POPULARITY
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Doppelsterne gehören zu den am häufigsten gebildeten Objekten im Sternentstehungsprozess. Dennoch ist der Einfluss von stellaren Begleitern auf die Entwicklung zirkumstellarer Scheiben, dem Geburtsort der Planeten, bisher wenig verstanden. Die vorliegende Arbeit beschreibt und diskutiert Nahinfrarotbeobachtungen von 52 stellaren Vielfachsystemen mit projizierten Abständen von 25 bis 1000 Astronomischen Einheiten (AE) in den Sternentstehungsregionen des Orion Nebula Cluster und Chamaeleon I. Damit handelt es sich um die größten homogenen Studien protoplanetarer Scheiben in T Tauri-Doppelsternen in diesen beiden Regionen und um eine der umfangreichsten Untersuchungen dieser Art bisher. Die aufgenommenen Beobachtungsdaten erlauben die Bestimmung von individuellen stellaren (z.B. Effektivtemperatur, Leuchtkraft, Alter, Masse) und Systemparametern (Abstand der Komponenten, Massenverhältnis). Zusätzlich dient die Detektion von Brackett-gamma-Emission als Anzeichen für aktive Akkretion während zirkumstellarer Staub in der inneren Scheibe mittels Nahinfrarotfarbexzess nachgewiesen wird. Die Ergebnisse zeigen, dass der Anteil an Doppelsternkomponenten mit intakter Akkretionsscheibe signifikant geringer ist als der von Einzelsternen vergleichbarer Masse in beiden Regionen. In engen Systemen mit weniger als 100 AE projiziertem Abstand ist die Akkretionsscheibenhäufigkeit auf etwa die Hälfte des Einzelsternwertes reduziert. Heißer Staub in der inneren Scheibe ist in engen Doppelsystemen 100 AE identisch zu der von Einzelsternen. Die gemessenen Massenakkretionsraten in Doppelsternkomponenten erweisen sich als ununterscheidbar von denen in Einzel- und Doppelsystemen anderer Sternentstehungsregionen. Die gesammelten Daten lassen folgende Schlüsse zu: (a) Die Komponenten von Doppelsternen enstehen vorrangig gleichzeitig, was gegen Einfang ursprünglich isolierter Komponenten als hauptsächlichen Doppelsternenstehungsmechanismus spricht. (b) Scheiben in Doppelsternen enger als ~100 AE entwickeln sich, und verschwinden, schneller als Einzelsternscheiben. (c) Im Gegensatz zur Scheibenentwicklung in Einzelsternen ist die Lebenszeit einer Scheibe um die masseärmere Komponente eines Doppelsterns kürzer als die um den Primärstern. (d) Während die Lebenszeit einer Scheibe durch ihren äußeren Durchmesser (also indirekt durch den Doppelsternabstand) bestimmt wird, sind die Massenakkretionsraten universell. Dies ist ein Hinweis auf eine Entkopplung der Entwicklung der inneren und äußeren Scheibe. (e) Die Parallelen in der Häufigkeit von Scheiben um Komponenten von Doppelsternen und der Detektion von Planeten in vergleichbaren Systemen legt einen schnellen Planetenenstehungsprozess für massereiche (>1 M_Jup) Gasplaneten nahe (z.B. "disk fragmentation") und einen langsameren Prozess (z.B. "core accretion") für masseärmere Planeten.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Der Erfolg chirurgischer Eingriffe wird nicht selten durch überschießende Wundheilung zunichte gemacht, so daß ein erneuter Eingriff notwendig wird. Am Wundort lokal eingesetzte Radionuklide mit kurzreichweitiger Strahlung können solche gutartigen Wucherungen verhindern. Das Radionuklid P-32 eignet sich als reiner Elektronenemitter mit einer Halbwertszeit von 14,3 Tagen und einer mittleren Energie von 694,9 keV (Emax=1710,48 keV) für diese Aufgabe und kann durch den Einfang thermischer Neutronen (1 · 10^14 /s/cm^2) im Kernreaktor aus dem stabilen P-31 hergestellt werden. Nach einer typischen Bestrahlungszeit (14 Tage) beträgt der P-32–Anteil 1,4 · 10^-5. Implantate aus Polymer bzw. bioresorbierbarem Material als Träger des radioaktiven Strahlers ermöglichen gegenüber metallischen