Podcasts about ladungstr

  • 15PODCASTS
  • 25EPISODES
  • 37mAVG DURATION
  • ?INFREQUENT EPISODES
  • Dec 10, 2024LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about ladungstr

Latest podcast episodes about ladungstr

Industrie 4.0 – der Expertentalk für den Mittelstand
Industrie 4.0 to go #13: Asset Tracking l So gelingt DIR die Prozessoptimierung in der Produktion

Industrie 4.0 – der Expertentalk für den Mittelstand

Play Episode Listen Later Dec 10, 2024 10:15


Die Suche nach Aufträgen, Materialien oder Fahrzeugen in der Produktion und Lagerlogistik kostet wertvolle Zeit und kann zu unnötigen Prozessunterbrechungen führen. Mit Asset Tracking und RTLS (Real Time Locating System) gehören diese Probleme der Vergangenheit an! In diesem Video erfährst Du, wie Ortungstechnologien dabei helfen, Deine Produktion und Supply Chain zu optimieren und gleichzeitig den Weg zur Smart Factory zu ebnen. Was ist Asset Tracking? Asset Tracking beschreibt die Nachverfolgung von Gütern in der Industrie – von Aufträgen und Materialien bis hin zu Ladungsträgern und Fahrzeugen. Mit einem RTLS (Real Time Locating System) können darüber hinaus Ressourcen in Echtzeit lokalisiert werden. Dies sorgt nicht nur für Transparenz, sondern eröffnet auch zahlreiche Möglichkeiten zur Prozessautomatisierung. Warum ist Asset Tracking der Schlüssel zur Smart Factory? - Effizienzsteigerung: Reduziere die Suchzeiten und beschleunige Deine Prozesse. - Transparenz: Verfolge Material- und Auftragsstatus in Echtzeit. - Optimierung: Erkenne Verbesserungspotenziale durch die Auswertung von Tracking-Daten. - Automatisierung: Vernetze die Ortungstechnologien mit Deinem ERP-System und automatisiere den Materialfluss. Anwendungsbereiche von Asset Tracking: - Auftrags- und Materialverfolgung - Warenausgangskontrolle - Routenoptimierung von Staplerfahrern - Transparente Kommunikation mit Kunden und Lieferanten Das Ergebnis: Weniger Störungen, mehr Effizienz und eine höhere Kundenzufriedenheit – mit Asset Tracking gestaltest Due eine smarte, zukunftsfähige Produktion. Erfahre in diesem Video, wie Du RFID, RTLS und andere Technologien nutzen kannst, um den Schritt in die Smart Factory zu machen. Bringe Deine Produktion auf das nächste Level! #smartfactory #assettracking #rtls #rfid #digitaletransformation

Startup Insider
Investments & Exits - mit Philipp Werner über die Finanzierungsrunde von SNERPA Power und Logistikbude

Startup Insider

Play Episode Listen Later Sep 1, 2023 26:26


In der Rubrik “Investments & Exits” begrüßen wir heute Philipp Werner, Partner bei Project A. Philipp bespricht die Runde von SNERPA Power und Logistikbude.Das isländische Startup SNERPA Power hat eine Finanzierung in Höhe von 2,2 Millionen Euro erhalten, um die Dekarbonisierung des Energiesektors zu beschleunigen. SNERPA Power wurde 2022 von den Branchenveteranen Íris Baldursdóttir (CEO) und Eyrún Linnet (CTO) mit der Vision gegründet, einen Beitrag zur Beschleunigung der weltweiten Energiewende zu leisten. Diese überzeichnete erste Investitionsrunde in Höhe von 2,2 Millionen Euro wurde von zwei VCs, Crowberry Capital (Island) und BackingMinds (Schweden), geleitet und ermöglicht es dem Unternehmen, seine Mitarbeiterzahl zu erhöhen, international zu expandieren und die kommerzielle Präsenz auszubauen.Logistikbude aus Dortmund, 2021 von Philipp Hüning, Michael Koscharnyj, Patrik Elfert und Jan Möller aus dem Fraunhofer IML ausgegründet, hat 2,2 Millionen Euro eingesammelt. Das junge Unternehmen aus dem Ruhrgebiet kümmert sich um Ladungsträgermanagement. Das Geld stammt unter anderem von Xpress Ventures, rethink ventures, dem Fraunhofer Technologie-Transfer Fonds (FTTF), Oma Ventures (Proglove-Gründer) sowie dem Business Angel Clubs better ventures sowie Angel-Investoren aus dem Umfeld von SB21. Mit dem frischen Kapital möchte das Software-Unternehmen seine “Technologie weiterentwickeln und im Markt skalieren”.

Logistik4punktnull - Der Podcast für Logistiker
191 - Ladungsträger in der Logistik

Logistik4punktnull - Der Podcast für Logistiker

Play Episode Listen Later Jul 28, 2023 24:54


In unserer heutigen Episode sprechen wir über die verschiedenen Ladungsträger in der Logistik. Wir schauen hierbei vor allem in die Handelslogistik, die tagtäglich etliche Tonnen Ware von A nach B bewegen muss. Wir waren selbst ein wenig überrascht, wie eindeutig die Verteilung ist. Aber hört selbst rein - kurzweilig und informativ wie immer. Viel Spaß dabei!

Startup Insider
Beschaffungsplattform Pacurion erhält ein Millioneninvestment (Reken • Five Investments • Thielemann)

Startup Insider

Play Episode Listen Later Feb 3, 2023 23:09


In der Mittagsfolge sprechen wir heute mit Dominik Leufgen, Co-CEO und Co-Founder von Pacurion, über das Investment der Thielemann-Tochter namens Five Investments in Höhe von 1,8 Millionen Euro.Pacurion hat eine digitale Beschaffungsplattform entwickelt, mit der Ladehilfsmittel, wie beispielsweise Europaletten oder Gitterboxen, direkt vom Hersteller bezogen werden können. Die Kundinnen und Kunden erhalten Angebote von den verschiedenen Produzenten und können bequem die günstigsten Konditionen auswählen. Die Plattform ist dabei für die Unternehmen kostenlos, wodurch sie den Beschaffungsprozess von Ladungsträgern optimieren sowie kosteneffizienter gestalten können. Zudem wird die Buchhaltung durch einen einzigen festen Vertragspartner signifikant vereinfacht. Selbst bei Lieferengpässen kann Pacurion durch sein großes Portfolio an Herstellern eine verlässliche Lieferfähigkeit garantieren. Die Lademittelplattform wurde im Jahr 2020 von Dennis Maschmeyer und Dominik Leufgen in Reken gegründet. Nach eigenen Angaben hat das Startup bereits über 800 Partner und vermittelt mehr als 300.000 Ladehilfsmittel pro Monat in 17 Ländern. Im Jahr 2022 hat die Plattform einen weltweiten Umsatz von rund 25 Millionen Euro erzielt. Zu den Kundenunternehmen gehören u.a. DHL, Mondi und Pfeifer & Langen.Nun hat die Thielemann-Tochter Five Investments 1,8 Millionen Euro in Pacurion investiert, wodurch die beiden Unternehmer Navid Thielemann und Christian Flick Gesellschafter und Strategiepartner des Startups werden. Gemeinsam wollen sie das Wachstum der Plattform vorantreiben und bis 2025 den Umsatz vervierfachen. Um diesen Meilenstein zu erreichen, sollen u.a. neue praktische Services systematisch weiter ausgebaut werden.Teaser: In der Mittagsfolge sprechen wir mit Dominik Leufgen, Co-CEO und Co-Founder von Pacurion. Das Startup hat eine digitale Beschaffungsplattform entwickelt, mit der Ladehilfsmittel direkt vom Hersteller bezogen werden können. Nun hat die Thielemann-Tochter Five Investments 1,8 Millionen Euro in Pacurion investiert.

IIoT Use Case Podcast | Industrie
#073 | Digitale Transformation in der Supply Chain - Mit SAP und omlox zu Open Source und technologieunabhängigen Lösungen | Der Logistik-Experte SICK AG

IIoT Use Case Podcast | Industrie

Play Episode Listen Later Jul 27, 2022 32:45


SUPPLY CHAIN | OPEN SOURCE TECHNOLOGIE | BUSINESS CASE | www.iotusecase.com | Die SICK AG ist bestens als Sensorhersteller bekannt. Mit wachsender Nachfrage ihrer Kunden gehen sie nun in das Lösungs- und Consultinggeschäft mit Logistik-Expertise im Bereich Produktion, Materialfluss bis zur Prozessebene. Wie die Use Cases der digitalen Transformation in der Supply Chain aussehen, welcher ROI dahintersteckt und wie SICK mit seinen  Kunden Open Source Technologien richtig einsetzt, erfahrt ihr in dieser Folge.  Technologie ist das eine – der Business Case etwas anderes. Logistik Manager, Warehouse Experten und Maintanance Manager wollen ihre Suchaufwände verringern (Visibility), die Prozesstransparenz schaffen (OEE) und nicht-produktive Zeiten reduzieren (Notify) - und das wowohl in der Greenfield Logistik Planung als auch in der Umsetzung im Brownfield bestehender Infrastrukturen. Beim Einsatz der Technologien wie RTLS, omlox, UBB, RFID oder SAP-Integration kann der Logistik-Experte Roland Avar, Head of Product Management bei SICK, helfen. Er ist Spezialist auf dem Gebiet von RTLS (Real-Time-Locating-Systemen) und zeigt anhand von Anwendungsfällen aus der Praxis, wie durch die Digitalisierung der Intralogistik wesentliche Kosteneinsparungen eines Unternehmens realisiert werden können. In Folge Nummer 73 erklärt er IIoT Business Cases an Beispielen aus der Praxis: -die Verfolgung   von   Ladungsträgern   und   Paletten -die Unterstützung der FIFO-Lagerplatznutzung -die nahtlose   Verfolgung   von   Gabelstaplern   im Innen- und Außenbereich Übrigens: SICK ist offen für IoT-Partnerschaften (Beispiel: Systemintegratoren), um gemeinsam Kunden in den Projekten zu helfen.  Wie wichtig ist Echtzeit-Lokalisierung in Hinblick auf Geschäftsprozessen und wie können auch Lieferketten dadurch optimiert werden? Jetzt die Podcastfolge anhören und genau das erfahren! Gastgeberin Ing. Madeleine Mickeleit (https://www.linkedin.com/in/madeleine-mickeleit/)Roland Avar (https://www.linkedin.com/in/roland-avar-a3519526/)

Industrie 4.0 – der Expertentalk für den Mittelstand
Ortungstechnologien in der Industrie mit Daniel Diemer - #37

Industrie 4.0 – der Expertentalk für den Mittelstand

Play Episode Listen Later Feb 1, 2022 34:16


Welche Ortungstechnologien gibt es und welche ist die richtige für meinen Anwendungsfall? - In Folge 37 unseres Podcasts geht Andrea Spiegel mit Daniel Diemer, Geschäftsführer der L-mobile infrastructure, diesen und weiteren Fragen auf den Grund. Wer sich häufig fragt, wo Aufträge oder Material abgeblieben sind, wie der Status eines bestimmten Auftrags lautet oder wo sich der Ladungsträger aufhält, der sollte sich diese Folge unbedingt anhören. Wir schauen uns nicht nur Herausforderungen der analogen Fabrik an, sondern auch, welche Ortungstechnologien es gibt und wie RFID, BLE, GPS, UWB und Co. für Track and Trace indoor und outdoor eingesetzt werden können. Zum Abschluss gibt Daniel einen Einblick in die Zukunft der Ortungstechnologien. Wenn ihr noch Fragen zum Thema der Folge habt oder Themenwünsche für weitere Folgen, schreibt uns das gerne unten in die Kommentare oder schreibt uns an marketing@l-mobile.com. Ihr möchtet mehr über L-mobile erfahren? Dann schaut gerne auf unserer Website vorbei: https://www.l-mobile.com/

Logistik4punktnull - Der Podcast für Logistiker
023 – Wie sehen die Ladungsträger der Zukunft aus?

Logistik4punktnull - Der Podcast für Logistiker

Play Episode Listen Later May 1, 2020 24:38


Der Ladungsträger spielt in er Logistik eine elementar wichtige Rolle - schließlich steht dort Ware drauf. aber lässt sich dieser unter Umständen sogar digitalisieren? Braucht das denn überhaupt jemand und wer soll die Party bezahlen? Wir sind dem ganzen ein wenig auf den Grund gegangen und haben hier vor allem versucht die Notwendigkeit und die Möglichkeiten zu erörtern. Das war nicht immer einfach, denn zwischen einer Palette Klopapier und einem AMG Motor ist ein großer Unterschied. Hört einfach mal und lasst uns gerne eure Meinung dazu - wir sind sehr gespannt

Think-ING - Intralogistik Podcast
Episode #30: Fussballroboter stehen Kopf | Gast: Hendrik Thamer & Claudio Uriarte von cellumation

Think-ING - Intralogistik Podcast

Play Episode Listen Later Feb 2, 2020 42:35


Seit vielen Jahren gibt es Fördertechnik und dabei gab es bisher wenige grundsätzliche Veränderungen. Cellumation denkt aber anders und hat ein modulares und flexibles System entwickelt auf dem Ladungsträger in alle Richtungen gefördert werden können. Wieso sie das machen und was Fussball damit zu tun hat, haben uns Hendrik und Claudio erzählt.

Intralogistiker Podcast
Folge 01 - 2020 - Optimale Ladungstraegerauswahl

Intralogistiker Podcast

Play Episode Listen Later Jan 8, 2020 8:35


Die Auswahl des richtigen Ladungsträgers hat entscheidende Auswirkungen auf die Logistik und Intralogistik von Unternehmen. Materialfluss und Gütertransport sollten sicher und störungsfrei ablaufen. Beispielsweise muss in der Intralogistik die Abstimmung des Ladungsträgers auf Regale und innerbetriebliche Transportmittel beachtet werden. Bei der optimalen Wahl von Ladungsträgern bzw. Ladehilfsmitteln gilt es oftmals einen Kompromiss zwischen Volumennutzung, Standardisierung, Kosten, Umwelteigenschaften, etc. zu finden. Generell müssen Eigenschaften wie Maße, Stapelbarkeit, Tragfähigkeit, der Werkstoff sowie nationale und internationale Tauschfähigkeit beachtet werden. Eine genaue Kenntnis der Ladungsträger und gegebenenfalls eine fachliche Beratung sind daher sehr zu empfehlen. www.bito.com/ratgeber

Evolution Radio Show - Alles was du über Keto, Low Carb und Paleo wissen musst
Die Gefahren von LEDs: Photobiologie und Sonnenlicht - Interview mit Alexander Wunsch | Folge #119

