced membrane potential is primarily driven by an unexpected activity of the ADP/ATP carrier. We also demonstrate that this connection between phosphate limitation and enhancement of the mitochondrial membrane potential is also observed in primary and immortalized mammalian cells as well as in Drosophila. These data suggest that mitochondrial membrane potential is subject to environmental stimuli and intracellular signaling regulation and raise the possibility for therapeutic enhancement of mitochondrial functions even with defective mitochondria. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Episode 293 is your updated complete guide to injectable glutathione! Glutathione (GSH) has so much misunderstanding and misinformation in our industry that I want to ensure people understand a lot of the interactions and MoA going on with this compound. It has tremendous application as a "health", restoration, and progression tool when utilized in the proper setting. Sit back, take notes, and enjoy the references I'll attach to this episode! REFERENCES Aniya Y., Imaizumi N. (2011). Mitochondrial glutathione transferases involving a new function for membrane permeability transition pore regulation. Drug Metab. Rev. 43 292–299 Arakane F., King S. R., Du Y., Kallen C. B., Walsh L. P., Watari H., et al. (1997). Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J. Biol. Chem. 272 32656–32662 10.1074/jbc.272.51.32656 Armeni T., Cianfruglia L., Piva F., Urbanelli L., Luisa Caniglia M., Pugnaloni A., et al. (2014). S-D-Lactoylglutathione can be an alternative supply of mitochondrial glutathione. Free Radic. Biol. Med. 67 451–459 10.1016/j.freeradbiomed.2013.12.005 Armstrong J. S., Jones D. P. (2002). Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cells. FASEB J. 16 1263–1265 10.1096/fj.02-0097fje Baines C. P. (2010). The cardiac mitochondrion: nexus of stress. Annu. Rev. Physiol. 72 61–80 10.1146/annurev-physiol-021909-135929 Baines C. P., Kaiser R. A., Purcell N. H., Blair N. S., Osinska H., Hambleton M. A., et al. (2005). Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434 658–662 10.1038/nature03434 Banmeyer I., Marchand C., Clippe A., Knoops B. (2005). Human mitochondrial peroxiredoxin 5 protects from mitochondrial DNA damages induced by hydrogen peroxide. FEBS Lett. 579 2327–2333 10.1016/j.febslet.2005.03.027 Basso E., Fante L., Fowlkes J., Petronilli V., Forte M. A., Bernardi P. (2005). Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J. Biol. Chem. 280 18558–18561 10.1074/jbc.C500089200 Beer S. M., Taylor E. R., Brown S. E., Dahm C. C., Costa N. J., Runswick M. J., et al. (2004). Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. J. Biol. Chem. 279 47939–47951 10.1074/jbc.M408011200 Benipal B., Lash L. H. (2013). Modulation of mitochondrial glutathione status and cellular energetics in primary cultures of proximal tubular cells from remnant kidney of uninephrectomized rats. Biochem. Pharmacol. 85 1379–1388 10.1016/j.bcp.2013.02.013 Brand M. D. (2010). The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 45 466–472 10.1016/j.exger.2010.01.003 Brigelius-Flohe R., Maiorino M. (2013). Glutathione peroxidases. Biochim. Biophys. Acta 1830 3289–3303 10.1016/j.bbagen.2012.11.020 Casagrande S., Bonetto V., Fratelli M., Gianazza E., Eberini I., Massignan T., et al. (2002). Glutathionylation of human thioredoxin: a possible crosstalk between the glutathione and thioredoxin systems. Proc. Natl. Acad. Sci. U.S.A. 99 9745–9749 10.1073/pnas.152168599 Chang T. S., Cho C. S., Park S., Yu S., Kang S. W., Rhee S. G. (2004). Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J. Biol. Chem. 279 41975–41984 10.1074/jbc.M407707200 Garcia-Ruiz C., Fernandez-Checa J. C. (2006). Mitochondrial glutathione: hepatocellular survival-death switch. J. Gastroenterol. Hepatol. 21(Suppl. 3) S3–S6 10.1111/j.1440-1746.2006.04570. Garcia-Ruiz C., Morales A., Ballesta A., Rodes J., Kaplowitz N., Fernandez-Checa J. C. (1994). Effect of chronic ethanol feeding on glutathione and functional integrity of mitochondria in periportal and perivenous rat hepatocytes. J. Clin. Invest. 