Implantaten neue Anwendungen für diese Art der Strahlentherapie. In dieser Arbeit wurde eine Herstellungsmethode für bisher nicht verfügbare organische radioaktive Implantate entwickelt und ein dazugehöriges Dosimetriesystem aufgebaut. Mittels Ionenimplantation können P-32–Ionen mit bis zu 180 keV einige 100 nm tief in organische Implantatmaterialien eingeschossen werden. Für eine typische Dosis (15 Gy in 7 Tagen in 1 mm Abstand zum Implantat) wird eine Aktivität von 75 kBq benötigt, dies entspricht 1,3 · 10^11 P-32–Ionen. Die dafür optimierte Zerstäubungsionenquelle ermöglicht einen Ionenstrahl mit hohem Strahlstrom (>14 µA P–) und geringer Emittanz (
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
In dieser Arbeit werden die Rauschquellen in Sperrschicht-Feldeffekttransistoren (JFETs) eingehend auf ihre Ursachen und Wirkungsweise untersucht. Das Rauschverhalten von JFETs wirkt sich beispielsweise in Halbleiter-Detektor-Verstärker-Systemen auf die Energieauflösung solcher Systeme aus, in denen JFETs aufgrund ihres geringen Rauschens oft als erste Verstärkungsstufe eingesetzt werden. Diesbezüglich wird eine Methode entwickelt, mit Hilfe derer aus Rauschmessungen an JFETs die Energieauflösung eines einfachen spektroskopischen Systems berechnet werden kann, in das der vermessene Transistor als erste Verstärkungsstufe eingebaut ist. Außerdem wird gezeigt wie aus temperaturabhängigen Rauschmessungen auf die Eigenschaften von Kristalldefekten in Halbleitern geschlossen werden kann. Im theoretischen Teil der Arbeit werden zuerst grundlegende Rauschmechanismen in Halbleitern beschrieben wie sie auch in JFETs auftreten. Auf die Herleitungen der Rauschspektren des thermischen Rauschens, des Diffusionsstrom-Rauschens, des Generations-Rekombinations-Rauschens und des „Random-Telegraph-Signal“-Rauschens (RTS-Rauschen) wird ausführlich eingegangen. Das RTS-Rauschen kommt durch den Einfang und die Emission von freien Ladungsträgern in/aus Kristalldefekte(n) hinein/heraus. Die Abhängigkeiten des RTS-Rauschens von der Lage des Kristalldefekts im Bauelement und den Eigenschaften des Kristalldefekts selbst werden detailliert analysiert. An den Beispielen eines Widerstandes und eines JFETs wurden Simulationen durchgeführt, mit Hilfe derer der Einfluß einzelner Kristalldefekte auf das Rauschverhalten des jeweils betrachteten Bauelements bestimmt werden kann. Im experimentellen Teil der Arbeit werden Messungen an verschiedenen JFETs vorgestellt, in denen das Rauschen in Abhängigkeit von der Frequenz und der Temperatur aufgenommen wurde. Auf die angeführten Rauschmessungen wird die oben erwähnte Methode angewendet, mit Hilfe derer man die Energieauflösung eines einfachen spektroskopischen Systems berechnet werden kann, in das der vermessene Transistor als erste Verstärkungsstufe eingebaut ist. Dadurch gewinnt man ein Bild vom Verhalten des betrachteten spektroskopischen Systems in Abhängigkeit von der Temperatur und der Filterzeit eines in das System integrierten Filters, der zur Optimierung des Signal-zu-Rausch-Verhältnisses dienen sollte. Daraufhin wird exemplarisch am Beispiel eines rauscharmen JFETs gezeigt, wie man anhand von Rauschmessungen die Eigenschaften und die Lage von Kristalldefekten bestimmen kann. Zum Abschluß der Arbeit werden noch Wiederholungsmessungen an einem Bauelement widergegeben, bei denen sich das Rauschverhalten von sogenannten multistabilen Kristalldefekten manifestierte. Multistabile Defekte sind Kristalldefekte, die nicht nur eine stabile sondern mehrere mögliche Konfigurationen im Kristallgitter besitzen. Übergänge zwischen den verschiedenen Zuständen können durch verschiedene Einflüsse wie z.B. durch die Temperaturbehandlung während einer Rauschmessung zustande kommen.