Evolution Radio Show - Alles was du über Keto, Low Carb und Paleo wissen musst

Play Episode Listen Later Aug 7, 2017 64:52


In Folge #119 Das Video der aktuellen Folge direkt auf Youtube öffnen Bitte beachten Sie auch immer den aktuellen "Haftungsausschluss (Disclaimer) und allgemeiner Hinweis zu medizinischen Themen" auf https://paleolowcarb.de/haftungsausschluss/ 20% auf alle Produkte im BRAINEFFECT Shop Gutscheincode: Evolutionradioshow - 20% auf alle Produkte im BRAINEFFECT Shop unter www.brain-effect.com Und nicht vergessen: Wenn du uns auf Youtube siehst, und wenn du es noch nicht getan hast, dann abonniere unseren Kanal „Evolution Radio Show“ Wenn du das Podcast hörst, dann findest du die Links für Apple iTunes und Android hier auf unserer Homepage Kurze Zusammenfassung Alexander Wunsch ist Arzt, Forscher und Referent in den Bereichen Lichttherapie, Photobiologie und Biophysik. Er erforscht Chancen und Risiken natürlicher und künstlicher optischer Strahlung auf Mensch und Umwelt, berät Politik, Medienvertreter und Industrie bei lichtbiologischen Fragen und entwickelt kurative, präventive und protektive Konzepte und Anwendungen für die Lichttherapie und Lichthygiene beim Menschen. Er ist Mitglied der Deutschen Akademie für Photobiologie und Phototechnologie (DAfP), der deutschen Lichttechnischen Gesellschaft (LiTG) und Lehrbeauftragter für den Themenbereich “Light and Health” im internationalen Master-Studiengang “Architectural Lighting Design” der Hochschule Wismar. Er hält regelmäßig Vorträge über biophysikalische, lichtbiologische und lichtmedizinische Themen im In- und Ausland. ##Alle Vorträge von Alexander Wunsch auf Vimeo ##Wir sprechen in dieser Folge über Was unterscheidet künstliches Licht von natürlichem Licht Wie wirkt Licht auf die Zellen Warum sind gerade LEDs so schädlich für unsere Gesundheit? Welche Art von Leuchtmittel sollte man zu Hause nutzen und wie kann man sich am besten vor den negativen Effekten anderer Blaulichtquellen, wie Monitore, schützen? #Transkript Julia: Gut. Lieber Alexander Wunsch, herzlich willkommen zur Evolution Radio Show. Dr. Alexander Wunsch: Schönen guten Tag. Julia: Wir werden gleich losstarten ins Thema, weil es ist komplex, es gibt viel zu sagen dazu. Vielleicht würde ich gerne so starten. Dass Sonnenlicht irgendwie wichtig ist, das ist schon würde ich fast sagen im Mainstream angekommen, aber eigentlich nur, was die Knochengesundheit und Vitamin D betrifft und alles darüber hinaus existiert eigentlich nicht in der Wahrnehmung. Doch Licht hat ganz, ganz viele Funktionen im Körper, die weit über dieses, nur über das Vitamin D hinausgehen. Vielleicht könnten Sie ganz kur erklären, auf welche Bereiche Licht oder vor allem natürliches Licht wirkt. Wofür brauchen wir Sonnenlicht? Dr. Alexander Wunsch: Hm, das ist die einfachste Frage sozusagen vorweg. Das Sonnenlicht, wie Sie schon gesagt haben, das ist für sämtliche Lebensprozesse letztlich essentiell und das Besondere am Sonnenlicht ist aus meiner Sicht jetzt nicht mal die genaue Spektralzusammensetzung, also aus welchen Wellenlängen das besteht, sondern zunächst mal im Kontext der Evolution ist das Sonnenlicht A) der Antrieb für sämtliche Vorgänge auf unserem Planeten, ob das jetzt klimatische Vorgänge sind oder ob das die chemische Evolution wäre oder auch die biologische Evolution, jeder Energieaustausch, stoffliche Veränderungen in den Molekülen, alles ist letzten Endes zurückführbar auf die Sonnenenergie und auch auf die Zusammensetzung des Sonnenlichts. Das Besondere ist hierbei, dass das Leben sich unter dem Licht der Sonne entwickelt hat und dass seit über 4 Milliarden Jahren sich die Zusammensetzung dieses Sonnenlichts praktisch nicht wesentlich verändert hat. Und dadurch haben alle Organismen gelernt, das Beste aus dem vorhandenen Spektrum herauszuziehen und auch zum Beispiel zu nutzen, um sich gegen die potentiell schädlichen Anteile zu wehren. Und dadurch ist das Sonnenlicht ein sehr komplexer Cocktail von Strahlung, also ein Strahlungsgemisch, das den Lebensprozessen praktisch in jeder Hinsicht förderlich ist. Das beginnt mit der visuellen Orientierung, das geht über die Absorption von ganz bestimmten Wellenlängen, dadurch die Erzeugung des Farbspektrums, das uns umgibt in der Natur, in unserem Environment, und dann zum Beispiel Vitamin D ist ein ganz kleiner Aspekt dessen, was in unserem Körper, in der Haut passiert, im Sinne von einer Photosynthese. Wir sind anders als Pflanzen nicht in der Lage selbst Sonnenenergie in chemische Energie umzuwandeln, deswegen müssen wir Pflanzen oder pflanzenfressende Tiere wiederum aufnehmen, um unseren Energiehaushalt in Balance zu halten. Aber zum Beispiel die Wärme, die klimatischen Bedingungen, die uns umgeben, die lassen sich auch auf das Sonnenlicht zurückführen. Und dann haben wir für die Wärmestrahlung nochmal eine entsprechende Aufteilung, also einmal ist es natürlich direkt die Temperatur, die uns umgibt, die auf Sonnenaktivität zurückzuführen ist, aber auch solche Strahlungsanteile, die wir nicht direkt als Wärme spüren, zum Beispiel den Nahinfrarotbereich, der aber sehr tief in unserem Körper letztlich eindringen kann. Sonnenlicht besteht zu über 40 Prozent aus Nahinfrarotstrahlung, die wir weder sehen noch fühlen können, die aber unser Gewebe durchdringt und zum Beispiel auf dem Energiehaushalt Einfluss nimmt, weil es direkt die Zellkraftwerke ansprechen kann. Julia: Und ich meine, das geht vielleicht auch zu weit, aber wie kann man sich das vorstellen, wie wirkt das Nahinfrarot? Wie wirkt das auf die Zelle direkt? Wie kann das Einfluss nehmen auf den Metabolismus? Dr. Alexander Wunsch: Zum einen hatte ich schon kurz angerissen, dass es einen Zusammenhang mit der Aktivität, mit der Stoffaktivität, Stoffwechselaktivität der Mitochondrien gibt, der Zellkraftwerke. In den Mitrochondrien selbst gibt's verschiedene Enzyme, die für die Energiegewinnung verantwortlich sind. Da gibt's ein Enzym mit einem, je nachdem, einem zungenbrecherischen Namen, die Cytochrom-C-Oxidase. Das ist der Komplex 4 in der Elektronentransportkette der Mitochondrien und dieses Enzym, das hat Absorptionsbereich im langwelligen Teil des Spektrums zwischen 600 und 850 Nanometer. Das wäre als irgendwo zwischen rotorange und Nahinfrarot mit etwa 850 Nanometern. Und in diesem Bereich hat die Cytochrom-C-Oxidase 4 Absorptions-Peaks und man weiß aus Versuchen, von Zellversuchen bis hin zu Experimenten auch am Menschen, dass die Bestrahlung mit diesem Spektralbereich dazu geeignet ist, die den Energiehaushalt in den Mitochondrien zu stabiliseren. Also gerade jetzt in Zellen, wo Energiemangel herrscht beispielsweise, kann man die verfügbare chemische Energie anheben. Das ist das ATP, Adenosintriphosphaat, wird in den Mitochondrien hergestellt und der Komplex 4 ist die vorletzte Stufe dieses Bereitstellungsprozesses. Also das letzte Enzym vor der ATP Synthase. ATP Synthase ist so eine kleine Turbine, die wie eine Druckerpresse ständig aus Adenosintriphosphat und anorganischem Phosphat dann das begehrte ATP zusammenpresst und diese Turbine wird durch einen Ladungsträger angetrieben. In der Mitochondrienmembran und darauf kann ich mit dem Licht Einfluss nehmen. Das ist so ein Aspekt, der im Zusammenhang mit einer medizinischen Anwendung oder phototherapeutischen Anfwendung immer wieder auch diskutiert wird. Das ist dieses Verfahren nennt man Photobiomodulation, also die Anwendung von langewelligem Licht, das keine Wärme Effekte im Gewebe erzeugt, aber trotzdem solche positiven, wir kommen zeitig wie beziehungsweise die Anhebung der ATP Konzentration und damit eine bessere Verfügbarkeit chemischer Energie. Wir stellen am Tag etwa so viel ATP in unseren ganzen Zellen her, wie wir wiegen. Das ist also ein sehr umfangreicher Prozess, der praktisch in allen Bereichen, wo Energie benötigt wird, ob das jetzt Muskelaktivitäten sind, ob das chemische Transportvorgänge sind, ob das Eiweiß oder Fettsynthese oder Zellmembranen, die hergestellt werden müssen. Also jeder Vorgang eigentlich im Körper, der ist energieabhängig und damit auch abhängig von diesem ATP. Und dann gibt's noch weitere Effekte, die man diesem langwelligen Licht, dem Nahinfrarotlicht zuordnen kann. Dabei geht's zum Beispiel um die Aktivierung von Wassermolekülen. Man weiß, dass der menschliche Körper aus etwa 70 Prozent Wasser besteht, unser Stoffwechsel findet also in diesem flüssigen Medium statt und durch das Licht kann ich Wassermoleküle gezielt in Bewegung versetzen, kann also die kinetische Energie im Wasserkompartiment erhöhen und damit zum Beispiel Stoffaustauschvorgänge verbessern, ohne dass ich dabei das Gewebe unerwünschtermaßen erhitzen würde. Das sind jetzt schon 2 wichtige Aspekte, wie ich auf Stoffwechselvorgänge optimierend Einfluss nehmen kann über dieses Nahinfrarotlicht. Julia: Wenn man das so hört, dann kriegt man wirklich mal nur so einen kleinen Einblick darin oder dahingehend, wie wichtig oder welche Rolle Licht oder vor allem gewisse Wellenlängen, die richtigen Wellenlängen auf unseren Körper haben. Wenn man aber sich die allgemeine Diskussion oder die Mainstream-Medien anschaut, wenn es da um Licht geht oder um Sonnenlicht, dann werden vor allem eigentlich die schädigenden Aspekte immer angesprochen. Es wird immer eher Angst gemacht, muss man fast sagen. Man darf nicht mehr rausgehen, also einerseits soll man zwar rausgehen wegen dem Vitamin D, auf der anderen Seite sollte man sich aber auf jeden Fall mit einem Lichtschutzfaktor 30 oder noch höher einschmieren und auf jeden Fall eine Sonnenbrille tragen und bloß kein Licht an die Haut und an die Augen lassen, weil dann kriegt man Hautkrebs oder Makula-Degeneration oder was auch immer. Das ist so ein richtiger Ambivalent, die Informationen, die man bekommt, und die Leute sind auch sehr verunsichert und ich habe direkt den Eindruck auch, wir fürchten uns vor Licht, mit dem wir seit 4 Millionen Jahren aufgewachsen/ oder seitdem wir auf der Welt sind, auf der Erde wandeln, ein Teil unserer Biologie war. Auf der anderen Seite haben wir nicht die gleiche Skepsis gegenüber Lichtquellen, die erst seit 100, 200 oder 300 Jahren in unserer Welt sind. Das finde ich sehr, sehr schwierig. Vielleicht, ich meine das waren jetzt mehrere Aspekte in einem, muss ich mich schützen vor dem Sonnenlicht oder bis zu welchem Grad oder wie gehen Sie damit um? Ist es tatsächlich eine Gefahr oder was ist die richtige Dosis? Dr. Alexander Wunsch: Wir haben es hier, also auf solche vielschichtigen Fragen gibt's natürlich auch gerne mal eine vielschichtige Antwort. Während Sie die Frage formuliert haben, ist mir zunächst mal das Cui Bono eingefallen. Die Frage auf Lateinisch, die dann übersetzt lautet: Wem nützt es? Also wer profitiert davon, wenn die Menschen Angst vor der Sonne haben? Die Weltgesundheitsorganisation hat sich dazu entschlossen, die sogenannte No Sun Policy zu fahren. Also im Prinzip von der Sonnenexposition komplett abzuraten. Dadurch hat man natürlich das Problem, dass sich die Vitamin D Mangelerkrankungen immer weiter ausbreiten und die öffentlichen Stellen, jetzt zum Beispiel die Weltgesundheitsorganisation, die meines Wissens sogar, wenn man da mal nachschaut, wer die ganzen Kosten sponsert und trägt, da bekommt man dann auch wieder Antworten, warum es möglicherweise profitabler ist den Menschen vor der Sonne Angst zu machen als ihnen praktisch beizubringen, wie man richtig mit der Sonne umgeht. Es ist definitiv komplexer den Menschen beizubringen, wie sie richtig mit der Sonne umgehen als zu sagen, gar keine Sonne und 30er Sonnenschutzfaktor. Das Problem ist, wenn man die Sonnencreme verwendet, halten sich die Menschen wesentlich länger im Sonnenlicht auf als es ihnen eigentlich guttut, bilden dabei aber kein Vitamin D und bilden auch keinen eigenen Sonnenschutz, den sie sonst aufbauen würden. Wenn man also ohne Sonnenschutzcreme in der richtigen Dosierung die Sonne genießt, dann baut man einen eigenen Sonnenschutz auf, den man auch immer dabeihat. Die Sonnencreme, die wird gerne mal vergessen im falschen Moment und plötzlich ist die Folge dann der Sonnenbrand, den man auf jeden Fall vermeiden sollte. Wir haben beim Sonnenlicht wie auch bei vielen anderen einwirkenden Reizen oder Energien eine U-förmige Reizantwort, also das wäre dann eine U-Shape Curve, eine Kurve, die aussieht wie ein U so ungefähr, wie ein bisschen flacher gezogenes U und das zeigt, der Optima in der Mitte ist der optimale Effekt zu erwarten, wenn wir die richtige Dosis haben. Wenn wir zu wenig Sonnenlicht bekommen, dann treten Mangelerscheinungen auf, die zum Beispiel beim Vitamin D erkennbar werden. Vitamin D Mangel geht mit einer erhöhten Sterblichkeit einher, geht mit Knochenkrankheiten wie zum Beispiel der Osteoperose oder der Osteomalazie einher. Wir beobachten bestimmte Krankheitsbilder, dass die gehäuft auftreten wie zum Beispiel kardiovaskuläre, also Herzkreislauferkrankungen, aber auch Infektionskrankheiten und Krebserkrankungen treten bei schwerem Vitamin D Mangel häufiger auf. Also die Unterdosierung ist ein Problem und die Überdosierung ist dann auch ein Problem, weil dann zum Beispiel Hautschäden erkennbar werden können, zum Beispiel Hautalterung, solche Sonnenfalten oder auch Hautkrebs, wobei man beim Hautkrebs wieder unterscheiden muss. Da gibt's das Melanom, das ist der schwarze Hautkrebs, der macht normalerweise weniger als ein Zehntel der gesamten Hautkrebsfälle aus und die restlichen 90 Prozent, die betreffen dann den hellen Hautkrebs, weil hier in den letzten Jahren auch die sogenannte aktinische Keratose, also eine Vorstufe in die Statistik mit einbezogen wurde und allein dadurch schon durch diese Definition das auch als Hautkrebs zu bezeichnen, die Erkrankungsraten statistisch natürlich in die Höhe geschnellt sind und deswegen, also zu viel Sonnenlicht ist ein Problem, zu wenig Sonnenlicht, und jetzt geht's darum, das Sonnenlicht ist Jahrmillionen dasselbe von seiner Zusammensetzung her. Früher hat es das Leben in seiner Entstehung begünstigt und heute haben wir im Prinzip einfach nur verlernt oder viele Menschen haben einfach verlernt oder nie gelernt, wie sie richtig mit dem Sonnenlicht umgehen. Das Sonnenlicht per se ist weder gut noch böse, sondern das Problem liegt eben am Menschen und daran, wie er mit dem Sonnenlicht umgeht. Und da werden halt viele Fehler gemacht, die man durch besseres Wissen beseitigen kann. Julia: Das heißt zum Beispiel, dass man einfach sich seinem Hauttyp entsprechend auch in der Sonne aufhält und nicht jetzt extra brät oder? Dr. Alexander Wunsch: Ja. Zunächst mal natürlich der Hauttyp. Also es gibt eine ganz individuelle Sonnenempfindlichkeit. Das ist relativ einfach die herauszufinden. Man sollte sich von unten rantasten und nicht von oben an die Verträglichkeitsschwelle, das heißt, wenn man nicht weiß, wie gut man die Sonne verträgt, dann sollte man halt mal mit 5 oder 10 Minuten anfangen, dann wieder aus der Sonne rausgehen und die Haut beobachten. Im Prinzip weiß es schon jeder, dass die Zeichen einer Überdosierung von Sonnenlicht zeitverzögert auftreten, das heißt nach 3 oder 4 Stunden merkt man erst, wenn man zu lange in der Sonne sich aufgehalten hat und da muss man eben vorausdenken. Das heißt, ich gebe mir eine ganz bestimmte gezielte Dosis und beobachte mich dann und das Herantasten ist der eine Aspekt, dass man die Schwellendosis praktisch herausfindet, wie viel kann ich mir zumuten ohne, dass meine Haut mit Überdosierungszeichen reagiert. Und das andere ist, dass man wissen muss, dass es eine Sonnengewöhnung gibt. Und die Sonnengewöhnung, die funktioniert nur, wenn man kein Sonnenschutzmittel verwendet, bedeutet aber, dass wenn ich jetzt beispielsweise in den Sommermonaten tatsächlich mal 4 Wochen am Stück jeden Tag Sonne hätte, dann würde ich vielleicht am 1. Tag 10 Minuten gut vertragen, am 2. Tag würde ich dann vielleicht schon zwei, drei Minuten länger gut vertragen, von mir aus auch 5 Minuten und so würde sich das dann eben steigern bis auf mehrere Stunden. Das heißt nach 4 Wochen vorsichtiger oder wohldosierter Sonnenexposition kann man sich durchaus auch zwei, drei Stunden im Sonnenlicht aufhalten ohne, dass man einen Sonnenbrand bekommt. Jetzt muss man sich allerdings fragen: Ist das überhaupt sinnvoll so lange in der Sonne zu sein? Normalerweise mein Sonnenhunger ist nicht so groß, dass ich zwei oder drei Stunden anpeilen würde, sondern jetzt in den Sommermonaten, wenn ich dazu komme, Heliotherapie zu machen, dann mache ich das zum Sonnenhöchststand so um 1 Uhr mittags herum. Wir haben ja Sommerzeit, dadurch ist der Sonnenhöchststand nicht um 12, sondern eher so roundabout 1 Uhr. Warum diese Uhrzeit eigentlich am besten ist? Wir haben den höchsten Gehalt an Ultraviolett B Strahlung, die in der Lage ist Vitamin D zu synthetisieren in der Haut und dadurch kann in der kürzestmöglichen Zeit das maximale Vitamin D erzeugen. Deswegen mittags um 1 Uhr ist optimal und wenn man da 20 Minuten, 30 Minuten vielleicht jede Körperseite der Sonne aussetzt, dann fängt man auch an zu schwitzen und es wird einem heiß. Also mal ganz ehrlich, fühle ich mich nach den 20, 30 Minuten im Schatten dann auch wesentlich wohler als wenn ich jetzt weiter in der Sonne braten müsste. Und da gibt's aber halt ganz unterschiedliche, der Mensch gewöhnt sich ja an alles, und wer sich halt an das Braten in der Sonne gewöhnt hat, weil er zum Beispiel unter dem Schutz von Sonnencreme keinen Sonnenbrand bekommt, der kann das schon länger in der Sonne aushalten, aber gesund ist das natürlich nicht und vernünftig ist es auch nicht. Mehr als eine halbe Stunde pro Körperseite für jemand mit einer mitteleuropäisch hellen Haut ist eher kontraproduktiv. Julia: Ich meine, jetzt ist die Haut eine Sache, aber die andere sozusagen das andere Problemfeld, das sind auch die Augen und die werden eben geschützt durch Sonnenbrillen. Wie sehen Sie das? Ist das sinnvoll, ist das nicht sinnvoll? Wie sollte man da umgehen und warum sollte man vielleicht sich auch überlegen da nicht auch an die Augen oder an die Retina zu lassen? Dr. Alexander Wunsch: Eine Sonnenbrille ist praktisch für die Augen das, was die Sonnencreme für die Haut darstellt, zumindest mal unter sage mal Normalbedingungen. Man kann bei Wikipedia zum Beispiel auch diese Sonnenschutzbrillen der Inuit sehen. Da gibt's Abbildungen dazu, das heißt, auch in recht einfachen Kulturen war das Thema Lichtschutz der Augen in Form von so Schlitzen in knöchernen Brillen auf jeden Fall ein wichtiges und wenn man eben in einer Umgebung ist wie jetzt zum Beispiel im ewigen Eis und es scheint die Sonnen und von überall, von oben und von der Seite, aus der Blickrichtung, überall hat man diese hohen Strahlungsintensitäten, da ist ein Augenschutz natürlich schon wichtig. Aber wenn man sich jetzt beispielsweise im Schatten von irgendwelchen Pflanzen oder auch von mir aus von Gebäuden aufhält, dann ist eigentlich ein Hut viel, viel wichtiger als eine Sonnenbrille und dadurch, dass die Lichtreaktionen im Organismus konzertierte Aktionen sind, aus den Vorgängen, die in der Haut ablaufen, und den Vorgängen, die über das Auge gesteuert im Zwischenhirn ablaufen, ist es eigentlich für den Organismus leichter mit den Lichtbedingungen umzugehen oder sich an die Lichtbedingungen anzupassen, wenn er die Lichtbedingungen quasi ungefiltert bekommt. Und es ist immer sinnvoll, dass man, wenn es mehrere "Sinneskanäle", jetzt mal in Anführungsstrichen, gibt, auch wenn der Sinneskanal von Licht, wie er über die Haut uns nicht direkt bewusst erreicht und die vegetativen Einflüsse von Licht über das Auge uns nicht direkt bewusst erreichen, sind es trotzdem Sinneskanäle. Da ist es wichtig, dass die verschiedenen Sinneskanäle den eigentlichen Sinnesreiz möglichst ungefiltert bekommen. Sonst kommt es zu einem Durcheinander in der Regulation. Julia: Wir haben jetzt viel eben über Sonnenlicht und vor allem über das natürliche Licht gesprochen. Ich würde aber auch gerne jetzt sozusagen den Sprung ins Innere machen, zum künstlichen Licht in die Räume hinein. Und wie ich es vorhin gesagt habe, es herrscht so eine grundsätzliche Skepsis interessanterweise der Sonne gegenüber, andererseits überhaupt keine Skepsis den ganzen künstlichen Lichtquellen gegenüber, die wir aber teilweise erst ein paar hundert, also 200, 300 Jahre haben. Ist diese, sollten wir skeptisch sein und wenn ja, vielleicht auf welche, gibt's da Unterschiede? Sind manche künstliche Lichtquellen besser als andere? Vielleicht können Sie da noch ein bisschen was dazu sagen? Dr. Alexander Wunsch: Bei Lichtquellen, die 200, 300 Jahre alt sind, braucht man jetzt eigentlich weniger skeptisch zu sein. Also eigentlich ist es so, dass wir seit ein paar tausend Jahren schon Fackeln und Kerzen haben, seit ein paar hunderttausend Jahren haben wir das Feuer und das Feuer ist die erste künstliche Lichtquelle, die dadurch, dass das Feuer mit Rauch und Hitze verbunden ist, uns immer signalisiert hat, wenn wir in Gefahr gelaufen wären, es über zu dosieren. Und erst mit dem elektrischen Licht und da spezifisch mit der Glühlampe hatten wir dann eine Lichtquelle, bei der das Feuer so gebändigt worden war, dass es zum Beispiel die Luft nicht mehr verschmutzt hat, zumindest nicht in dem Raum, in dem man die Glühlampe betreibt. Die Wärme war trotzdem noch vorhanden, aber es war erstmals möglich jetzt unnatürlich helle Zustände in der Nacht herbeizuführen. Das erste Problem, was man mit solchen Kunstlichtwellen betrachten sollte, das ist die Rhythmusstörung, das heißt also, dass man die Nacht zum Tage macht und jeder, der mal Schichtarbeit, der mal Nachtschichten gemacht hat beispielsweise, der kann gut nachvollziehen, dass Nachtschichten oder Schichtarbeit für die Gesundheit abträglich sind. Also die wenigsten Menschen können das über einen längeren Zeitraum machen, ohne dass sie davon zumindest mal nachhaltige Störungen der inneren Uhr, des inneren Biorhythmus erleben. Unsere 24/7 Gesellschaft, dass wir 24 Stunden, also rund um die Uhr jeden Tag in der Woche alles Mögliche bekommen, alles machen könnten, rein theoretisch einkaufen und so weiter, Fernsehen einschalten, früher gab es ein Testbild und danach war nichts mehr und heute ist halt alles rund um die Uhr verfügbar. Das ist halt ein Problem und die Schichtarbeit ist letztendlich für die Gesundheit auch ein Problem und da ist der Katalysator, der uns das Ganze ermöglicht hat, schon das Kunstlicht. Und die Rhythmusstörungen sind heute im Kontext der Chronobiologieforschung immer besser untersucht, sodass wir auch immer besser verstehen, wie da mögliche Schädigungsmechanismen ablaufen. Am problematischsten sind eigentlich die Lichtquellen, die so ab den 1930er Jahren entwickelt wurden, die also auf die Glühlampe und auf die klassische Glühlampe gefolgt sind und das waren zunächst Entladungslampen, meistens