94 193–201 10.1172/JCI117306 Griffith O. W., Meister A. (1985). Origin and turnover of mitochondrial glutathione. Proc. Natl. Acad. Sci. U.S.A. 82 4668–4672 10.1073/pnas.82.14.4668 Kokoszka J. E., Waymire K. G., Levy S. E., Sligh J. E., Cai J., Jones D. P., et al. (2004). The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427 461–465 10.1038/nature02229 Kroemer G., Galluzzi L., Brenner C. (2007). Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87 99–163 10.1152/physrev.00013.2006 Kulawiak B., Hopker J., Gebert M., Guiard B., Wiedemann N., Gebert N. (2013). The mitochondrial protein import machinery has multiple connections to the respiratory chain. Biochim. Biophys. Acta 1827 612–626 10.1016/j.bbabio.2012.12.004 Lash L. H. (2006). Mitochondrial glutathione transport: physiological, pathological and toxicological implications. Chem. Biol. Interact. 163 54–67 10.1016/j.cbi.2006.03.001 Miller W. L. (2013). Steroid hormone synthesis in mitochondria. Mol. Cell. Endocrinol. 379 62–73 10.1016/j.mce.2013.04.014 Muller F. L., Lustgarten M. S., Jang Y., Richardson A, Van Remmen H. (2007). Trends in oxidative aging theories. Free Radic. Biol. Med. 43 477–503 10.1016/j.freeradbiomed.2007.03.034 Munoz-Pinedo C., Guio-Carrion A., Goldstein J. C., Fitzgerald P., Newmeyer D. D., Green D. R. (2006). Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc. Natl. Acad. Sci. U.S.A. 103 11573–11578 10.1073/pnas.0603007103 Schumacker P. T. (2006). Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10 175–176 10.1016/j.ccr.2006.08.015 Sena L. A., Chandel N. S. (2012). Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48 158–167 10.1016/j.molcel.2012.09.025 Serviddio G., Bellanti F., Tamborra R., Rollo T., Capitanio N., Romano A. D., et al. (2008). Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischaemia-reperfusion injury. Gut 57 957–965 10.1136/gut.2007.147496 Venditti P., Di Stefano L, Di Meo S. (2013). Mitochondrial metabolism of reactive oxygen species. Mitochondrion 13 71–82 10.1016/j.mito.2013.01.008 Yin F., Sancheti H., Cadenas E. (2012). Mitochondrial thiols in the regulation of cell death pathways. Antioxid. Redox Signal. 17 1714–1727 10.1089/ars.2012.4639 Yue P., Zhou Z., Khuri F. R., Sun S. Y. (2006). Depletion of intracellular glutathione contributes to JNK-mediated death receptor 5 upregulation and apoptosis induction by the novel synthetic triterpenoid methyl-2-cyano-3, 12-dioxooleana-1, 9-dien-28-oate (CDDO-Me). Cancer Biol. Ther. 5 492–497 10.4161/cbt.5.5.2565 Zhao P., Kalhorn T. F., Slattery J. T. (2002). Selective mitochondrial glutathione depletion by ethanol enhances acetaminophen toxicity in rat liver. Hepatology 36 326–335 10.1053/jhep.2002.34943 •••SUPPORT OUR SPONSORS••• (COACHING) Alex - www.theprepcoach.com (FREE OPEN FORUM w/ EXCLUSIVE VIDEOS) http://www.theprepcoachforum.com (SUPPLEMENTS) www.projectad.me___use discount code “BFR25” to save off your order! (RESEARCH CHEMS) www.maresearchchems.net___use discount code “alex15” to save off your order! (SPECIALTY SUPPS) www.masupps.com___use discount code “alex20” to save off your order! (BULK SUPPLEMENTS) www.truenutrition.com___use discount code “AXK5” to save off your order! •••FIND THE EPISODES••• ITUNES:https://itunes.apple.com/us/podcast/beastfitness-radios-podcast/id1065532968 LIBSYN:http://beastfitnessradio.libsyn.com VIMEO: www.vimeo.com/theprepcoach •••PREP COACH APPAREL••• https://teespring.com/stores/the-prep-coach-apparel
This episode is about energy in cells. It covers cellular respiration, anaerobic respiration, photosynthesis, the ADP-ATP cycle and other important related concepts. Ask your questions for discussion on the upcoming podcast: - Leave a free voicemail by visiting visit www.evolveducation.com.au/biology - Email to biologypodcast@gmail.com - "Like" the Facebook Page, follow link at www.evolveducation.com.au/biology. © 2017 Andrew Douch This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior permission from Andrew Douch. Requests and enquiries concerning reproduction rights should be made in writing at: www.andrewdouch.com.au/contact Disclaimers: 1. The explanations provided in this podcast are given in good faith but no responsibility will be taken for their accuracy. 2. The opinions expressed in this podcast are my own. They do not represent the opinions of the VCAA or any other organisation or government body. 3. No guarantee is made that the podcast makes a thorough coverage of all aspects of the course, or that all things contained in the course are relevant to VCE Biology Units 3 and 4. Research on cell's ability to release and take up ATP (in response to a listener question): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2595991/ Songs in this episode: Greg Crowther, The Glucose Song - http://faculty.washington.edu/crowther/Misc/Songs/glucose.shtml Photosynthesis Rap https://www.youtube.com/watch?v=x-t0sGyjfto
