POPULARITY
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Maligne Erkrankungen sind in den Industrieländern, nach Herz-Kreislauferkrankungen, die zweithäufigste Todesursache. Aufgrund der Erfolge bei der Vorbeugung von Herz-Kreislauf-Erkrankungen wird Schätzungen zufolge Krebs in den nächsten Jahren die häufigste Todesursache in den entwickelten Ländern sein. Trotz des klinischen und wissenschaftlichen Fortschritts ist die Prognose der meisten Tumorentitäten unverändert schlecht. Eine der Hauptursachen ist der Mangel an spezifischen Markern, um eine geeignete Frühdiagnostik, Vorsorge und Therapie zu ermöglichen. Biomarker, wie tumorspezifische oder tumorassoziierte Antigene, werden als potente Strukturen diskutiert, Karzinome bereits im Frühstadium zu diagnostizieren und im Rahmen von Therapien als Zielstrukturen eingesetzt zu werden. Seit einigen Jahren werden daher systematische Techniken zur Identifizierung neuer Tumorantigene entwickelt. Im Rahmen dieser Arbeit sollte eine bestehende Technologie zur Identifizierung von Tumorantigenen weiterentwickelt und optimiert werden. Die in der Arbeitsgruppe etablierte Technik namens AMIDA (Autoantibody-mediated Identification of Antigens) basiert auf der spezifischen Autoantikörper-vermittelten Selektion und Aufreinigung potenzieller Tumorantigene und deren anschließender zweidimensionaler Auftrennung und Isolierung. AMIDA ermöglicht prinzipiell die Identifizierung von Tumorantigenen, die durch posttranslationale Modifikationen immunogen wurden, wobei für die Isolierung das komplette Proteom zur Verfügung steht. Es wurde eine allogene Variante etabliert, welche die Technik unabhängig von autologen Tumorbiopsien macht (allo-AMIDA). Neben der Einführung geeigneter Kontrollen kann allo-AMIDA nun im präparativen Maßstab durchgeführt werden. Der Vorteil von allo-AMIDA gegenüber AMIDA und anderen Strategien ist, neben der schnellen und reproduzierbaren Durchführung, die nunmehr universelle Einsetzbarkeit der Methode. Zur Identifizierung von Tumorantigenen werden lediglich Seren von Tumorpatienten und eine geeignete Tumorzelllinie benötigt. Allo-AMIDA wurde am Beispiel von Karzinomen des Kopf-Hals-Bereiches eingesetzt und führte zur Identifizierung von insgesamt 12 potenziellen Tumorantigenen. Neun der 12 Tumorantigene wiesen zum Zeitpunkt der Identifizierung eine Assoziation mit Tumoren auf, fünf davon sind etablierte Tumorantigene, was die Eignung von allo-AMIDA zur Identifizierung von TAs beweist. Für die allo-AMIDA-Antigene Grb-2 und Hsp-27 konnte eine starke Expression in Tumorzellen der Kopf-Hals-Entität gezeigt werden. Drei der allo-AMIDA Antigene waren bis zum Zeitpunkt ihrer Identifizierung nicht mit malignen Erkrankungen assoziiert. Eines dieser Proteine – hnRNP H (heterogeneous ribonucleoprotein H) – stellte sich als geeigneter Marker für Tumorzellen des Kopf-Hals-Bereiches heraus. Es konnte auf Transkript- und Proteinebene gezeigt werden, dass hnRNP H bereits in hyperplastischem Epithelien vermehrt gebildet wird und mit zunehmender Karzinogenese in den meisten primären Tumoren bzw. Metastasen dieser Tumorentität stark überexprimiert ist. Interessanterweise war diese starke Expression auf Tumorzellen beschränkt. In anderen Tumorentitäten (Kolon-, Pankreas-, Mamma-Karzinom) war hnRNP H ebenfalls stark über-exprimiert, die Expression in humanen nicht-malignen Geweben war sehr heterogen. Da bis dato wenige Informationen über die Funktion dieses nukleären Proteins bekannt sind, wurde hnRNP H detaillierter analysiert. In der Literatur wird diskutiert, dass hnRNP H am alternativen Spleißen von prä-mRNAs bzw. an der Regulation dieses Prozesses beteiligt ist. Es konnte gezeigt werden, dass die Repression von hnRNP H durch RNAi zur Apoptose von Tumorzelllinien führt. Mittels Genexpressionanalyse konnten potenzielle Zielgene im Bereich Apoptose identifiziert werden, die von hnRNP H durch alternatives Spleißen reguliert werden. hnRNP H ist an der Regulation des Bcl-X-Gens beteiligt, was von Garneau und Kollegen (2005) kürzlich ebenfalls gezeigt werden konnte. Die Regulation von ARAF1 durch hnRNP H wurde erstmals gezeigt; ein potenzieller Weg, wie die Deregulation von ARAF1 Apoptose induzieren kann, wird vorgeschlagen. Die Validierung der Zielgene von hnRNP H im Kontext von Tumorzellen ist Gegenstand laufender Projekte und weiterer Analysen.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Fri, 28 Jul 2006 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/5671/ https://edoc.ub.uni-muenchen.de/5671/1/Ahlemann_Jens_M.pdf Ahlemann, Jens Martin ddc:500