Quecksilberdampfentladungslampen, die dann mit einer Fluoreszenzschicht ausgestattet wurden und diese Fluoreszenzlampen, im Volksmund vielleicht auch Neonlampen benannt, später dann Energiesparlampen, dabei handelt es sich um kalte Lichtquellen. Das heißt, das letzte Zeichen, dass wir das Licht überdosieren, nämlich die Hitze oder die Wäre, war hier auch schon beseitigt, und das Spektrum von Energiesparlampen, das ist sehr stark durch das Quecksilber, was für die Lichterzeugung sorgt im Inneren, geprägt und hat mit natürlichem Licht quasi überhaupt nichts zu tun. Glühlampenlicht ist zwar Kunstlicht, hat aber eine natürliche Spektralverteilung, und alle kalten Lichtquellen, heute ist ja die Energiesparlampe, die Entladungslampe mehr oder weniger aus der Mode gekommen. In den allermeisten Fällen greift man heute am liebsten zur LED und das ist auch das, was den Verbrauchern nahegelegt wird und versucht wird es dem Verbraucher schmackhaft zu machen. Und diese LEDs sind auch wieder energieeffiziente Kaltlichtquellen, bei denen die Spektralzusammensetzung letztlich ganz anders aufgebaut ist wie wir das in den Lichtquellen mit natürlicher Spektralverteilung finden. Und genau das ist das Problem, dass nämlich, das, was ich eingangs unseres Gesprächs schon genannt habe, wir haben uns an die Spektralverteilungen der natürlich vorhandenen Lichtquellen seit Jahrmillionen angepasst. Und wenn man jetzt an dieser Spektralverteilung auch nur geringfügige Änderungen durchführt, dann kann das mittel- und langfristig zu gravierenden Nachteilen für die Gesundheit führen. Das wären bei diesen Kaltlichtquellen zum einen Störungen der inneren Uhr, also Störungen der chronobiologischen Funktionen. Die chronobiologischen Funktionen sind ganz eng mit dem autonomen Nervensystem verknüpft und mit dem Hormonsystem, also Hormonstörungen, vegetative Störungen, sind die eine Gefahr und die andere Gefahr geht dann über, geht letztendlich von einer mangelnden Balance oder Harmonie der Spektralanteile in solchen kalten Lichtquellen aus und da wäre zum Beispiel zu nennen, dass die Netzhaut, aber auch die Haut, die solchem Licht ausgesetzt ist, Schäden erleiden kann. In erster Linie durch Sauerstoffradikale, die vermehrt gebildet werden, also erhöhter Zellstress auf der einen Seite und verringerte Reparaturvorgänge auf der anderen Seite. Da spielt dann zum Beispiel das Fehlen von diesem Nahinfrarotanteil, über den wir vorhin schon ein bisschen ausführlicher gesprochen haben, dieser Nahinfrarotanteil Licht sorgt für eine Verbesserung des Stoffwechsels, für mehr Energie und im Auge zum Beispiel oder auch in der Haut des Gesichts sind diese Prozesse eben sehr wichtig, um mögliche Schäden zu reparieren. Und diese Prozesse fallen dann weg, Reparaturvorgänge fallen weg durch erhöhte Blauanteile, die wir praktisch bei allen LEDs, bei allen Weißlicht LEDs heute finden, sorgen für mehr Stress in der Zelle, für mehr Sauerstoffradikale und dadurch entsteht praktisch so eine Grätsche, das ist quasi eine Schere, die aufgeht, mehr Zellstress und mehr Zellschäden auf der einen Seite und weniger Reparatur und Regeneration auf der anderen Seite. Julia: Und da ist dann vermutlich auch wahrscheinlich das Problem einfach die lange Exposition oder? Zu dem Blaulicht, weil wir einfach dann viele, viele Stunden untertags eigentlich nur mehr diesem Licht ausgesetzt sind oder? Also ist es dann eine Zeitfrage auch? Weil so akut habe ich ja jetzt keinen, wie gesagt bei der Sonne merke ich es nach zwei, drei Stunden schon, aber ich habe nicht dieses gleiche Gefühl, wenn ich jetzt einen ganzen Tag unter LEDs verbringe. Dr. Alexander Wunsch: Ja klar. Ich meine, man kann zum Beispiel auch den ganzen Tag hinter einem Fenster verbringen im Sonnenlicht, da bekommt man auch keinen Sonnenbrand und die Sonnenfalten, die kriegt man eben erst 20 Jahre später oder die bemerkt man eben erst 20 Jahre später. Es gibt diese Fotos von zum Beispiel Lastwagenfahrern, (Julia: Genau (lachend)) die jetzt durch die Seitenscheibe ständig dem Sonnenlicht ausgesetzt waren und die Seitenscheibe filtert aber den UVB-Anteil raus, der für einen Sonnenbrand sorgen würde. Dadurch merkt man eigentlich nicht, dass da eine Hautbelastung stattfindet, sonst könnte man sich ja zum Beispiel mit Sonnenschutzcreme oder so schützen. Aber die meisten Fensterqualitäten lassen eben UVA-Strahlung sehr stark durch. Das können 60, 70, 80 Prozent sein von dem, was quasi beim Eintritt des Tageslichts ins Fenster vorhanden ist. Das heißt, ich bekomme unter Umständen beim Autofahren innerhalb von kürzester Zeit, also von wenigen Stunden, eine UVA-Überdosierung, von der ich aber direkt nichts bemerke. Ich habe zum Beispiel einen sehr eindrücklichen Versuch, wo man an der Haut spüren kann, wie dieses noch nicht mal UVA-Licht, sondern violettes LED-Licht, das erzeugt an der Lippe beispielsweise unmittelbar eine intensive Wärme, ist fast schon zu sanft formuliert, eigentlich ist es eine Art Hitze. Wenn ich dann mit einem so einem gelben Filter dazwischengehe, dann verschwindet diese Hitze augenblicklich. Damit kann man also anschaulich demonstrieren, dass dieses kurzwellige Licht spürbar die Haut nicht nur aufheizt, also das Gewebe nicht nur aufheizt, sondern es fängt auch an so unangenehm zu kribbeln. Das sind dann beispielsweise diese Sauerstoffradikale, die im Gewebe gebildet werden durch das kurzwellige Licht. Dadurch, dass man einen Filter dazwischenschaltet, sind diese negativen oder unangenehmen Warnehmungen schlagartig beseitigt. Sowas passiert letzten Endes im Auge, wenn wir Licht um uns herum haben, das mit hohen kurzwelligen Anteilen versehen ist. Nur die Netzhaut des Auges hat eben anders als die Haut ein paar Nerven, die jetzt Unbehagen oder ein Missempfinden vermitteln würden. Wozu hätte sich unser Auge jetzt auch gegen Kaltlichtquellen schützen sollen? Im Laufe der Evolution gab's niemals die Anforderungen dafür, sondern unser Auge musste Mechanismen entwickeln, mit dem Sonnenlicht klarzukommen, unser Auge musste Mechanismen entwickeln mit dem Feuerschein klarzukommen, aber eben nicht mit diesen Leuchtmitteln oder Lampen, die die Ingenieure, die Lichttechniker, in den letzten 80 Jahren entwickelt haben. Julia: Das heißt, was wären jetzt Ihre Empfehlungen oder was wären die besten Lampen für zuhause? Was sollte man dann da für Lampen haben oder wonach sollte man da auf jeden Fall schauen? Worauf sollte man da achten? Dr. Alexander Wunsch: Zum einen sollte man halt drauf achten, dass man dem Lichthunger, der den meisten Menschen angeboren ist, dass man den nicht versucht unbedingt mit Kunstlicht zu stillen, sondern dass man versucht den Lichthunger tagsüber mit dem natürlichen Tageslicht zu stillen und nachts sollte das Licht in erster Linie der Orientierung dienen und Kunstlicht mit natürlicher Spektralverteilung, da gibt's eigentlich nur 2 Möglichkeiten. Das ist einmal die Standard-Glühlampe, die nicht mehr hergestellt werden darf und die Halogen-Glühlampe. Das sind die beiden künstlichen Lichtquellen, die eine natürliche Spektralverteilung aufweisen. Man hat dabei eine optimale Farbwiedergabe, man hat eine Spektralverteilung, an die unser Organismus seit Jahrmillionen sich anpassen konnte. Bei diesem Spektrum können wir davon ausgehen, dass unser Organismus damit optimale Strategien entwickeln konnte, um das Positive rauszuziehen und keinen negativen Effekte erleiden zu müssen. Von LEDs beispielsweise, Energiesparlampen, rate ich persönlich ab, außer in speziellen Anwendungsbereichen, also ich habe immer eine kleine Taschenlampe, die ist so groß wie mein kleiner Finger, in der Hosentasche. Das ist natürlich eine LED, weil da kommt mehr Licht raus als aus so einer Riesenlampe, die jetzt auch gar nicht mehr als Taschenlampe bezeichnet werden kann eigentlich, weil sie zu groß war und Monozellen drin. Also da hat sich durchaus was geändert und LEDs, zum Beispiel gibt's auch Fluoreszenz-LEDs, die ein breitbandiges gelbes Spektrum erzeugen. Da kann man eine oder zwei als Nachtbeleuchtung optimal verwenden. Das genügt absolut, um zum Beispiel den Weg ins Badezimmer und wieder zurück ins Bett zu finden, ohne dass man den Biorhythmus, ohne dass man den Melatoninhaushalt beispielsweise negativ beeinflusst. Man braucht in der Nacht nur ganz geringe Lichtstärken oder Beleuchtungsstärken, um sich orientieren zu können. Unser Auge ist im weiten Bereich anpassungsfähig und kann mit den verschiedensten Helligkeitspegeln umgehen und dabei sollte man zum Beispiel dann auch drauf achten, dass künstliches Licht vor sagen wir mal 1.000 Jahren kam sicherlich nicht von oben von der Decke, sondern höchstens aus der Horizontalebene oder eher noch vom Boden, das heißt, ein Lagerfeuer oder eine Fackel, die an der Wand hing, aber kein Licht von oben. Man sollte auch hier die natürlichen Richtungen, die wir beobachten können, die unterschiedlich sind am Tag und in der Nacht, sollte man eigentlich auch noch mitberücksichtigen. Also einfach mal zurückgucken, wie war es vor langer Zeit, dann weiß man, woran sich unser Körper eigentlich gewöhnt hat und wenn man das nachempfindet, dann kann man quasi auf einen evolutionären Erfahrungsschatz bauen, der in unserem Körper eingespeichert ist, auch wenn es uns nicht so bewusst ist. Julia: Wird das Spektrum oder wird das irgendwie angegeben eigentlich auf der Verpackung? Also wenn ich mir jetzt ein warmweißes Licht zum Beispiel kaufen möchte, wo steht das drauf oder worauf sollte ich da schauen beim Kauf dann von den Lampen? Dr. Alexander Wunsch: Ja, das steht schon drauf. Aber es gibt gerade bei dieser, ob jetzt warmweiß oder kaltweiß, da sprechen wir von der sogenannten Farbtemperatur des Lichtes, die wird in Kelvin angegeben. Kelvin ist die Temperatur ausgehend vom absoluten Nullpunkt, der liegt bei minus 273 Grad so round about. Das heißt also 320, 310 Kelvin entsprechen dann der Körpertemperatur, also 273 plus die 37 Grad Körpertemperatur, landen wir bei 310 Kelvin. Bei Lichtquellen ist es dann so, bei einer Glühlampe, die hat 2.700 Kelvin, eine Halogenlampe hat 3.100 Kelvin, und dann ist eigentlich Schluss. Denn es gibt kein Metall mit einem höheren Schmelzpunkt als Wolfram, also Wolfram ist der Glühfaden in der Glühlampe gefertigt, und deswegen können wir mit dem Glühvorgang keine höheren Farbtemperaturen erzeugen. Als Kunstlichtquelle mit einer echten höheren Temperatur bleibt dann eigentlich nur die Kohlebogenlampe, die aber technisch sehr anspruchsvoll ist und außerdem raucht und qualmt und meistens viel zu hell wäre. Die ist auch heute eigentlich nicht mehr handelsüblich. Für alle höheren Farbtemperaturen, kaltweiß, zum Beispiel jeder Computerbildschirm wird mit einer Farbtemperatur von 6.500 Kelvin ausgeliefert, da orientiert man sich an der Sonne, die sagen wir mal so 5.700 Kelvin Oberflächentemperatur hat und allerdings eben auch wirklich so heiß ist, genauso wie der Wolfram-Faden wirklich so heiß ist, wie es der angegebenen Farbtemperatur entspricht. Kaltlichtquellen, die weisen keine echte Farbtemperatur, keine physikalische Temperatur von 6.000 Kelvin auf, sondern eine sogenannte korrelierte Farbtemperatur. Das ist ein ähnlichster Farbeindruck, den eine Lichtquelle mit tatsächlich dieser Temperatur hervorrufen würde. Das klingt jetzt ein bisschen kompliziert, aber es ist im Prinzip eine Berechnungsmethode, um einer kalten Lichtquelle einen Farbeindruck zuweisen zu können. Da fängt die Irreführung letzten Endes an. Die Farbtemperaturen, die man auf den Packungen von Lampen findet, die beziehen sich nicht auf die echte Temperatur, sondern auf die ähnlichste Temperatur, die einen solchen Farbeindruck hervorrufen würde, also man kann sich an der Glühlampe mit einer echten Farbtemperatur so von 2.700 Kelvin natürlich die Finger verbrennen, aber man verbrennt sich bei einer LED mit 7.000 oder 8.000 Kelvin eben nicht die Finger, weil das Licht auf eine ganz andere Art erzeugt wird und weil hin- und her gerechnet wird und man dann hinterher einen Wert angibt, der aber letzten Endes über die Qualität des Lichts nichts aussagt. Das heißt also, eine warmweiße - und das ist immer warmweiß - Glühlampe hat sehr wenig Blau und sehr viel Nahinfrarot. Eine warmweiße LED hingegen kann relativ viel Blau enthalten und enthält kein Nahinfrarot. Aber es ist für das viele Blau dann zum Beispiel ein bisschen mehr Rot oder Orange oder Gelb beigemischt, sodass das Messgerät hinterher einen Wert ausgibt, der auch 2.700 Kelvin lautet. Aber diese 2.700 Kelvin von einer Kaltlichtquelle haben nichts mit den echten 2.700 Kelvin von einer thermischen Lichtquelle zu tun. Und deswegen, also es sind optische Täuschungen letztendlich. Das Licht scheint wärmer auszusehen bei so einer LED, bei einer warmweißen LED hat aber dann für eine warme Lichtquelle eigentlich viel zu viel Blauanteile. Julia: Das heißt eigentlich, egal, was da draufsteht bei der LED, sollte man eigentlich nicht verwenden im Haus, wenn es irgendwie geht, wenn man es beeinflussen kann, sondern auf Halogen oder vielleicht sogar auf echte Glühbirnen noch setzen. Es gibt ja noch die Möglichkeit, die auch zu kaufen. Dr. Alexander Wunsch: Wenn man wirklich Licht verwenden möchte, Kunstlicht verwenden möchten, das für die Gesundheit die geringsten Risiken bietet, dann ist aus meiner Sicht im Moment nur die Glühlampe oder die Halogen-Glühlampe zu empfehlen. Und bei LEDs muss man immer berücksichtigen, dass die Hersteller versuchen das Ganze von der sinnlichen Anmutung her angenehm zu gestalten, angenehmer zu gestalten, aber sie bedienen sich dabei bestimmter Trick, zum Beispiel Filament-LEDs, das sind die neuesten LED-Formen, die sehen sogar wieder aus wie Glühlampen, haben auch die Schraubfassung, da sind dann solche kleinen LCDs aufgereiht. Dr. Alexander Wunsch: Es gibt heute solche Filament-LEDs, die sehen aus wie Glühlampen von der äußeren Form, haben auch eine Schraubfassung, und innendrin ist wie so ein Glühfaden, sodass man praktisch aus der Entfernung denkt, es handelt sich wieder um die gute alte Glühlampe. Aber tatsächlich ist es dann so, dass wenn man durch einen Graufilter oder durch eine sehr, sehr starke Sonnenbrille sich den Glühfaden, den scheinbaren Glühfaden anguckt, dann stellt man fest, dass hier zum Beispiel 4 kaltweiße LEDs und eine rote LED immer wieder in Folge zu erkennen sind. Das heißt, es ist ein Stream, also ein Streifen von winzigen LEDs, wo der Hersteller durch die Wahl der Lichtfarbe, dass er eben jede 5. LED mit einer roten Lichtfarbe versieht, dadurch erreicht er, dass der Messwert, die Farbtemperatur eher in Richtung warmem Licht geht. Tatsächlich haben wir aber eine Lichtzusammensetzung mit hohen Blauanteilen durch die weißen, eher kaltweißen LEDs und das Messgerät verrechnet dann die plötzliche Rotstrahlung, indem die kaltweiße Farbtemperatur nummerisch dann in Richtung warmweiß geht. Die Tricks oder die Möglichkeiten Einfluss auf die Spektralzusammensetzung zu nehmen, sind halt bei einer LED sehr groß und der Laie kann nicht auseinanderhalten, was da jetzt im Einzelnen passiert im Inneren einer solchen Lampe. Bei einer Glühlampe ist es ganz eindeutig, da ist es ein Faden aus Metall und der glüht und der gibt dementsprechend immer dasselbe Spektrum ab. Das können die modernen Lichtquellen halt leider nicht so einfach. Julia: Ja. Ich sehe schon, die Zeit verrennt und es gäbe noch so viele Fragen. Ich würde noch ganz gerne zum Abschluss die Anknüpfung an den Anfang machen. Und zwar haben Sie eben schon erzählt, dass man auch erstmal Licht und vor allem mit ganz speziellen Wellenlängen auch therapeutisch einsetzen kann und das ist etwas, mit dem Sie in Ihrer eigenen Praxis sehr viel arbeiten. Wir haben über das Nahinfrarot schon gesprochen. Ich würde jetzt gerne einfach nur, einfach auch aus Zeitgründen, gerne Infrarot herausnehmen, weil es auch etwas ist, womit viele Leute vielleicht schon Kontakt hatten, es gibt Infrarotkabinen. Ist das etwas, was empfehlenswert ist? Muss man da auch vorsichtig sein? Gibt's da Unterschiede? Das wäre eben wirklich etwas, eine tolle Information, auch für die Zuhörer und Zuschauer, weil sich jetzt viele überlegen, vielleicht sowas anzuschaffen und meist auch sehr verunsichert, weil es ein unglaubliches Angebot an verschiedenen Produkten gibt. Dr. Alexander Wunsch: Na ja, es wäre schön, wenn es da eine einfache Antwort drauf gäbe, aber beim Infrarotbereich haben wir auch wieder 3 verschiedene grobe Rasterungen. Es gibt das Infrarot A, es gibt das Infrarot B, Ferninfrarot oder Infrarot C und die wirken alle unterschiedlich auf den Organismus. Wenn es darum geht, dass man eine Tiefenwirkung erreicht, dann ist das Infrarot A eigentlich das einzige, was hier in der Lage ist, in die Tiefe des Gewebes zu kommen. Infrarot A bekommt man allerdings technisch eigentlich immer nur im Paket mit Infrarot B in Form von Glühlampen, die teilweise mit Filter ausgestattet sind, das sind die klassischen Infrarotlampen, die man so kaufen kann für relativ wenig Geld. In dem Moment, wo es dann um Infrarotkabinen geht, da gibt's unterschiedliche Ausführungen, solche, die eben quasi Fifty Fifty Infrarot A, Infrarot B haben, andere haben dann einen höheren Anteil in der Infrarot B und auch im Infrarot C Bereich. Je langwelliger das Ganze wird, umso mehr verlagert sich die Wirkung auf eine eigentlich reine Reizwirkung auf der Hautfläche. Denn schon Infrarot B ist langwellig, dass es nicht mehr in die Tiefe geht. Zum Beispiel eine Sauna, wenn der Saunaofen eine Temperatur von 200 Grad hat beispielsweise die Steine, dann haben wir es eher mit einem Dunkelstrahler zu tun, der eher im Infrarot C Bereich angesiedelt ist. Julia: Das heißt, was ich gesehen habe, es werden auch so Vollspektren Infrarot-Saunen angeboten. Ist es dann etwas, wenn man sagt, man möchte sozusagen ein abgerundetes Paket haben, ist das etwas, was man sich durchwegs anschaffen sollte oder eher nicht? Dr. Alexander Wunsch: Hm. Man muss sich dabei immer überlegen, worum es jetzt im Einzelfall geht. Die ganzen elektrischen Systeme können unter Umständen elektromagnetische Störstrahlungen erzeugen. Man ist jetzt anders als bei einer Schwitzhütte halt dann Magnetfeldern, elektromagnetischen Feldern unter Umständen ausgesetzt. Manche Menschen reagieren darauf eher mit einer Unverträglichkeit, Sonnenlicht beispielsweise hat weniger als 5 Prozent Infrarot B, also alles, was jetzt eine spürbare Wärme auf der Haut erzeugt, dabei handelt es sich dann um Infrarot-Technologien, die nicht mehr mit dem Sonnenlicht vergleichbar sind. Julia: Ja, es ist einfach interessant, weil da einfach viel am Markt ist und man dann verunsichert ist und gar nicht weiß, wofür man sich entscheiden soll. Und einerseits sehr positives natürlich hört, deswegen ist das einfach interessant, einen Experten mal zu fragen, was Ihre Meinung dazu ist. Dr. Alexander Wunsch: Vielleicht, um da nochmal einen Satz anzuhängen, es ist gibt viele Hersteller von solchen Infrarot-Saunen, man kann da bei den verschiedenen Herstellern auch Berichte lesen über die Wirkungen. Wenn sich sowas gut anfühlt und wenn man es vernünftig dosiert, dann ist es sicherlich vorteilhaft. Nur mit solchen Empfehlungen diesbezüglich bin ich zurückhaltend, man weiß nie, was dann der Anwender letztendlich aus einer Empfehlung macht, denn die Frage, was ist die optimale Dosierung, das wäre dann im Einzelfall zu klären. Die meisten Wärmekabinen haben ein Strahlungsspektrum, das mit dem Spektrum des Sonnenlichtes nicht übereinstimmt. Die Glühlampe und eine Kerzenflamme haben im Prinzip ein sehr, sehr ähnliches Spektrum, das heißt Feuer, das Feuerspektrum und das Glühspektrum, die würde ich noch als natürlich bezeichnen. Aber schon da ist es dann für eine häufige Daueranwendung wieder ein Thema, dass ich eben ein paar tausend Watt an Strahlungsleistung eigentlich nicht mit Gleichstrom erbringen kann. Das heißt ich muss wieder den Wechseltrom verwenden und dann muss man einfach eine Abwägung machen. 20 Minuten Licht oder Wärmelicht, das mit 100 Hertz pulsiert, kann sogar besser funktionieren als wenn es ungepulst wäre, aber jetzt stundenlang in einer elektrischen Sauna zu sitzen, diesem künstlichen Strahlungsumfeld, kann unter Umständen auch für den ein oder anderen eher negative Wirkungen mitbringen. Julia: Ja. Ich sehe schon, es ist alles nicht ganz so einfach, wie man es sich eben wünschen würde, aber trotzdem danke für die Zeit, für diese tollen Ausführungen. Wo können jetzt Zuhörer und Zuschauer vielleicht mehr noch über Sie erfahren oder auch zum Beispiel über die Praxis in Heidelberg? Dr. Alexander Wunsch: Zum einen habe ich einen Vimeo Kanal, wo eine ganze Reihe von Vorträgen von mir frei verfügbar sind und wem das nicht reicht, wer also da gerne einen persönlicheren Kontakt hätte, es findet zum Beispiel im November, ich glaube, es ist der 18. November, in Heidelberg ein Seminar statt über die Wirkung von Licht, über die Wirkungen von Sonnenlicht, Kunstlicht und farbigem Licht. Das ist bestimmt ein guter Einstieg, wo man dann eben auch in so einer Seminarsituation auch spezifische Fragen stellen kann, wo auch individuell sozusagen maßgeschneidert dann Themen erörtert werden können. Ansonsten bezüglich der Praxis haben Sie mich jetzt noch angesprochen. Da ist das Problem eigentlich, also ich habe bezüglich des Medizintourismus meine Vorbehalte. Das heißt, wenn sich jemand jetzt sagen wir mal hunderte von Kilometern auf den Weg macht, um in einer bestimmten Praxis vorstellig zu werden, dann ist das Ganze so aufgeladen mit Erwartungen, wo es dann sehr schwer ist, das unter Umständen zu erfüllen. Da bin ich normalerweise nicht so der Freund davon, aber natürlich ist, ich bin niedergelassener Arzt und wenn jemand jetzt Probleme hat, dann sind die unter Umständen auch nur in diesem Rahmen angehbar. ###Praxis in Heidelberg ##Termine und Veranstaltungen ##PaleoConvention am 2. - 3. Septmeber in Berlin Bücher Weitere Folgen Schlafmangel, Stress und die besten Hacks für erhöhte Leistungsfähigkeit. Interview mit Biohacker und Unternehmer Fabian Foelsch Das Natur-Defizit Syndrom - Interview mit Prof. Dr. Jörg Spitz Better Body – Better Brain: Selbstoptimierung von Körper und Geist - Anja Leitz im Interview Wie die Neurochemie des Flow-Zustand mit Ernährung, Schlaf und chronischer Entzündung zusammenhängt - Interview mit Max Gotzler Artikel Publikationen von Alexander Wunsch [Baggerly, Carole A., et al. "Sunlight and vitamin D: Necessary for public health." Journal of the American College of Nutrition 34.4 (2015): 359-365.](Baggerly, Carole A., et al. "Sunlight and vitamin D: Necessary for public health." Journal of the American College of Nutrition 34.4 (2015): 359-365.) Eells, Janis T., et al. "Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy." Mitochondrion 4.5 (2004): 559-567. Webseiten Alexander Wunsch Paleo Low Carb - JULIAS BLOG | (auf Facebook folgen)