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Mitochondria are essential cellular organelles of eukaryotic organisms, which import most of their proteinaceous constituents from the cytoplasm. Two mitochondrial membranes contain different translocation machineries which are involved in the import and proper sorting of mitochondrial precursor proteins. The TIM22 translocase in the inner mitochondrial membrane mediates the import of polytopic proteins into this membrane. In addition to the membrane integrated components Tim22 and Tim54, the TIM22 translocase possesses components in the intermembrane space, termed Tim9 and Tim10. In the present study, the tim9 and tim10 genes of the TIM22 translocase of N. crassa were identified. The structural and functional characteristics of the corresponding gene products, the Tim9 and Tim10 proteins, were examined. Tim9 was demonstrated to be an essential protein. The Tim9 and Tim10 proteins were shown to build a 70-80 kDa heterohexameric complex in the mitochondrial intermembrane space. The isolated Tim9•Tim10 complex had the same oligomeric structure as the native one, and it proved fully functional in interacting in vitro with its physiological substrate, the ADP/ATP carrier (AAC). Peptide library screens were performed to determine the structural determinants of the substrates that are recognised by the Tim9•Tim10 complex. Efficient binding to the regions covering residues of the hydrophobic membrane spanning domains and of the connecting hydrophilic loops was observed. In this way, Tim9 and Tim10 proteins interact with their substrates, while the hydrophobic regions of the substrates are still present in the TOM complex and thereby protected from the aqueous environment of the intermembrane space compartment. Furthermore, when enclosed into proteoliposomes containing the reconstituted TOM complex, Tim9•Tim10 complex specifically promoted the translocation of the AAC precursor. Hence, the Tim9•Tim10 complex and the TOM complex are both necessary and sufficient to facilitate translocation of carrier proteins across the outer mitochondrial membrane. Finally, peptide screens and chemical cross-linking experiments were used to identify the precursor of N. crassa Tim23 protein as a novel substrate of the Tim9•Tim10 complex.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Ziel dieser Arbeit war es, den Import von Carrierproteinen über die TIM22-Translokase näher zu charakterisieren. Die Arbeit befasst sich mit der funktionellen Charakterisierung von drei neuen Komponenten des TIM22-Komplexes, Tim9, Tim10 und Tim12. Insbesondere wurde der Import des AAC-Vorstufenproteins über den TOM-Komplex zum TIM22-Komplex in die mitochondriale Innenmembran untersucht. Tim9, Tim10 und Tim12 sind Untereinheiten der TIM22-Translokase, die im Intermembranraum lokalisiert sind. Sie liegen in zwei hexameren Komplexen vor, dem TIM9⋅10-Komplex und dem TIM9⋅10⋅12-Komplex. Der TIM9⋅10-Komplex liegt löslich im Intermembranraum vor, während der TIM9⋅10⋅12-Komplex peripher mit dem TIM22- Komplex assoziiert ist. Dieser vermittelt die membranpotentialabhängige Insertion von Präproteinen mit internen Importsignalen in die mitochondriale Innenmembran. Tim9, Tim10 und Tim12 sind strukturell verwandt und in der Lage, mittels konservierter Cysteinreste ein Zinkfinger-Motiv auszubilden. Die Interaktion der AAC-Vorstufe mit dem TIM9⋅10- und dem TIM9⋅10⋅12-Komplex wird vermutlich durch die Wechselwirkung der Zinkfinger mit der Carrier-Signatur vermittelt. Diese ist in allen Mitgliedern der mitochondrialen Carrier-Familie konserviert. Der Import des AAC erfolgt in definierten Stufen: Das Vorstufenprotein wird im Cytosol synthetisiert (Stufe I) und bindet an Rezeptoren des TOM-Komplexes (Stufe II). Der AAC wird zum Importkanal geleitet und teilweise über die Außenmembran transloziert (Stufe IIIa). Die vollständige Translokation wird durch die Interaktion des dritten Moduls