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Maligne Erkrankungen sind die zweithäufigste Todesursache in den industrialisierten Nationen. Trotz intensiver Forschung in den letzten Jahrzehnten haben sich die Prognosen nur bei einigen Tumorentitäten signifikant verbessert. Die Hauptprobleme sind nach wie vor das Fehlen valider Marker für die Frühdiagnose und hohe Rezidivraten, die aufgrund mangelnder Detektion von disseminierten Tumorzellen entstehen. Tumorantigene erlangen eine immer wichtigere Bedeutung, da sie zur Visualisierung von okkulten Tumorzellen und als Zielstrukturen der spezifischen adoptiven Immuntherapie dienen können. Tumorantigene (TAs) bzw. eine gesteigerte humorale Antwort gegen TAs, besitzen außerdem ein großes Potenzial als zirkulierender Biomarker in der Frühdiagnose. In dieser Arbeit wurde am Beispiel von Karzinomen der oberen Atemwege eine neue Technik zur Identifizierung von TAs entwickelt (AMIDA, Autoantibody Mediated Identification of Antigens), welche einige Limitationen der bereits etablierten SEREX- und PROTEOMEX-Technik umgeht. AMIDA ermöglicht es, im Gegensatz zu SEREX, TAs zu identifizieren, die durch posttranslationale Modifikationen oder aberrante Lokalisationen immunogen wurden. Diese TAs sind häufig tumorspezifisch und eignen sich hervorragend als Biomarker oder als Zielstrukturen für Therapien. Der Vorteil von AMIDA gegenüber PROTEOMEX ist die Immunpräzipitation von Antigenen aus primären Tumorbiopsien mit autologen Serumantikörpern, vor der Auftrennung in einer 2D-Gelelektrophorese und der anschließenden Identifizierung der TAs im Massenspektrometer. Dadurch können TAs aus dem kompletten Proteom identifiziert werden und nicht nur aus der Proteinauswahl, die in einer klassischen 2D-Gelelektrophorese auftrennbar ist. AMIDA führte zur Identifizierung von 27 unterschiedlichen, potenziellen Tumorantigenen, wobei sechzehn TAs bis zum Zeitpunkt ihrer Identifizierung nicht mit malignen Erkrankungen und weitere vier nicht mit HRK assoziiert wurden. Hierbei stellte sich Zytokeratin 8 (CK8) als interessanter Marker für okkulte Tumorzellen heraus, da es bereits in hyperplastischem Rachenepithel vermehrt gebildet und in Neoplasien bzw. Metastasen ausschließlich von Tumorzellen stark überexprimiert wird. CK8 ist zudem ein interessantes Zielmolekül für Immuntherapien mit monoklonalen Antikörpern, da es auf Karzinomzellen ektopisch an der Zelloberfläche lokalisiert. Darüber hinaus zeigten Patienten mit HR-Karzinomen im Vergleich zu gesunden Probanden bereits in sehr frühen Tumorstadien eine deutlich gesteigerte humorale Antwort gegen CK8, was Serumantikörper gegen CK8 zu einem potenziellen zirkulierenden Biomarker in der Frühdiagnose macht. Zwei weitere AMIDA-TAs, AAA-TOB3 bzw. das hypothetische Protein KIAA1273, werden ebenfalls in HRK überexprimiert. Es konnte gezeigt werden, dass es sich bei AAA-TOB3 und KIAA1273 um zwei Isoformen handelt, die von einem Genlokus kodiert, jedoch von zwei unterschiedlichen Promotoren reguliert werden. Beide Isoformen sind Transmembranproteine, die in Mitochondrien lokalisieren und deren Expression direkt von c-Myc reguliert wird. Eine frühere Studie von Da Cruz (2003) zeigte, dass das murine Homolog von AAA-TOB3 pro-apoptotische Eigenschaften hat, wenn es in humanen Zellen überexprimiert wird. Dies konnte in dieser Arbeit für die humanen Isoformen nicht belegt werden. Im Gegenteil, die Repression der beiden Proteine führte zu einer vermehrten Apoptose. Dies lässt eher auf eine für das Zellwachstum bzw. die Zellproliferation notwendige Funktion dieser beiden Proteine schließen und könnte die Überexpression in Tumoren erklären.