health art interview man fall stress balance evolution er positive nutrition environment journal leben prof welt thema android medium weg mehr dabei hacks orange wikipedia gef trick definition stream geld wochen bei wo probleme seite led anfang wissen mensch gibt gesellschaft energie damit cocktails beispiel finger einblick antworten politik haus sicht raum nur licht qualit muss augen namen gesundheit antwort vielleicht regulation kontakt lage fehler sache unsere wahl leute natur stunden hause chancen mainstream praxis einfluss nacht freund beste weil bereich wert anf rahmen schluss experten ern markt prozess diskussion reihe sinne stunde luft grad bewegung erwartungen seminar ganze zusammenhang gefahr fotos kosten sonne zeichen erde angebot aspekte wirkung auge produkte haut vitamin d filter strategien richtung mitte stellen regeneration umst american colleges wei tats umwelt abschluss tiere mitglied eis eindruck hut worauf feuer watt bereichen einstieg satz schatten schlaf fernsehen schutz die frage bett prozent deswegen geb kontext arzt risiken entstehung kauf wahrnehmung ausland industrie empfehlungen prozesse aktivit versuch sprung wand bedingungen umgebung tiefe linie sauna prinzip planeten anforderungen uva fenster zum beispiel dadurch kulturen effekt atp exposition nerven zuschauer vortr empfehlung konzepte ausf produkten sunlight anwendung ansonsten anteil orientierung pflanzen aspekt hitze systeme inneren hinsicht hinweis wof einfl funktionen heidelberg hertz energien zun vorg verfahren sonst aktionen verbesserung faden wozu das problem decke vertr zust effekte inuit wem paket forscher zeitraum hersteller innere statistik antrieb besondere die w einzelnen zelle gehalt steine ihrer spektrum dosis berichte leistungsf blau rauch rot stufe biologie anwendungen normalerweise mechanismen abw richtungen verbraucher skepsis im laufe leds lcd fehlen anteile autofahren kurve zellen biohackers wissens versuchen entz nervensystems gelb das licht eintritt wirkungen referent temperatur lampe retina kerzen absorption entfernung das besondere effekten sommerzeit tageslicht streifen erfahrungsschatz reizen metall stoffwechsel wolfram enzyme sowas lagerfeuer manche menschen organismus sonnen komplex zusammensetzung reparatur vorgang turbine uhrzeit schere feldern eiwei lichts einzelfall durcheinander endes badezimmer kilometern mitochondrial aktivierung experimenten herstellern brillen nachteilen die gl aufteilung katalysator unbehagen vorbehalte sonnenbrand ingenieure lampen hosentasche lippe molek gewebe sonnencreme anwender sterblichkeit strahlung sonnenlicht ambivalent sonnenbrille anteilen wellenl verbrauchern unvertr volksmund blaulicht braten optima erzeugung ankn sonnenenergie im prinzip laie sonnenschutz menschen angst dosierung energiegewinnung krebserkrankungen photobiomodulation organismen lehrbeauftragter energiehaushalt die gefahren millionen jahren ihre meinung hautkrebs sommermonaten sonnenbrillen artificial light krankheitsbilder auges spektrums monitore mitochondrien flow zustand lichtes gesichts vorstufe biorhythmus anhebung taschenlampe mainstream medien abbildungen halogen irref messger zeitgr cui bono fackel photosynthese zehntel nullpunkt quecksilber schichtarbeit fackeln packungen energiemangel septmeber vitamin d mangel bestrahlung blickrichtung hormonsystem stoffwechsels netzhaut nachtschichten deutschen akademie jahrmillionen enzym medienvertreter melanom infrarot lichtschutzfaktor lichttherapie milliarden jahren nanometer hormonst lichtquellen lichtquelle gewebes biophysik anmutung leuchtmittel hauttyp tiefenwirkung knochengesundheit phosphat kunstlicht schwitzh gleichstrom sinneskan computerbildschirm problemfeld alexander wunsch stoffwechselvorg energieaustausch mitochondrion rhythmusst wassermolek druckerpresse energiesparlampen zellsch led licht lateinisch messwert schmelzpunkt magnetfeldern alle vortr ladungstr kerzenflamme zellmembranen medizintourismus zellkraftwerke muskelaktivit spektralbereich sauerstoffradikale lichthygiene halogenlampe lichtbedingungen
Resonator
RES092 Strahlenphysik am HZDR