des AAC mit dem TOM-Komplex verhindert. Segmente des AAC, die in den Intermembranraum exponiert sind, binden an den hexameren TIM9⋅10-Komplex. Jeder der drei Module kann mit dem TIM9⋅10-Komplex interagieren. Nachfolgend wird das Vorstufenprotein auf den TIM9⋅10⋅12- Komplex auf der Außenseite der Innenmembran übertragen. Der dritte Modul bleibt noch fest an den TOM-Komplex gebunden. Es enthält das Signal für die membranpotentialabhängige Insertion des AAC in die Innenmembran. Für die Freisetzung des AAC aus dem TOM-Komplex und seine Membraninsertion sind sowohl ein Membranpotential als auch die Rekrutierung eines funktionellen TIM22-Komplexes an die Kontaktstelle zwischen Außenund Innenmembran erforderlich.
The novel genetic method of "sheltered RIP" (repeat induced point mutation) was used to generate a Neurospora crassa mutant in which MOM19, a component of the protein import machinery of the mitochondrial outer membrane, can be depleted. Deficiency in MOM19 resulted in a severe growth defect, but the cells remained viable. The number of mitochondrial profiles was not grossly changed, but mutant mitochondria were highly deficient in cristae membranes, cytochromes, and protein synthesis activity. Protein import into isolated mutant mitochondria was decreased by factors of 6 to 30 for most proteins from all suborganellar compartments. Proteins like the ADP/ATP carrier, MOM19, and cytochrome c, whose import into wild-type mitochondria occurs independently of MOM19 became imported normally showing that the reduced import activities are solely caused by a lack of MOM19. Depletion of MOM19 reveals a close functional relationship between MOM19 and MOM22, since loss of MOM19 led to decreased levels of MOM22 and reduced protein import through MOM22. Furthermore, MOM72 does not function as a general backup receptor for MOM19 suggesting that these two proteins have distinct precursor specificities. These findings demonstrate that the import receptor MOM19 fulfills an important role in the biogenesis of mitochondria and that it is essential for the formation of mitochondria competent in respiration and phosphorylation.
We previously reported that hsp70 in the mitochondrial matrix (mt-hsp70 = Ssc1p) is required for import of precursor proteins destined for the matrix or intermembrane space. Here we show that mt-hsp70 is also needed for the import of mitochondrial inner membrane proteins. In particular, the precursor of ADP/ATP carrier that is known not to interact with hsp60 on its assembly pathway requires functional mt-hsp70 for import, suggesting a general role of mt-hsp70 in membrane translocation of precursors. Moreover, a precursor arrested in contact sites was specifically co-precipitated with antibodies directed against mt-hsp70. We conclude that mt-hsp70 is directly involved in the translocation of many, if not all, precursor proteins that are transported across the inner membrane.
Two distinct pathways of sorting and assembly of nuclear-encoded mitochondrial inner membrane proteins are described. In the first pathway, precursor proteins that carry amino-terminal targeting signals are initially translocated via contact sites between both mitochondrial membranes into the mitochondrial matrix. They become proteolytically processed, interact with the 60-kDa heat-shock protein hsp60 in the matrix and are retranslocated to the inner membrane. The sorting of subunit 9 of Neurospora crassa Fo-ATPase has been studied as an example. Fo subunit 9 belongs to that class of nuclear-encoded mitochondrial proteins which are evolutionarily derived from a prokaryotic ancestor according to the endosymbiont hypothesis. We suggest that after import into mitochondria, these proteins follow the ancestral sorting and assembly pathways established in prokäryotes (conservative sorting). On the other hand, ADP/ATP carrier was found not to require interaction with hsp60 for import and assembly. This agrees with previous findings that the ADP/ATP carrier possesses non-amino-terminal targeting signals and uses a different import receptor to other mitochondrial precursor proteins. It is proposed that the ADP/ATP carrier represents a class of mitochondrial inner membrane proteins which do not have a prokaryotic equivalent and thus appear to follow a non-conservative sorting pathway.