Resonator

Play Episode Listen Later Sep 30, 2016 123:28


Strom sind Ladungsträger, die sich bewegen. Am HZDR-Institut für Strahlenphysik werden Elektronen bewegt, um Strahlung zu erzeugen. Die Strahlung wird benutzt, um kleinste Strukturen zu beleuchten. Institutsdirektor Ulrich Schramm erzählt.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05

In der vorliegenden Dissertation werden elektrische Eigenschaften stark gekoppelter Systeme in Anwesenheit von Störungen untersucht. Dies erfolgt anhand der Dualität zwischen Eich- und Gravitationstheorien, die eine Beschreibung solcher Systeme mittels einer schwach gekoppelten Gravitationstheorie ermöglicht. Besondere Aufmerksamkeit wird hierbei der Berechnung von Ladungsdichten und Leitfähigkeiten gewidmet, sowie der Untersuchung der von den Störungen hervorgerufenen Auswirkungen auf diese. Unseren Rechnungen liegt die AdS/CFT-Korrespondenz zugrunde. Diese besagt, dass konforme Quantenfeldtheorien im flachen Minkowskiraum höherdimensionalen Stringtheorien im Anti-de-Sitter Raum gleichzusetzen sind. Einen besonders interessanten Grenzfall stellt der Limes dar, in dem die Quantenfeldtheorie einer sehr stark gekoppelten mit vielen internen Freiheitsgraden ausgestatteten Eichsymmetrie unterliegt. Die duale Stringtheorie kann in diesem Falle zu einer klassischen Gravitationstheorie im Anti-de-Sitter Raum vereinfacht werden. Ein relevantes Merkmal, aus dem der große praktische Wert der Dualität entspringt, liegt hierbei in der Tatsache, dass aus schwach gekoppelten Gravitationstheorien stammende Ergebnisse im Rahmen stark gekoppelter Quantenfeldtheorien interpretierbar sind. Angesichts des hohen technischen Schwierigkeitsgrades, den stark gekoppelte Theorien aufweisen, macht diese Eigenschaft die Dualität zu einem mächtigen mathematischen Werkzeug hinsichtlich eines besseren Verständnisses der Physik letzterer. Trotz fehlendem formellem Beweis ihrer allgemeinen Gültigkeit hat die AdS/CFT-Korrespondenz im Laufe der letzten Jahre wichtige Fortschritte in diesem Zusammenhang zuwege gebracht. Hervorzuheben sind Berechnungen von Transportkoeffizienten stark gekoppelter Theorien wie Viskositäten, Leitfähigkeiten und Diffusionskonstanten. Störungen treten in realen physikalischen Systemen immer auf. Jedoch ist wenig über deren Auswirkungen auf stark gekoppelte Materie bekannt. Die AdS/CFT-Korrespondenz ebnet den Weg zu einem besseren Verständnis hiervon. Um den Einfluss von Unreinheiten auf die oben genannten Transporteigenschaften stark gekoppelter Systeme mithilfe der AdS/CFT-Korrespondenz zu untersuchen muss die Abhängigkeit der Felder von mindestens zwei Koordinaten vorausgesetzt werden. Die zugehörigen Bewegungsgleichungen sind partielle Differentialgleichungen, deren analytische Handhabung technisch nicht durchführbar ist. Rechnergestützte numerische Methoden stellen die einzige Möglichkeit dar, diesem Problem beizukommen. Besonders geeignet hierfür erweisen sich die sogenannten Spektralmethoden, deren Anwendung auf Rechnungen im Rahmen der AdS/CFT-Korrespondenz in Detail erläutert wird. In der vorliegenden Arbeit bedienen wir uns der oben erwähnten Methoden, um numerische Lösungen von Gravitationstheorien zu ermitteln, die aufgrund der Dualität inhomogenen stark gekoppelten Systemen fundamentaler Teilchen entsprechen. Die Störungen, deren Auswirkungen auf die Transporteigenschaften des dualen Systems zu untersuchen sind, werden durch eine nichttriviale räumliche Struktur von physikalischen Größen der Gravitationstheorie eingeführt. Diese wird in einer ersten Ausführung von einem stufigen raumabhängigen Massenprofil dargestellt, das eine lokalisierte Störung in Form einer Grenzoberfläche bildet. Der Analyse der resultierenden Ladungsdichten und Leitfähigkeiten kann entnommen werden, dass die Präsenz der Grenzoberfläche eine Lokalisierung der Ladungsdichte in derer unmittelbaren Umgebung bewirkt. Des Weiteren wird eine lokale Erhöhung der Leitfähigkeit bei niedrigen Frequenzen in der zur Grenzoberfläche parallelen Richtung festgestellt. In der senkrechten Richtung nimmt die Leitfähigkeit bei niedrigen Frequenzen einen konstanten Wert an und wird in Vergleich zur parallelen Richtung abgeschwächt. Das Hochfrequenzverhalten der Leitfähigkeiten in beiden Richtungen wird nicht von der Inhomogenität gestört und weist keine Unterschiede auf. In einem zweiten Fall wird die nichttriviale räumliche Struktur in Form einer zufälligen Raumabhängigkeit des chemischen Potenzials entlang einer Richtung eingeführt, die die Störungen in der lokalen Energie der Ladungsträger nachbildet. Dabei wird festgestellt, dass diese Art von delokalisierten Störungen ein globales Anwachsen der Ladungsdichte des Systems herbeiführt. Die Leitfähigkeit wird von den Störungen abgeschwächt und ihr Verhalten weist qualitative Übereinstimmung mit Modellen der Transporteigenschaften von Graphen in der Physik der kondensierten Materie.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05

Polymere mit Halbleiter-Eigenschaften haben ein großes Anwendungspotential in der organischen Photovoltaik, da sich ihre optischen und elektronischen Eigenschaften über die molekulare Struktur gezielt ändern lassen. Durch die Synthese von Copolymeren mit besonders kleiner optischer Bandlücke (low-bandgap Copolymere) konnte die Absorption von Sonnenlicht weiter in den infraroten Spektralbereich ausgedehnt und somit die Konversion von Sonnenlicht in elektrische Energie deutlich verbessert werden. Diese neuartigen Donor-Akzeptor Materialien basieren auf einer alternierenden Anordnung von elektronen-reichen und -armen Blöcken, die durch elektronische Kopplung neue Energieniveaus mit kleinerer optischer Bandlücke bilden. Ziel dieser Arbeit ist die eingehende Untersuchung der photophysikalischen Eigenschaften dieser weitgehend unerforschten Moleküle. Die ersten drei Kapitel bieten dem Leser eine Einführung in das Forschungsgebiet und in die theoretische Beschreibung konjugierter Polymere, sowie einen Überblick über den aktuellen technischen Stand organischer Photovoltaik. Kapitel 4 gibt eine Zusammenfassung der verwendeten experimentellen und theoretischen Methoden. Der erste Teil der Untersuchung von Donor-Akzeptor Materialien gilt den Photoanregungen und der korrekten Zuordnung ihrer spektralen Signaturen (Kap. 5). Diese ermöglicht eine Zuordnung der spektralen Signaturen zu stark gebundenen, elektrisch neutralen Exzitonen, bzw. leichter zu trennenden Ladungsträgerpaaren mit kleinerer Bindungsenergie, sogenannten Polaronenpaaren. Aufgrund der schwachen elektrischen Abschirmung von Ladungen in organischen Materialen liegen die meisten Photoanregungen als Exzitonen vor. In dieser Hinsicht zeigen spektroskopische Messungen auf Femtosekunden-Zeitskala erstmals den andersartigen Charakter von Donor-Akzeptor Materialien und demonstrieren den großen Einfluss ihrer Struktur auf die Art der erzeugten Photoanregungen. Sie zeigen, dass bei Photoanregungen dieser neuartigen Materialien neben Exzitonen auch ein beträchtlicher Anteil an Polaronenpaaren entsteht. Diese Donor-Akzeptor Materialien weisen einen Polaronenpaar-Anteil von bis zu 24% aller Photoanregungen auf, was dem Dreifachen der Effizienz vergleichbarer Homopolymere entspricht (Kap. 6). Weitere Untersuchungen zeigen außerdem eine erhöhte Erzeugungsrate bei kürzeren Anregungswellenlängen. Dies kann auf eine Korrelation mit einem ausgeprägten Elektronentransfer der involvierten Wellenfunktion zurückgeführt werden, welcher in theoretischen Simulationen deutlich wird (Kap. 7). Zusammenfassend geben die in dieser Arbeit dargestellten Ergebnisse einen detaillierten Einblick in die optischen und elektronischen Eigenschaften von Donor-Akzeptor Copolymeren und den starken Einfluss der molekularen Struktur auf die ersten Schritte der photovoltaischen Stromerzeugung. Zusammenhänge zweier Schlüsselfaktoren für die Effizienzsteigerung zukünftiger organischer Solarzellen mit Materialparametern werden deutlich. Dies sind die Erzeugungseffizienz und die Lebensdauer von Polaronenpaaren und deren Abhängigkeit von der Elektronegativität und der Abstand von Akzeptor- zu benachbarten Donorsegmenten. Weiterhin konnte eine ausgeprägte Polaronenpaar Erzeugung über das ganze Absorptionsspektrum nachgewiesen werden. Diese Erkenntnisse bieten eine große Hilfestellung bei der weiteren Optimierung von Polymeren für Photovoltaik. Außerdem heben sie den wichtigen Beitrag der Ultrakurzzeit Spektroskopie zum grundlegenden Verständnis der Polaronenpaarerzeugung hervor. Mit diesen Mitteln könnte eine Verringerung des Spannungsverlustes möglich werden, der zur Ladungsträgertrennung in organischen Materialien nötig ist.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Photokatalytisch aktive kolloidale platindekorierte Cadmiumsulfidnanostäbchen zur Wasserstoffproduktion

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05

Play Episode Listen Later Dec 7, 2012


Photokatalyse zählt zu den Zukunftstechnologien der Energieerzeugung und -speicherung. Kolloidale Nanopartikelsysteme gelten als potentielle Lösungsansätze, da sie als „schwimmende Nanokraftwerke“ in wässriger Lösung langfristig eine effiziente in situ Umwandlung von Sonnenenergie in Brennstoff versprechen. In dieser Arbeit wurde erstmals mit kolloidalen Halbleiternanopartikeln photokatalytische Wasserstoffproduktion erzielt. Im Detail wurde Wasser mit kolloidalen, platindekorierten Cadmiumsulfidnanostäbchen zu Wasserstoff reduziert. Die Oxidation des Wassser zu Sauerstoff wurde durch Zugabe eines Reduktionsmittels (Lochfänger) substituiert, z.B. Sulfit, das durch das Photoloch zu Sulfat reduziert wird. Bei der photochemischen Platindekoration wurden neben den erwarteten Platinnanopartikeln mit 4 - 5nm Durchmesser auch Subnanometer große Platincluster entdeckt, die trotz der geringeren Menge an deponierten Platin auf den Nanostäbchen die gleiche Quanteneffizienz demonstrieren. Zum tiefgreifenden Verständnis eines photokatalytischen Nanopartikelsystems wurde erstmals die Ladungsträgerdynamik der Photoladungen während der Wasserstoffproduktion mit transienter Absorptionsspektroskopie untersucht. Es stellt sich heraus, dass der Elektronentransfer zum Platin mit zunehmender Platinmenge beschleunigt wird. Entgegen der Erwartung stellt man bei Zugabe des Lochfängers zur photokatalytischen Aktivierung des Systems eine Verlangsamung der Ladungstransfer zum Platin um eine Größenordnung fest, obwohl man intuitiv bei Wasserstoffproduktion einen beschleunigten Elektronentransfer zum Katalysator gegenüber einem inaktiven System erwarten würde. Der reduzierte Transfer des Elektrons zum Platin resultiert aus komplexer Wechselwirkung von Elektron und Loch, das zur Lokalisation des Elektrons an der Oberfläche oder zur Delokalisation in Volumenzuständen führt. Je nach Zustand der Elektronenwellenfunktion folgt ein größerer oder geringerer Überlapp der Wellenfunktion mit der Platindekoration an der Oberfläche, was die Transferrate direkt beeinflusst. Des Weiteren wurde der Einfluss des Reduktionspotentials des Lochfängers auf die Quanteneffizienz untersucht und festgestellt, dass mit stärkerer Reduktionskraft auch die Effizienz der Wasserstoffproduktion steigt. Dies ist auf eine beschleunigte Ladungstrennung des Exzitons durch effizientere Oxidation des Lochfängers durch das Photoloch zurückzuführen. In einem weiteren Projekt wurde eine neue Depositionsmethode entwickelt, mit der auf Monolagenfilmen aus Cadmiumsulfidnanostäbchen im Ultrahochvakuum Platincluster mit definierter Anzahl von Clustern pro Nanostäbchen und kontrollierter Anzahl von Platinatomen pro Cluster deponiert wurden.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Photonics at the Frontiers: Generation of Few-cycle Light Pulses via NOPCPA and Real-time Probing of Charge Transfer in Hybrid Photovoltaics

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05

Play Episode Listen Later Nov 11, 2011


Die schnellsten bekannten lichtinduzierten Prozesse in der Natur treten auf einer Zeitskala von wenigen Femtosekunden (fs) oder sogar auf einigen hundert Attosekunden (as) auf. Um diese ultraschnellen Licht-Materie-Wechelwirkungen aufzulösen und zu erforschen, sind Lichtpulse von wenigen optischen Zyklen vom extrem Ultravioletten (XUV) bis hin zum Infraroten (IR) erforderlich. Deren Erzeugung stellt schon seit Jahren eine Herausforderung dar und stößt auf breites Interesse für Anwendungen in Physik, Chemie und Medizin. Im ersten Teil dieser Dissertation wird die vielversprechende Methodik der nichtkollinearen optisch parametrischen Verstärkung gestreckter Lichtpulse (NOPCPA) für die Generierung von „few-cycle“ Lichtpulsen im Sichtbaren (Vis) und nahen IR (NIR) mit Pulsdauern von 5- 8 fs Halbwertsbreite erheblich weiterentwickelt. Grundlegende parametrische Einflüsse, wie die Existenz einer parametrisch induzierten Phase und die Generierung von optisch parametrischer Fluoreszenz (OPF), werden sowohl durch theoretische Analysen und numerische Simulationen, als auch durch konkrete Experimente erforscht. Experimentell werden im Rahmen dieser Arbeit „few-cycle“ Lichtpulse mit einer Pulsdauer von 7.9 fs, 130 mJ Energie, bei 805 nm Zentralwellenlänge und einem sehr hohen, „seed“-Puls limitierten Vorpuls-Kontrast von 11 und 8 Größenordnungen bei 30 ps und ca. 3 ps erzielt. Diese stellen derzeit die leistungsstärksten „few-cycle“ Lichtpulse weltweit dar und es werden durch diese Arbeit und Kooperationen neue Experimente in der Hochfeld-Physik realisiert. Zum Einen, ist es mit dem hier beschriebenen Breitbandpulsverstärker gelungen, "quasimonoenergetische" Elektronen mit Energien mit bis zu 50 MeV zu beschleunigen. Dazu wird der Lichtpuls zu relativistischen Intensitäten von mehreren 1019 W/cm2 in einen Helium- Gasjet fokussiert. Die Elektronen zeigen einen stark reduzierten niederenergetischen Elektronenhintergrund, verglichen mit Beschleunigung durch längere Lichtpulse. Zum Anderen, wurde XUV-Licht bis zur 20. Harmonischen des generierten Lichtpulses aus dem Breitbandpulsverstärker durch dessen „sub-cycle“ Wechselwirkung mit Festkörperoberflächen erzeugt. Die Erzeugung von solchen kohärenten hohen Harmonischen verspricht den Bau von kompakteren XUV-Strahlungsquellen, die as-Pulsdauern mit hohen Photonenflüssen XUVAnrege/ XUV-Abfrage Experimente kombinieren würden. Im Rahmen dieser Arbeit werden darüber hinaus neue, erweiterte Konzepte für noch breitbandigeres NOPCPA über eine Oktave entwickelt und charakterisiert, die die Verwendung von zwei Pumppulsen in einer NOPCPA Stufe und die Verwendung von zwei verschiedenen Pumpwellenlängen in zwei aufeinanderfolgenden NOPCPA Stufen beinhalten. Im zweiten Teil dieser Dissertation werden breitbandige Weißlicht-Spektren und mittels NOPCPA spektral abstimmbare, ultrakurze Lichtpulse verwendet um ein weltweit einzigartiges transientes Absorptionsspektrometer mit Vielkanaldetektion zu realisieren. Dieser neue Anrege-Abfrage Aufbau kombiniert eine sehr breitbandige UV-Vis-NIR Abfrage mit einer hohen Zeitauflösung von 40 fs und hoher Sensitivität für die transiente Änderung der optischen Dichte von weniger als 10-4. Damit ist es in dieser Dissertation zum ersten Mal gelungen den photoinduzierten Ladungstransfer im konjugierten Polymer Polythiophen und in hybriden Polythiophen/Silizium Solarzellen in Echtzeit aufzulösen. Dabei wird eine seit mehreren Dekaden geführte kontroverse Debatte über die Natur der primären Photoanregung in organischen Halbleitern aufgelöst: Exzitonen dissoziieren mit 140 fs Zeitkonstante zu Polaronen (Ladungsträger). Entscheidende Parameter (z.B. strukturelle Ordnung, Ladungsträgermobilität) für die Effizienz der Generierung und Extraktion von freien Ladungsträgern können bestimmt werden, was fundamentales Verständnis für die Optimierung von organischer und hybrider Photovoltaik für zukünftige nachhaltige Energiequellen beisteuert. Weitere Ultrakurzzeit-Experimente an neuartigen organischen Solarzellen sind hier begonnen und aufgezeigt.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Hochfrequente Anregung einzelner Elektronen und Rückkopplungen eines Ladungsdetektors in gekoppelten Quantenpunkten

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05

Play Episode Listen Later Jul 21, 2011


In der vorliegenden Doktorarbeit werden die elektronischen Eigenschaften von elektrostatisch definierten Quantenpunktsystemen in GaAs/AlGaAs Heterostrukturen untersucht. Dazu werden gepulste Hochfrequenzexperimente zur Untersuchung der Dynamik von einzelnen Elektronen in Doppelquantenpunkten durchgeführt. Der im Laufe dieser Arbeit entwickelte Messaufbau ermöglicht zeitaufgelöste Messungen im sub-Nanosekunden Bereich. Verschiedene Kopplungsregime der Quantenpunkte an die Zuleitungen wurden untersucht. Durch das Anwenden eines Ratengleichungsmodells wurden aus den durchgeführten Messungen Relaxationsraten und Tunnelraten von Elektronen bestimmt. Des weiteren wurden die Rückkopplungen eines Quantenpunktkontakts, der als Ladungsdetektor betrieben wird, auf einen Doppelquantenpunkt untersucht. Ein Quantenpunktkontakt, über den eine Spannung angelegt wird, emittiert Ladungsträger, die eine Überschussenergie tragen. Diese Energie kann von einem Elektron im Doppelquantenpunkt absorbiert werden und Übergänge zwischen den Quantenpunkten (oder den Quantenpunkten und den Zuleitungen) induzieren. Solche Übergänge finden zwar häufig statt, können jedoch nur unter bestimmten Voraussetzungen im Doppelquantenpunkt detektiert werden. Es wurden zwei Mechanismen zum Austausch von Energie identifiziert, nämlich akustischen Phononen und indirekte Coulomb-Wechselwirkung.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Ladungsträgerdynamik und Coulombeffekte in Halbleiter-Tetrapods

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05

Play Episode Listen Later Feb 3, 2011


Thu, 3 Feb 2011 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/12682/ https://edoc.ub.uni-muenchen.de/12682/1/Mauser_Christian.pdf Mauser, Christian ddc:530, ddc:500, Fakultät für Physik

physik fakult halbleiter mauser ddc:500 tetrapods ladungstr ddc:530
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Spatially resolved electronic and optoelectronic measurements of pentacene thin film transistors

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05

Play Episode Listen Later Oct 18, 2010


Organische Halbleiter gewinnen zur Zeit als elektronische und optoelektronische Bauelemente zunehmend an Bedeutung. Während organische Leuchtdioden, die oft auf Polymeren basieren, bereits Marktreife erreicht haben, sind organische Transistoren noch im Forschungsstatus. Für organische Transistoren verwendet man üblicherweise geordnete dünne Schichtstrukturen aus kleinen organischen Molekülen wie Pentacen, da hier im Vergleich zu den ungeordneten Polymeren höhere Ladungsträgerbeweglichkeiten erzielt werden können. Trotz intensiver Forschung sind die elektronischen Transportmechanismen und optischen Eigenschaften in solchen Systemen nicht völlig verstanden. Der Ansatz der vorliegenden Arbeit besteht darin, die elektronischen und optoelektronischen Eigenschaften von Pentacen-Dünnfilmtransistoren ortsaufgelöst zu untersuchen. Die dadurch erhaltenen Messdaten ermöglichten es, verschiedene Einflüsse auf das Transportverhalten in Pentacen aufzuschlüsseln und den verschiedenen Bereichen innerhalb des Transistors zuzuordnen. Es wurden zwei verschiedene Versuchsaufbauten realisiert. Um Abhängigkeiten des Transports von der Pentacenschichtdicke zu untersuchen, wurden elektronische in-situ Messungen während des Aufdampfprozesses durchgeführt. Laterale Ortsauflösung wurde hingegen durch einen optischen Aufbau realisiert, mit dem kleine Bereiche des Transistorkanals beleuchtet wurden. Bei den elektronischen in-situ Messungen wurden kontinuierlich während des Aufdampfens von Pentacen die charakteristischen Kenngrößen der Transistoren bestimmt. Neben der Lochbeweglichkeit untersuchten wir im Speziellen die Verschiebung der Schwellwertspannung und die Hysterese der Transistoren, da diese durch lokale Fallenzustände ausgelösten Phänomene eine besonders wichtige Rolle bei den Transporteigenschaften organischer Halbleiter spielen. Das Verhalten der Hysterese konnte durch ein Modell, das lokale Fallenzustände an der Oberfläche der Pentacenschicht berücksichtigt, erklärt werden. Die Entwicklung der Schwellwertspannung sowie der Hysterese während des Aufdampfens erlaubten es desweiteren, die Debye-Länge in Pentacen zu bestimmen. Der zweite Aufbau ermöglichte es, einerseits optische Eigenschaften wie Photolumineszenz und Reflektionsvermögen und andererseits optoelektronische Eigenschaften, insbesondere die Photoantwort, d.h. die lichtinduzierte Veränderung des Transistorstromes, in Abhängigkeit des Ortes der Beleuchtung zu untersuchen. Mit Hilfe der Reflektionsmessungen gelang es, unterschiedliche Absorption einzelner Pentacenkörner aufzulösen. Dies konnte auf eine Davydov-Aufspaltung zurückgeführt werden. Die Photoantwort unserer Transistoren besteht aus einer langsamen Komponente, die unabhängig vom Beleuchtungort auftrat, sowie einer schnellen Komponenten, die nur durch Einstrahlung an den Kontakten ausgelöst wurde. Aufgrund der Zeitskala und der Gatespannungsabhängigkeit wurde die langsame Komponente als bolometrischer Effekt interpretiert. Wärme, die durch Absorption in der Probe erzeugt und in den Halbleiterfilm transportiert wird, befreit Löcher aus Fallenzuständen, wodurch die Konzentration der freien Ladungsträger und damit der Gesamtstrom im Transistor erhöht wird. Die schnelle Photostromkomponente wird durch einen elektronischen Prozess, der auf einer Exzitonentrennung durch das hohe elektrische Feld am Kontakt beruht, erklärt. Die große Ausdehnung des Signals wurde auf eine hohe Interkombinationsrate von Singulett-Exzitonen zu Triplett-Exzitonen, die aufgrund ihrer langen Lebensdauer große Diffusionslängen besitzen, zurückgeführt. Diese hohe Interkombinatinosrate wurde durch die sehr schwache Photolumineszenzausbeute bestätigt.

Physik in 2 Minuten
#5 - Elektrischer Strom

Physik in 2 Minuten

Play Episode Listen Later Jul 22, 2010


Hallo und herzlich willkommen zu einer weiteren Folge von Physik in 2 Minuten. Mein Name ist Nils Andresen und heute geht es um den elektrischen Strom. Was ist das eigentlich? Elektrischer Strom ist im allgemeinen als gerichteter Anteil einer Bewegung von Ladungsträgern definiert. Damit ist gemeint, dass ein Strom fließt, wenn sich geladene Teilchen, wie zum Beispiel Elektronen oder Ionen, durch ein Medium bewegen. Ein einfaches Beispiel dafür ist die Batterie. In ihr werden mit Hilfe von Redoxreaktionen Ladungen getrennt. Am Minuspol befinden sich somit viel mehr negativ geladene Elektronen als am Pluspol. Es herrscht ein Ladungsungleichgewicht. Wie immer in der Physik streben nun die geladenen Teilchen einen Ausgleich dieser Differenz an. Dazu nehmen die Elektronen den Weg des geringsten Widerstands, in einem Stromkreis also den elektrischen Leiter, um vom Minus- zum Pluspol zu gelangen. Durch die Bewegung der Elektronen wird Energie frei, ein Strom fließt. Das tut er so lange, bis auf beiden Seiten gleich viele Elektronen sind, also ein Ladungsgleichgewicht herrscht. Den dazwischen entstandenen Strom kann man messen. Dazu gibt es die zwei wichtigen Einheiten Volt und Ampere. Volt beschreibt die Geschwindigkeit der Elektronen, Ampere die Anzahl pro Zeit. Zur Veranschaulichung werden diese Einheiten gerne auf eine Wasserleitung übertragen: Volt entspräche hierbei dem Druck, der in der Leitung herrscht, Ampere der Menge an Wasser, die in einer bestimmten Zeit durch die Leitung fließt. Aus Volt mal Ampere wird Watt, aus diesem Grund wurde Watt früher auch als Voltampere bezeichnet. Mit dieser Einheit wird die Leistung beschrieben, die der Strom verrichten kann. Schön, dass ihr dieses Mal dabei wart! Wenn ihr noch Fragen habt, dann könnt ihr mir direkt eine Mail an physik@in2minuten.com schicken. Weitere Infos gibt’s auf unserer Website in2minuten.com.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Terahertz-Nahfeldmikroskopie an Ladungsträgern in GaAs

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05

Play Episode Listen Later Dec 15, 2008


Mon, 15 Dec 2008 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/9527/ https://edoc.ub.uni-muenchen.de/9527/1/Buersgens_Federico_F.pdf Buersgens, Federico ddc:530, ddc:500, Fakultät für Physik