We have identified a mitochondrial outer membrane protein of 72 kd (MOM72) that exhibits the properties of an import receptor for the ADP/ATP carrier (AAC), the most abundant mitochondrial protein. Monospecific antibodies and Fab fragments against MOM72 selectively inhibit import of AAC at the level of specific binding to the mitochondria. AAC bound to the mitochondrial surface is coprecipitated with antibodies against MOM72 after lysis of mitochondria with detergent. MOM72 thus has a complementary function to that of MOM19, which acts as an import receptor for the majority of mitochondrial proteins studied so far but not for the AAC. The import pathway of the precursor of MOM72 appears to involve MOM19 as receptor.
We have identified the yeast homologue of Neurospora crassa MOM72, the mitochondrial import receptor for the ADP/ATP carrier (AAC), by functional studies and by cDNA sequencing. Mitochondria of a yeast mutant in which the gene for MOM72 was disrupted were impaired in specific binding and import of AAC. Unexpectedly, we found a residual, yet significant import of AAC into mitochondria lacking MOM72 that occurred via the receptor MOM19. We conclude that both MOM72 and MOM19 can direct AAC into mitochondria, albeit with different efficiency. Moreover, the precursor of MOM72 apparently does not require a positively charged sequence at the extreme amino terminus for targeting to mitochondria.
We have identified a 19 kd protein of the mitochondrial outer membrane (MOM19). Monospecific IgG and Fab fragments directed against MOM19 inhibit import of precursor proteins destined for the various mitochondrial subcompartments, including porin, cytochrome c1, Fe/S protein, F0 ATPase subunit 9, and F1 ATPase subunit β. Inhibition occurs at the level of high affinity binding of precursors to mitochondria. Consistent with previous functional studies that suggested the existence of distinct import sites for ADP/ATP carrier and cytochrome c, we find that import of those precursors is not inhibited. We conclude that MOM19 is identical to, or closely associated with, a specific mitochondrial import receptor.
The precursor of porin, a mitochondrial outer membrane protein, competes for the import of precursors destined for the three other mitochondrial compartments, including the Fe/S protein of the bc1- complex (intermembrane space), the ADP/ATP carrier (inner membrane), subunit 9 of the F0-ATPase (inner membrane), and subunit beta of the F1- ATPase (matrix). Competition occurs at the level of a common site at which precursors are inserted into the outer membrane. Protease- sensitive binding sites, which act before the common insertion site, appear to be responsible for the specificity and selectivity of mitochondrial protein uptake. We suggest that distinct receptor proteins on the mitochondrial surface specifically recognize precursor proteins and transfer them to a general insertion protein component (GIP) in the outer membrane. Beyond GIP, the import pathways diverge, either to the outer membrane or to translocation contact-sites, and then subsequently to the other mitochondrial compartments.
The precursors of the mitochondrial proteins ADP/ATP carrier (AAC) and F1-ATPase subunit β (F1β) were accumulated at the stages of binding to receptor sites on the mitochondrial outer membrane, or in contact sites between outer and inner membranes. Specific antibodies raised against the mature proteins were added to the isolated mitochondria and efficiently bound to these translocation intermediates. Further movement of the precursors to consecutive steps along their import pathway was thereby inhibited. Controls showed that precursor proteins which were inserted into or translocated across the outer membrane were not recognized by the antibodies unless the mitochondrial membranes were disrupted. We conclude that the trapped translocation intermediates have antigenic sites exposed to the outside of the outer membrane.