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Elektrische Manipulation der Lichtemission von einzelnen CdSe/CdS Nanostäbchen

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05

Play Episode Listen Later Nov 30, 2005


Kolloidale Halbleiternanokristalle sind aufgrund ihrer vom Ultravioletten bis weit ins Infrarote durchstimmbaren Emissionswellenlänge besonders interessante Nanostrukturen für zukünftige optoelektronische Bauelemente und werden daher zurzeit intensiv erforscht. Im Mittelpunkt der vorliegenden Arbeit steht die Untersuchung und Manipulation der Lichtemission von neuartigen, stäbchenförmigen Cadmiumselenid/Cadmiumsulfid (CdSe/CdS) Nanokristallen in einem Einzelpartikelfluoreszenzaufbau. Diese Nanokristalle bestehen aus einem sphärischen CdSe-Kern, an den ein CdS-Nanostäbchen monokristallin gewachsen wird. Dadurch entstehen räumlich asymmetrische Halbleiternanostäbchen mit einem Aspektverhältnis zwischen 1,6 und 4,0. Durch die Messung der strahlenden Rate konnte in dieser Arbeit gezeigt werden, dass das Elektron über das gesamte Nanostäbchen delokalisiert ist, wohingegen das Loch im CdSe-Kern lokalisiert ist. Daher kann man durch die Länge des Cadmiumsulfidstäbchens den Wellenfunktionsüberlapp direkt manipulieren. Die Wellenfunktionen und damit die Emissionsenergien können neben der Geometrie insbesondere auch durch externe elektrische Felder kontrolliert werden. Da die Größe dieses so genannten „Starkeffekts in quantenbeschränkten Strukturen“ mit der räumlichen Ausdehnung der Nanostruktur zunimmt, konnte in den Nanostäbchen ein, verglichen zu sphärischen Nanokristallen, deutlich erhöhter Feldeffekt beobachtet werden. Experimente an einzelnen CdSe/CdS Nanostäbchen zeigen aber nicht nur eine Verschiebung der Emissionsenergie um das 50-fache der Linienbreite, sondern zugleich eine feldinduzierte Abnahme der Emissionsintensität um eine Größenordnung. Die experimentellen Ergebnisse lassen sich hervorragend mit einem theoretischen Modell vergleichen. Dazu wurde das effektive Massenmodell um die Coulombwechselwirkung ergänzt und durch eine finite Elemente Methode für asymmetrische Geometrien erweitert. Damit ist es möglich, sowohl die strahlende Rate, die Starkverschiebung der Emissionsenergie wie auch die Intensitätsmodulation durch elektrische Felder qualitativ und quantitativ vorherzusagen und den Starkeffekt in kolloidalen Nanokristallen durch ein quantenmechanisches Modell zu beschreiben. Die Emissionscharakteristik wird nicht nur durch externe Felder, sondern auch durch Fluktuationen lokaler Felder beeinflusst, welche durch diffundierende Oberflächenladungen entstehen. Diese lokalen Feldveränderungen induzieren ebenfalls eine Starkverschiebung und führen zu einer zeitlichen Variation der Emissionsenergie. Durch die elongierte Form der Nanostäbchen ist es erstmals gelungen, bei kolloidalen Nanokristallen die Bewegung von Oberflächenladungen auf der Nanometerskala zu beobachten. In dieser Arbeit wird gezeigt, dass man dabei zwischen einer zufälligen Bewegung der Oberflächenladungen um den Ladungsschwerpunkt und der Verschiebung des Ladungsträgerschwerpunkts unterscheiden kann.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Exzitonentransfer und Dissoziationsdynamik in konjugierten Polymeren

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05

Play Episode Listen Later Oct 10, 2003


In der vorliegenden Arbeit werden mittels der Einzelmolekül-Fluoreszenzspektroskopie und einer neuartigen Ultrakurzzeit-Photostromkorrelationstechnik der Energietransfer und die Ladungsträgererzeugung in konjugierten Polymeren untersucht. Aufgrund ihrer großen Flexibilität sowohl in Bezug auf die elektronischen und optischen Eigenschaften als auch im Hinblick auf die Verarbeitungsmöglichkeiten erschließen diese molekularen Halbleiter zahlreiche Anwendungsfelder aus der Optoelektronik. Hierzu gehören insbesondere die organischen Leuchtdioden und Photodetektoren, aber auch Laser und Transistoren. Der Energietransfer zwischen einzelnen Untergruppen eines konjugierten Polymermoleküls, sogenannten Chromophoren, wird erstmals durch zeitaufgelöste Einzelmolekülspektroskopie direkt verfolgt. So wird der Transfer von Anregungsenergie zwischen zwei energetisch verschiedenen Chromophoren zeitlich aufgelöst und mit theoretischen Modellen verglichen. Durch die Messung der homogenen Linienbreite der Einzelmolekül-Photolumineszenz bei Temperaturen zwischen T = 5K und T = 300K und deren Auswirkung auf die Mobilität der Anregungen wird in dieser Arbeit der mikroskopische Mechanismus des Energietransfers direkt zugänglich. Es zeigt sich, daß der Energietransfer über die stark temperaturabhängige Linienbreite der Absorption und Emission der einzelnen Chromophore kontrolliert wird. Die Messung der Polarisations-Anisotropie des konjugierten Polymers gibt Aufschluß über die relative Orientierung der Chromophore zueinander. Es zeigt sich, daß eine geeignete Molekülgeometrie in Verbindung mit dem Energietransfer zu einer hochgradig polarisierten Emission von Photolumineszenz selbst bei unpolarisierter Anregung führt. Mit einer neuartigen Kombination von optischer Ultrakurzzeitspektroskopie und Photostrommessungen wird die Photoerzeugung von Ladungsträgern in Polymer-Dünnschichtdioden mit einer Zeitauflösung im sub-Pikosekunden Bereich verfolgt. Erstmals gelingt damit der direkte Nachweis, daß alle freien Ladungsträger durch zeitverzögerte Dissoziation von optisch generierten Exzitonen auf der Zeitskala der Exzitonenlebensdauer von 100 ps erzeugt werden. Darüberhinaus wird die ultraschnelle Dissoziation ”heißer“ Exzitonen binnen 0.1 Pikosekunden beobachtet, die jedoch nicht freie Ladungsträger erzeugt, sondern schwach Coulomb-gebundene Paare von Ladungsträgern, sogenannte Polaronenpaare. Die Polaronenpaare weisen eine verschwindende Lumineszenzausbeute auf, tragen aber auch nicht zum Photostrom bei und stellen daher einen Verlustkanal für Polymer-Leuchtdioden und für organische Solarzellen dar. Der quantitative Vergleich mehrerer ultrakurzzeitspektroskopischer Signale erlaubt erstmals eine quantitative Bestimmung der Erzeugung von Polaronenpaaren ohne die Annahme weiterer Materialparameter. An zwei Modellsystemen effizienter organischer Polymer-Photodioden, nämlich Mischsystemen aus einem konjugierten Polymer mit dem Elektronenakzeptor C60, wird die Bedeutung der Polaronenpaare für organische Photodetektoren nachgewiesen. Wiederum durch die Kombination der Ultrakurzzeitspektroskopie mit Photostrommessungen kann eindeutig zwischen freien Ladungsträgern und Polaronenpaaren unterschieden und deren Population getrennt verfolgt werden. Die zentrale Rolle der Polaronenpaare für die Photostrom-Quantenausbeute in verschiedenen organischen Nanokompositen wird herausgearbeitet. Es zeigt sich, daß die makroskopisch beobachtete Diskrepanz zwischen der Zahl dissoziierter Anregungen und der Zahl detektierter freier Ladungsträger auf der Tendenz einiger Materialien beruht, die Erzeugung von Polaronenpaaren mit einer hohen Rekombinationswahrscheinlichkeit zu begünstigen.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Physikalische Ursachen und Wirkung von Rauschquellen in Sperrschicht -Feldeffekttransistoren

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05

Play Episode Listen Later May 31, 2002


In dieser Arbeit werden die Rauschquellen in Sperrschicht-Feldeffekttransistoren (JFETs) eingehend auf ihre Ursachen und Wirkungsweise untersucht. Das Rauschverhalten von JFETs wirkt sich beispielsweise in Halbleiter-Detektor-Verstärker-Systemen auf die Energieauflösung solcher Systeme aus, in denen JFETs aufgrund ihres geringen Rauschens oft als erste Verstärkungsstufe eingesetzt werden. Diesbezüglich wird eine Methode entwickelt, mit Hilfe derer aus Rauschmessungen an JFETs die Energieauflösung eines einfachen spektroskopischen Systems berechnet werden kann, in das der vermessene Transistor als erste Verstärkungsstufe eingebaut ist. Außerdem wird gezeigt wie aus temperaturabhängigen Rauschmessungen auf die Eigenschaften von Kristalldefekten in Halbleitern geschlossen werden kann. Im theoretischen Teil der Arbeit werden zuerst grundlegende Rauschmechanismen in Halbleitern beschrieben wie sie auch in JFETs auftreten. Auf die Herleitungen der Rauschspektren des thermischen Rauschens, des Diffusionsstrom-Rauschens, des Generations-Rekombinations-Rauschens und des „Random-Telegraph-Signal“-Rauschens (RTS-Rauschen) wird ausführlich eingegangen. Das RTS-Rauschen kommt durch den Einfang und die Emission von freien Ladungsträgern in/aus Kristalldefekte(n) hinein/heraus. Die Abhängigkeiten des RTS-Rauschens von der Lage des Kristalldefekts im Bauelement und den Eigenschaften des Kristalldefekts selbst werden detailliert analysiert. An den Beispielen eines Widerstandes und eines JFETs wurden Simulationen durchgeführt, mit Hilfe derer der Einfluß einzelner Kristalldefekte auf das Rauschverhalten des jeweils betrachteten Bauelements bestimmt werden kann. Im experimentellen Teil der Arbeit werden Messungen an verschiedenen JFETs vorgestellt, in denen das Rauschen in Abhängigkeit von der Frequenz und der Temperatur aufgenommen wurde. Auf die angeführten Rauschmessungen wird die oben erwähnte Methode angewendet, mit Hilfe derer man die Energieauflösung eines einfachen spektroskopischen Systems berechnet werden kann, in das der vermessene Transistor als erste Verstärkungsstufe eingebaut ist. Dadurch gewinnt man ein Bild vom Verhalten des betrachteten spektroskopischen Systems in Abhängigkeit von der Temperatur und der Filterzeit eines in das System integrierten Filters, der zur Optimierung des Signal-zu-Rausch-Verhältnisses dienen sollte. Daraufhin wird exemplarisch am Beispiel eines rauscharmen JFETs gezeigt, wie man anhand von Rauschmessungen die Eigenschaften und die Lage von Kristalldefekten bestimmen kann. Zum Abschluß der Arbeit werden noch Wiederholungsmessungen an einem Bauelement widergegeben, bei denen sich das Rauschverhalten von sogenannten multistabilen Kristalldefekten manifestierte. Multistabile Defekte sind Kristalldefekte, die nicht nur eine stabile sondern mehrere mögliche Konfigurationen im Kristallgitter besitzen. Übergänge zwischen den verschiedenen Zuständen können durch verschiedene Einflüsse wie z.B. durch die Temperaturbehandlung während einer Rauschmessung zustande kommen.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Erhöhung der Sensitivität photorefraktiver holographischer Speichermedien auf Basis von amorphen organischen Materialien