We have analyzed how translocation intermediates of imported mitochondrial precursor proteins, which span contact sites, interact with the mitochondrial membranes. F1-ATPase subunit β(F1β) was trapped at contact sites by importing it into Neurospora mitochondria in the presence of low levels of nucleoside triphosphates. This F1β translocation intermediate could be extracted from the membranes by treatment with protein denaturants such as alkaline pH or urea. By performing import at low temperatures, the ADP/ATP carrier was accumulated in contact sites of Neurospora mitochondria and cytochrome b2 in contact sites of yeast mitochondria. These translocation intermediates were also extractable from the membranes at alkaline pH. Thus, translocation of precursor proteins across mitochondrial membranes seems to occur through an environment which is accessible to aqueous perturbants. We propose that proteinaceous structures are essential components of a translocation apparatus present in contact sites.
The precursor of the mitochondrial inner membrane protein ADP/ATP carrier is cytoplasmically synthesized without an amino-terminal peptide extension. We constructed a truncated precursor lacking the 103 amino acids from the amino terminus (about a third of the protein). Import of the truncated precursor into mitochondria showed the import characteristics of the authentic precursor, including nucleoside triphosphate dependence, requirement for a protease-sensitive component on the mitochondrial surface, two-step specific binding to the outer membrane, and membrane potential-dependent translocation into the inner membrane. We conclude that, in contrast to all other mitochondrial precursor proteins studied so far, domains of the ADP/ATP carrier distant from the amino terminus can carry specific targeting information for transport into mitochondria.
The specific recognition by mitochondria of the precursor of porin and the insertion into the outer membrane were studied with a radiolabeled water-soluble form of porin derived from the mature protein. High-affinity binding sites had a number of 5-10 pmol/mg mitochondrial protein and a ka of 1-5 X 10(8) M-1. Binding was abolished after trypsin pretreatment of mitochondria indicating that binding sites were of protein-aceous nature. Specifically bound porin could be extracted at alkaline pH but not by high salt and was protected against low concentrations of proteinase K. It could be chased to a highly protease resistant form corresponding to mature porin. High-affinity binding sites could be extracted from mitochondria with detergent and reconstituted in asolectin-ergosterol liposomes. Water-soluble porin competed for the specific binding and import of the precursor of the ADP/ATP carrier, an inner membrane protein. We suggest that (i) binding of precursors to proteinaceous receptors serves as an initial step for recognition, (ii) the receptor for porin may also be involved in the import of precursors of inner membrane proteins, and (iii) interaction with the receptor triggers partial insertion of the precursor into the outer membrane.
Transport of the precursor to the ADP/ATP carrier from the cytosol into the mitochondrial inner membrane was resolved into several consecutive steps. The precursor protein was trapped at distinct stages of the import pathway and subsequently chased to the mature form. In a first reaction, the precursor interacts with a protease-sensitive component on the mitochondrial surface. It then reaches intermediate sites in the outer membrane which are saturable and where it is protected against proteases. This translocation intermediate can be extracted at alkaline pH. We suggest that it is anchored to the membrane by a so far unknown proteinaceous component. The membrane potential delta psi-dependent entrance of the ADP/ATP carrier into the inner membrane takes place at contact sites between outer and inner membranes. Completion of translocation into the inner membrane can occur in the absence of delta psi. A cytosolic component which is present in reticulocyte lysate and which interacts with isolated mitochondria is required for the specific binding of the precursor to mitochondria.
The role of nucleoside triphosphates (NTPs) in mitochondrial protein import was investigated with the precursors of N. crassa ADP/ATP carrier, F1-ATPase subunit β, F0-ATPase subunit 9, and fusion proteins between subunit 9 and mouse dihydrofolate reductase. NTPs were necessary for the initial interaction of precursors with the mitochondria and for the completion of translocation of precursors from the mitochondrial surface into the mitochondria. Higher levels of NTPs were required for the latter reactions as compared with the early stages of import. Import of precursors having identical presequences but different mature protein parts required different levels of NTPs. The sensitivity of precursors in reticulocyte lysate to proteases was decreased by removal of NTPs and increased by their readdition. We suggest that the hydrolysis of NTPs is involved in modulating the folding state of precursors in the cytosol, thereby conferring import competence.