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Feb 1, 2002


Ausgangspunkt dieser Arbeit war das erste hocheffiziente literaturbekannte PR System: in situ polbare Komposite auf PVK/ECZ Basis mit Azofarbstoffen als elektrooptische (EO) Komponente und TNF oder TNFM als Sensibilisatoren. Diese sogenannten "weichen" PR Komposite ermöglichen es, hocheffiziente Hologramme durch den Effekt der Orientierungsverstärkung, d.h. durch eine periodische Änderung der Doppelbrechung, aufzuzeichnen. An diesem Standardsystem wurden grundlegende Experimente durchgeführt, um die Abhängigkeit der holographischen Eigenschaften von der Zusammensetzung und den Meßbedingungen zu untersuchen. Danach wurden durch gezielte Variation der chemischen Zusammensetzung neue Materialien mit höheren Sensitivitäten entwickelt. Im folgenden werden die Ergebnisse der Untersuchungen im tabellarischen Stil zusammengefaßt. Untersuchungen am Standardsystem & Die Ansprechzeit von in situ polbaren organischen PR Materialien hängt von der Aufbaugeschwindigkeit des Raumladungsfeldes und von der Beweglichkeit der EO Chromophore in der Matrix ab. Durch Messungen des PR Gitteraufbaus unter verschiedenen Anfangsbedingungen wurde erkannt, daß die Ansprechzeit im Standardmaterial für kleine Schreibintensitäten und kurze Schreibzeiten nicht von der Chromophororientierung sondern von der Aufbauzeit des Raumladungsfeldes limitiert ist. Für längere Schreibzeiten ist die Geschwindigkeit des Gitteraufbaus hingegen durch die Chromophororientierung begrenzt. Nur in diesem Bereich bewirkt eine Vorpolung der Materialien eine Beschleunigung des Gitteraufbaus. Zudem wurde festgestellt, daß eine Beleuchtung der Proben vor dem Einschreiben des Hologramms zu einer Verlangsamung des Aufbaus des Raumladungsfeldes führt. & Die Dichte der Ladungsträgerfallen von PR Materialien ist ein wichtiger Parameter, da sie die maximale Größe des Raumladungsfeldes und damit die Stärke des Hologramms bestimmt. Durch Messung der Phasenverschiebung zwischen dem Interferenzmuster und der induzierten Brechungsindexmodulation sowie der Anwendung des Kukhtarev Modells wurde die effektive Fallendichte im Standardmaterial bestimmt. Sie liegt in der Größenordnung von 1016-1017 cm-3 und hängt zum einen von der Zahl der ionisierten Sensibilisatormoleküle und zum anderen von der Glasübergangstemperatur der Komposite ab. Damit konnte bestätigt werden, daß in PR Kompositen die Fallendichte sowohl durch die Zahl der Rekombinationszentren als auch durch konformative Fallen in der Lochleiter DOS gegeben ist. Die konformativen Fallen haben eine dynamische Natur, d.h. ihre Energie ist zeitlich nicht konstant. & Die Phasenseparation der EO Komponente wird bislang als größtes Stabilitätsproblem von PR Kompositen betrachtet. Modifikation des Standardmaterials unter Verwendung einer ternären Azofarbstoffmischung lieferte ein Material, welches stabil gegen Phasenseparation ist. Eine Langzeitmessung von einer Woche brachte jedoch einen weiteren Degradationsprozeß zu Tage: bei Dauergebrauch wurde neben einer geringfügigen Verbesserung der Beugungseffizienz eine Zunahme der Ansprechzeit (Faktor 4) gefunden. Die Ursache für diese Effekte ist noch nicht geklärt, die Erzeugung von tiefen Fallenzuständen scheint dabei eine wichtige Rolle zu spielen. Untersuchungen an vollfunktionalisierten, vorgepolten Polymeren Vollfunktionalisierte Materialien haben den Vorteil, stabil gegen Phasenseparation zu sein. Vorgepolte, d.h. nicht in situ polbare Materialien haben aufgrund der sofort auftretenden Brechungsindexänderung durch den Pockels-Effekt Ansprechzeiten, die nur vom Aufbau des Raumladungsfeldes limitiert sind. Hier wurden Polymere mit einem inerten Rückrad untersucht, an welches Azofarbstoffe und Carbazoleinheiten als funktionelle Gruppen angebunden waren. Als Sensibilisator diente TNF. Die Materialien zeigten eine ausgezeichnete Stabilität gegen dielektrisches Durchschlagen und Phasenseparation, die erreichten Brechungsindexmodulationen waren jedoch eine Größenordnung kleiner als in vergleichbaren nieder- Tg Materialien. Dies ist durch die Abwesenheit der Orientierungsverstärkung in "harten" Materialien bedingt. Die Ansprechzeiten waren ähnlich denen in nieder-Tg Materialien. Dies bestätigt, daß die Ansprechzeit in den ausreichend weichen Standardmaterialien nicht von der Chromophororientierung limitiert ist. Die Sensitivität der vorgepolten Materialien ist aufgrund der geringen Brechungsindexmodulationen vergleichsweise niedrig. Insgesamt bieten vorgepolte PR Materialien daher außer ihrer hohen Stabilität keine Vorteile gegenüber nieder-Tg Materialien. Komposite mit DBOP-PPV als Lochleiter Durch Ersetzen des PVK Polymers im Standardsystem durch das PPV-Ether Derivat DBOP-PPV gelang es, den Aufbau des Raumladungsfeldes zu beschleunigen. Dies ist auf die im Vergleich zu PVK höhere Lochmobilität des konjugierten DBOP-PPV zurückzuführen. Diese Materialien reagierten im Gegensatz zum Standardsystem mit PVK nicht mit einer Verlangsamung des Gitteraufbaus bei Vorbeleuchtung. Diese Studie zeigte auch, wie wichtig neben der Photoleitfähigkeit die Matrixqualität eines Polymers für die Anwendung in PR Kompositen ist. Die DBOP-PPV Materialien waren wegen ihrer schlechten Kompatibilität zu den verwendeten Farbstoffen nicht stabil gegen Phasenseparation. Komposite mit TPD-PPV als Lochleiter & Der Einsatz des Polymers TPD-PPV, dessen Lochmobilität höher als die der Polymere DBOP-PPV und PVK ist, ermöglichte es, PR Komposite zu entwickeln, die bei 633 nm Schreibwellenlänge Ansprechzeiten im Bereich von Millisekunden zeigten. Gegenüber dem Standardsystem wurde eine zwanzigfache Beschleunigung des Raumladungsfeldaufbaus sowie eine Verbesserung der Brechungsindexmodulation im Gleichgewichtzustand um 30 % erreicht. Die Sensitivität war durch die hohe Absorption des Materials einschränkt und lag im Bereich der besten literaturbekannten Materialien. & Das TPD-PPV Material zeigte trotz geringer Absorption auch im NIR Bereich (hier 830 nm) eine ausreichende Photosensitivität. Es wurde ein großer Einfluß der Beleuchtung des Materials vor dem Einschreiben des Hologramms gefunden. Die Ansprechzeit nimmt stark ab (Faktor 40), während gleichzeitig eine etwas höhere Brechungsindexmodulation im Gleichgewichtszustand erreicht wird. Diese Effekte hatten sich schon bei den DBOP-PPV Kompositen angedeutet. Ursache für diesen "Gating"-Prozeß ist die hohe Dichte von Ladungsträgern, die beim Vorbeleuchten erzeugt wird. Der Prozeß der Umverteilung dieser Ladungsträger durch das NIR Interferenzmuster ist wesentlich schneller als die Erzeugung und Umverteilung nur durch das NIR Licht. Wie hier zum ersten Mal gezeigt werden konnte, kann die Vorerzeugung von Ladungsträgern auch chemisch durch partielle Oxidation des Lochleiters erfolgen. Der Gating Effekt tritt allgemein in Materialien auf, die in ihrer Ansprechzeit durch die Ladungsträgererzeugung bei der Schreibwellenlänge limitiert sind, und in welchen durch Vorbeleuchtung relativ langlebige Ladungsträger erzeugt werden können. Mit dem TPD-PPV/PCBM Komposit wurden unter Ausnutzung des Gating- Mechanismus eine von organischen PR Materialien bislang unerreichte Sensitivität im NIR Bereich erzielt. Im Vergleich zum Standardmaterial wurde die Sensitivität um einen Faktor von ~240 erhöht. So konnte das Schreiben von Hologrammen mit hohen Wiederholungsraten (> 100 Hz) im NIR demonstriert werden. ATOP Chromophore als EO Komponente ATOP Chromophore sind Farbstoffe, die speziell für den Einsatz als EO Komponente in nieder-Tg PR Materialien entwickelt wurden. Sie zeigen im Vergleich zu den im Standardsystem verwendeten Azofarbstoffen eine wesentlich höhere Anisotropie der Polarisierbarkeit, wodurch die Orientierungsverstärkung der Brechungsindexmodulation effizienter wird. Mit diesen Chromophoren wurden zum einen PR Komposite auf PVK/ECZ/TNFM Basis hergestellt, zum anderen konnte eines der ATOP Derivate ohne jeden Zusatz als PR Glas eingesetzt werden. Diese Materialien zeigen die zur Zeit höchsten literaturbekannten Brechungsindexmodulationen bei niedrigen Polungsfeldern (∆n= 0.012 bei Eext= 28 V/µm). Die ATOP Chromophore erwiesen sich als vollfunktionale Komponenten, die auch die Erzeugung und Umverteilung von Ladungsträgern und damit das Raumladungsfeld beeinflussen. Das Ansprechverhalten dieser Materialien war dadurch sehr komplex, hier sind noch weitere Untersuchungen nötig. Trotz der hohen Brechungsindexmodulationen ist die Sensitivität der ATOP-Materialien aufgrund der langsamen Ansprechzeit und der hohen Absorption nicht besser als die des Standardsystems. Phasenkonjugation mit PR Polymeren bei 532 nm Das Einschreiben von Hologrammen in einen Langzeitspeicher mit Hilfe von phasenkonjugierten Objektstrahlen ist eine vielversprechende Architektur zur Verwirklichung von holographischen Massenspeichern. Für diese Technik sind reversible holographische Kurzzeitspeicher nötig, die als "virtuelle Strahlmodulatoren" dienen können. Für diese Anwendung wurden PR Komposite entwickelt, die sich zur Erzeugung von phasenkonjugierten Objektstrahlen bei 532 nm Schreibwellenlänge eignen. Mit einem auf dem Chromophor 7DCST basierenden Komposit konnte die Phasenkonjugation erfolgreich demonstriert werden. Die Übertragung und Speicherung des phasenkonjugierten Objektstrahls konnte allerdings noch nicht erfolgreich durchgeführt werden. Ein Grund hierfür ist das zu schnelle Löschen des Hologramms im PR Komposit während des Auslesens. Demonstrationsaufbauten Die Praxistauglichkeit von PR Polymeren konnte mit zwei Demonstrationsaufbauten gezeigt werden. Mit dem Standardmaterial konnte ein „Matched Filter“ Korrelator mit einem LCD-Display als Eingabemaske verwirklicht werden. Das TPD-PPV Material erlaubte durch Anwendung des Gatings das holographische Abbilden eines Objektes in Videorate (30 Hz) bei 830 nm und kleiner Schreibleistung (6 mW). Zusammenfassend läßt sich sagen, daß in dieser Arbeit durch den Einsatz neuer funktioneller Substanzen und die Weiterentwicklung der Meßmethodik die Sensitivität von amorphen, organischen photorefraktiven Materialien als holographische Speichermedien entscheidend verbessert wurde. Auch Fragen der Stabilität und Alltagstauglichkeit wurden adressiert. Diese Arbeit liefert eine Reihe von Antworten, wirft aber ebenso viele Fragen auf. Vom umfassenden Verständnis des PR Effekts in Polymeren ist man noch weit entfernt, vor allem was die theoretische Beschreibung des Aufbaus des Raumladungsfeldes anbelangt. Hier wurde ein eher pragmatischer Ansatz gewählt: Ein auf chemischen Konzepten basierendes empirisches Vorgehen erwies sich als guter Weg die Materialien zu verbessern.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Poly(4,4’-dimethoxybithiophen)-Filme als polymere Anoden mit variabler Austrittsarbeit

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Dec 19, 2000


Im Rahmen dieser Arbeit wurden erstmals Poly(4,4’-dimethoxybithiophen)-Filme als polymere Anoden mit variabler Austrittsarbeit für die Injektion von Löchern in organische Halbleiter- Systeme und OLEDs verwendet. Dabei konnte gezeigt werden, dass sich diese Injektionsschichten prinzipiell dazu eignen, die Eigenschaften von OLEDs zu verbessern. Es ist schon relativ lange bekannt, dass die optischen und elektrischen Eigenschaften von π- konjugierten Polymeren, wie Absorption bzw. Leitfähigkeit, vom elektrochemischen Oxidationspotential abhängig sind. Der Aspekt aber, dass ebenso die Austrittsarbeit mit dem Oxidationszustand korreliert ist, wurde bisher nicht berücksichtigt. Dies konnte im Rahmen dieser Arbeit mithilfe von Poly(4,4’-dimethoxybithiophen) als typischen Vertreter von leitfähigen Polymeren zum ersten Mal demonstriert werden. Dabei wurden PDBT-Filme auf ITOSubstraten polymerisiert und nachträglich elektrochemisch unterschiedlich stark oxidiert, wobei zum Ladungsausgleich das polymere Anion PSS diente. Es konnte gezeigt werden, dass, wie für solche π-konjugierten Polymere üblich, sowohl die Absorptionseigenschaften als auch die Leitfähigkeit von PDBT unter Verwendung des polymeren Anions PSS stark vom jeweiligen Oxidationspotential bzw. Beladungsgrad abhängig sind. Es konnten elektrochemische Gleichgewichtspotentiale zwischen ca. –0.3 V und maximal +0.5 V vs. Ag/AgCl hergestellt werden, was einer Austrittsarbeit von 4.5 eV bis maximal +5.3 eV entspricht. Dazwischen kann jedes beliebige Oxidationspotential eingestellt werden. Um die Auswirkungen dieser polymeren PDBT-Filme mit unterschiedlichen Oxidationspotentialen auf das Injektionsverhalten von Löchern zu überprüfen, wurden diese Schichten als Anoden für das einfache löcherleitende molekular dotierte System TPD in einer Polycarbonatmatrix verwendet. Dieses organische Modellsystem wurde zunächst eingehend untersucht, wobei festgestellt wurde, dass bei Verwendung von ITO als Anode und Al als Kathode die Diodenkennlinie ausschließlich aus der Injektion von Löchern in die organische Schicht resultiert. Der Stromtransport ist injektionslimitiert und kann mithilfe des Modells der feldunterstützten thermionischen Emission von Ladungsträgern sehr gut beschrieben werden. Ausgehend von diesen Untersuchungen konnte an diesem Modellsystem gezeigt werden, dass durch die Verwendung der polymeren PDBT-Anoden im Vergleich zu ITO die Lochinjektion verbessert werden kann. Mit Zunahme des Oxidationspotentials des PDBTs verschieben sich die Diodenkennlinien sukzessiv zu kleineren Feldstärken bzw. bei konstanter Feldstärke nimmt die Stromdichte kontinuierlich zu. Dies kann nur damit erklärt werden, dass die Injektionsbarriere mit zunehmendem Oxidationspotential kleiner wird und somit die Austrittsarbeit der polymeren Anoden zunehmen muss. Durch temperaturabhängige Messungen und die Anwendung des Modells der feldunterstützten thermionischen Emission konnte gezeigt werden, dass tatsächlich die Injektionsbarriere mit zunehmendem Oxidationspotential der PDBT-Anode kleiner wird. Für die PDBT-Anode mit einem Oxidationspotential von +0.4 V vs. Ag/AgCl bzw. einer Austrittsarbeit von 5.2 eV ist die Barriere für die Injektion der Löcher gänzlich verschwunden, so dass also ein optimaler, ohmscher Kontakt hergestellt werden konnte. Für das löcherleitende System TPD/PC wurde insgesamt ein Übergang von injektions- zu raumladungslimitiertem Stromtransport festgestellt. Diese im Rahmen dieser Arbeit gemachten Beobachtungen an dem einfachen löcherleitenden Modellsystem belegen deutlich, dass die Austrittsarbeit von PDBT direkt mit dem Oxidationszustand korreliert ist, und zwar in der Art, dass die Austrittsarbeit mit zunehmendem Oxidationspotential bzw. Beladungsgrad zunimmt. Es konnte darüber hinaus für das TPD/PC-System gezeigt werden, dass im Fall eines ohmschen Injektionskontakts, der mit den hochoxidierten PDBT-Schichten mit einer Austrittsarbeit von ca. 5.2 eV hergestellt wurde, der raumladungslimitierte Stromtransport durch die organische Halbleiterschicht mithilfe des childschen Gesetzes, das eine feldabhängige Mobilität berücksichtigt, beschrieben werden kann. Damit können Daten über die Feldabhängigkeit der Löcherbeweglichkeit erhalten werden. Nicht nur für das TPD/PC-System, sondern auch für das verwandte System 1-NaphDATA in PC und für das „Poly-TPD“-System konnte ein ohmscher Kontakt mit den hochoxidierten PDBT-Anoden hergestellt und damit dessen Feldabhängigkeit der Löcherbeweglichkeit ermittelt werden, was normalerweise nur mit aufwendigen TOF-Messungen möglich ist. Ausgehend von diesen Erkenntnissen wurde das Injektionsverhalten von unterschiedlich dotierten PDBT-Anoden auch an OLED-Systemen untersucht. Dabei zeigte sich wie bei dem einfachen löcherleitenden TPD/PC-System, dass mit zunehmender Austrittsarbeit der polymeren PDBT-Anoden sich die Löcherinjektion verbessert und somit in einer vergrößerten Stromdichte resultiert. Allerdings wurde auch deutlich, dass sich eine verbesserte Löcherinjektion nicht immer positiv auf die Elektrolumineszenz und den Wirkungsgrad der OLEDs auswirkt. Lediglich für den Fall, dass die Rekombination der Ladungsträger durch einen Mangel an Löchern gekennzeichnet ist, kann die Performance von OLEDs durch eine verbesserte Lochinjektion gesteigert werden. Dies konnte für die OLEDs basierend auf einer PFO- bzw. PPV-Derivat-Schicht demonstriert werden. Dabei konnte nicht nur die Betriebsspannung in Abhängigkeit von der Austrittsarbeit der polymeren Anode verringert werden, sondern gleichzeitig auch die Helligkeit und die Effizienz der Bauteile erheblich gesteigert werden. Wird dagegen die Rekombinationsrate wie im Fall des Zweischichtsystems bestehend aus einer löcherleitenden „Poly-TPD“- und einer elektronenleitenden molekular dotierten PBD/Perylen/PAMS-Schicht von den Elektronen kontrolliert, so muss für die Steigerung der Performance der OLEDs die Austrittsarbeit der PDBT-Anode verringert werden. Durch den Einsatz von PSS-Anionen bei der Polymerisation und Oxidation der PDBTAnoden ist man auf einen Bereich von 4.5 bis maximal 5.2 – 5.3 eV beschränkt. Durch die Verwendung von kleineren Gegenionen könnte aber diese Beschränkung in der oxidativen Richtung aufgehoben werden. Allerdings muss dabei gewährleistet sein, dass eine Migration dieser kleineren Moleküle aus der Injektionsschicht in die halbleitende organische Schicht ausgeschlossen ist, da solche ionischen Verunreinigungen quenching Zentren für die Elektrolumineszenz sein können. Basierend auf einer PFO-Schicht konnte die Herstellung von kombinatorischen OLED-Arrays demonstriert werden, wobei sowohl die Austrittsarbeit als auch die Dicke der PDBT-Schicht variiert wurden. Prinzipiell eignet sich diese Methodik durch die gleichzeitige Variation von zwei Parametern, wie z. B. verschiedenen Polymeren, Gegenionen, Herstellungsverfahren oder Austrittsarbeiten, dazu, OLED-Systeme einfach zu optimieren. Insgesamt kann also festgehalten werden, dass im Rahmen dieser Arbeit die direkte Korrelation zwischen dem Oxidationspotential und der Austrittsarbeit von PDBT erstmals demonstriert werden konnte. Mithilfe des hier vorgestellten Konzepts konnte generell gezeigt werden, dass mit zunehmender Austrittsarbeit der polymeren Anode die Lochinjektion in einfache löcherleitende Systeme und OLEDs verbessert werden kann. Ähnliche Ergebnisse wie mit PDBT werden auch für andere leitfähige π-konjugierte Polymere (z. B. PEDOT) erwartet. Eine großtechnische Umsetzung dieses Konzepts würde sich prinzipiell durch eine nasschemische Oxidation realisieren lassen. Für viele OLEDs muss allerdings nicht die Injektion der Löcher, sondern der Elektronen verbessert werden, um effiziente Systeme zu erhalten. Es wäre also wünschenswert, das hier vorgestellte Konzept auch auf die Elektroneninjektion zu übertragen, was prinzipiell möglich ist. Im Moment stehen aber dazu keine geeigneten Polymere zur Verfügung, die eine ausreichende chemische Stabilität besitzen.