The transfer of cytoplasmically synthesized precursor proteins into or across the inner mitochondrial membrane is dependent on energization of the membrane. To investigate the role of this energy requirement, a buffer system was developed in which efficient import of ADP/ATP carrier into mitochondria from the receptor-bound state occurred. This import was rapid and was dependent on divalent cations, whereas the binding of precursor proteins to the mitochondrial surface was slow and was independent of added divalent cations. Using this buffer system, the import of ADP/ATP carrier could be driven by a valinomycin-induced potassium diffusion potential. The protonophore carbonylcyanide m-chlorophenyl-hydrazone was not able to abolish this import. Imposition of a delta pH did not stimulate the import. We conclude that the membrane potential delta psi itself and not the total protonmotive force delta p is the required energy source.
Mild trypsin treatment of isolated Neurospora mitochondria strongly inhibits their ability to bind and import the precursors of several mitochondrial proteins. Evidence is presented for two proteins, the ADP/ATP carrier and the mitochondrial porin, that specific binding of the precursors to the outer surface of the mitochondria is affected by the protease treatment. We suggest that the receptors that mediate the import of these two precursors are proteinaceous. Treatment of mitochondria with elastase also inhibits the binding and import of the ADP/ATP carrier and the porin. In contrast the import of the precursors of subunits 2 and 9 of the mitochondrial proton-translocating ATPase was unaffected by elastase treatment at the concentrations used. We suggest that the import pathways of the latter two proteins are distinct from those of the ADP/ATP carrier and the porin.
Precursor to ADP/ATP carrier synthesized in vitro is transferred into isolated mitochondria to a protease-resistant location. This process requires an electrical potential across the inner membrane. We show now that precursor imported in a cell-free system exhibits the same resistance to protease as the mature endogenous carrier. Furthermore, transferred protein, but not receptor-associated precursor, binds carboxy-atractyloside, a specific inhibitor of the mature carrier and can be isolated by the purification procedure for the mature carrier. At least 70% of the precursor associated with mitochondria in the presence of a membrane potential acquires this functional characteristic. Finally, the binding of carboxyatractyloside can be modulated by treatment of the imported protein with sulfhydryl reagents in a manner indistinguishable from the authentic carrier protein. We conclude that import in vitro leads to correct assembly and orientation of the ADP/ATP carrier in the mitochondria.
The precursor form of Neurospora crassa mitochondrial ADP/ATP carrier synthesized in a cell-free protein-synthesizing system can be imported into isolated mitochondria. If the mitochondrial transmembrane potential is abolished, import does not occur but the precursor binds to the mitochondrial surface. Upon reestablishment of the membrane potential, the bound precursor is imported. This occurs without dissociation of the bound precursor from the mitochondrial surface. We conclude that the binding observed represents an interaction with receptor sites and thus is an early step in the import pathway.
Posttranslational transfer of most precursor proteins into mitochondria is dependent on energization of the mitochondria. Experiments were carried out to determine whether the membrane potential or the intramitochondrial ATP is the immediate energy source. Transfer in vitro of precursors to the ADP/ATP carrier and to ATPase subunit 9 into isolated Neurospora mitochondria was investigated. Under conditions where the level of intramitochondrial ATP was high and the membrane potential was dissipated, import and processing of these precursor proteins did not take place. On the other hand, precursors were taken up and processed when the intramitochondrial ATP level was low, but the membrane potential was not dissipated. We conclude that a membrane potential is involved in the import of those mitochondrial precursor proteins which require energy for intracellular translocation
Transport of mitochondrial precursor proteins into mitochondria of Neurospora crassa was studied in a cellfree reconstituted system. Precursors were synthesized in a reticulocyte lysate programmed with Neurospora mRNA and transported into isolated mitochondria in the absence of protein synthesis. Uptake of the following precursors was investigated: apocytochrome c, ADP/ATP carrier and subunit 9 of the oligomycin-sensitive ATPase. Addition of high concentrations of unlabelled chemically prepared apocytochrome c (1–10 μM) inhibited the appearance in the mitochondrial of labelled cytochrome c synthesized in vitro because the unlabelled protein dilutes the labelled one and because the translocation system has a limited capacity [apparent V is 1–3 pmol × min−1× (mg mitochondrial protein)−1]. Concentrations of added apocytochrome c exceeding the concentrations of precursor proteins synthesized in vitro by a factor of about 104 did not inhibit the transfer of ADP/ATP carrier or ATPase subunit 9 into mitochondria. Carbonylcyanide m-chlorophenylhydrazone, an uncoupler of oxidative phosphorylation, inhibited transfer in vitro of ADP/ATP carrier and of ATPase subunit 9, but not of cytochrome c. These findings suggest that cytochrome c and the other two proteins have different import pathways into mitochondria. It can be inferred from the data presented that different 'receptors' on the mitochondrial surface mediate the specific recognition of precursor proteins by mitochondria as a first step in the transport process.
The mitochondrial ADP/ATP carrier is an integral transmembrane protein of the inner membrane. It is synthesized on cytoplasmic ribosomes. Kinetic data suggested that this protein is transferred into mitochondria in a posttranslational manner. The following results provide further evidence for such a mechanism and provide information on its details. 1. In homologous and heterologous translation systems the newly synthesized ADP/ATP carrier protein is present in the postribosomal supernatant. 2. Analysis by density gradient centrifugation and gel filtration shows, that the ADP/ATP carrier molecules in the postribosomal fraction are present as soluble complexes with apparent molecular weights of about 120000 and 500000 or larger. The carrier binds detergents such as Triton X-100 and deoxycholate forming mixed micelles with molecular weights of about 200000–400000. 3. Incubation of a postribosomal supernatant of a reticulocyte lysate containing newly synthesized ADP/ATP carrier with mitochondria isolated from Neurospora spheroplasts results in efficient transfer of the carrier into mitochondria. About 20–30% of the transferred carrier are resistant to proteinase in whole mitochondria. The authentic mature protein is also largely resistant to proteinase in whole mitochondria and sensitive after lysis of mitochondria with detergent. Integrity of mitochondria is a prerequisite for translocation into proteinase resistant position. 4. The transfer in vitro into a proteinase-resistant form is inhibited by the uncoupler carbonyl-cyanide m-chlorophenylhydrazone but not the proteinase-sensitive binding. These observations suggest that the posttranslational transfer of ADP/ATP carrier occurs via the cytosolic space through a soluble oligomeric precursor form. This precursor is taken up by intact mitochondria into an integral position in the membrane. These findings are considered to be of general importance for the intracellular transfer of insoluble membrane proteins. They support the view that such proteins can exist in a water-soluble form its precursors and upon integration into the membrane undergo a conformational change. Uptake into the membrane may involve the cleavage of an additional sequence in some proteins, but this appears not to be a prerequisite as demonstrated by the ADP/ATP carrier protein.
The majority of mitochondrial proteins are synthesized on cytoplasmic ribosomes and transferred to the mitochondria where they are assembled to supramolecular structures. The intracellular transfer of these proteins appears to occur by a post-translational mechanism, i.e., it involves extramitochondrial precursor forms which are translocated in a step independent from translation. The synthesis and transfer of individual proteins was investigated in vivo, or in vitro employing homologous and heterologous cell free systems for protein synthesis. Cytochrome c was initially made as the apoprotein. This precursor protein was converted to the holoprotein on uptake by mitochondria in reconstituted systems. Integrity of mitochondria was essential for the apo to holo conversion. In the case of the ADP/ATP carrier protein, an integral transmembrane protein of the inner mitochondrial membrane, the initial translation product had the same apparent molecular weight as the mature protein. It was found in soluble form in the post-ribosomal supernatant. Citrate synthase, a matrix protein, was synthesized as a precursor with an apparent molecular weight of 47 000. Transfer to the mitochondria was accompanied by cleavage to yield a molecular weight of 45 000. The significance of these results in relation to the mechanisms of intracellular transfer and of assembly of the individual proteins is discussed.
ADP/ATP carrier protein was synthesized in heterologous cell-free systems programmed with Neurospora poly(A)-containing RNA and homologous cell-free systems from Neurospora. The apparent molecular weight of the product obtained in vitro was the same as that of the authentic mitochondrial protein. The primary translation product obtained in reticulocyte lysates starts with formylmethionine when formylated initiator methionyl-tRNA (fMet-tRNAfMet) was present. The product synthesized in vitro was released from the ribosomes into the postribosomal supernatant. The evidence presented indicates that the ADP/ATP carrier is synthesized as a polypeptide with the same molecular weight as the mature monomeric protein and does not carry an additional sequence.