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Die Immuntherapie von niedrig malignen Tumoren stellt eine vielversprechende alternative Behandlungsmethode dar. Epstein Barr-Virus (EBV) etabliert eine latente Infektion in der Zielzelle, in der das EBV-Genom extrachromosomal aufrecht erhalten wird. EBV eignet sich mit diesen Eigenschaften hervorragend als Genvektor. Meine Aufgabenstellung war es, neue EBV-abgeleitete Genvektoren zu entwickeln, die das therapeutische Zytokin GM-CSF in Tumorzellen von B-CLL-Patienten (Chronische lymphatische Leukämie) exprimieren. Dabei entscheidend ist die Eigenschaft von EBV naive, wie auch reife und maligne B-Lymphozyten über den CD21-Rezeptor spezifisch zu infizieren. Als Grundlage diente das Maxi-EBV-System, mit dem das EBV-Genom für genetische Veränderungen zugänglich ist. Im Rahmen dieser Arbeit wurde ein sicherer EBV-Basis-Vektor etabliert, der replikations-defizient ist und dem zusätzlich die immortalisierenden Eigenschaften von EBV fehlen. Im selben Zuge wurden verschiedene Expressionskassetten für das Transgen GM-CSF in den EBV-Basis-Vektor eingebracht. Es konnten fünf unterschiedliche GM-CSF-Vektoren etabliert werden, die das Transgen an verschiedenen Genorten innerhalb des Maxi-EBV-Genoms tragen. Zwei dieser GM-CSF-Vektoren erzielten besonders hohe Transduktionseffizienzen und Expressionsraten in der Modellzelllinie Raji (Burkitt-Lymphom-B-Zelllinie). Auch B-CLL-Zellen konnten mit guter Effizienz transduziert werden, die Expression des GM-CSF war aber deutlich schwächer. Das immunstimulatorische Zytokin GM-CSF führt in vivo zu einer verbesserten Immunantwort gegen Tumore. Es konnte in dieser Arbeit gezeigt werden, dass GM-CSF-haltige Überstände von Vektor-transduzierten Raji-Zellen eine Reifung von dendritischen Zellen (DC) bewirken, die als wichtige Effektoren bei einer Anti-Tumorantwort gelten. Die Funktion von GM-CSF konnte auch anhand eines Proliferationsversuchs mit einer Zytokin-abhängigen Zelllinie gezeigt werden. Darüber hinaus waren DC nach exogener Antigenbeladung in der Lage, spezifischen CD4-positiven T-Zell-Klonen effizienter ein antigenes Peptid zu präsentieren, wenn die DC in Gegenwart von GM-CSF gereift waren. Damit zeigt das nach Gentransfer sezernierte GM-CSF einen immunstimulatorischen Effekt ähnlich dem von rekombinantem GM-CSF und kann eine effizientere Antigenpräsentation von Tumorantigenen hervorrufen. Prinzipiell eignen sich B-CLL-Zellen daher als Produzenten von EBV-Genvektor-transduziertem GM-CSF, das zur immunologischen Demaskierung von B-CLL-spezifischen, tumor-assoziierten Antigenen auch in vivo führen sollte.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Der Triom-Ansatz hat sich als überaus potente Möglichkeit erwiesen, um gegen das murine A20-B-Zell-Lymphom zu vakzinieren. Das Prinzip beruht auf der Redirektion von Tumorantigenen an Antigen-präsentierende Zellen des Immunsystems durch sogenannte Triom-Zellen. Diese entstehen durch die Fusion der Lymphomzellen mit Hybridomen, die Antikörper gegen internalisierende Fc-Rezeptoren auf Antigen-präsentierenden Zellen exprimieren. Der Tumorschutz wird dabei weniger über eine humorale Immunabwehr vermittelt als vielmehr über CD4- und CD8-T-Zellen. Im Rahmen dieser Arbeit sollten daher Aspekte der zellulären Immunantwort in Triom-immunisierten Mäusen untersucht werden. Es sollte geklärt werden, ob tumorspezifische T-Zellen vorhanden sind und ob diese möglicherweise gegen den Immunglobulin-Idiotyp des Tumors gerichtet sind. Dazu wurden T-Zellen aus präimmunisierten Mäusen im Vergleich zu solchen aus unbehandelten und tumortragenden Mäusen in vitro mit verschiedenen Tumorantigenen stimuliert und expandiert. Eine tumorspezifische Aktivierung erfolgte bei den Zellen aus den Triom-immunisierten Mäusen am schnellsten und effektivsten. Nach häufigeren Stimulationen stellten sich jedoch bei allen T-Zellen ähnliche Aktivierungswerte ein. In Versuchen mit Idiotyp-negativen A20-Tumorzellen stellte sich heraus, dass der Idiotyp als tumorspezifisches Antigen bei der Aktivierung der T-Zellen zwar eine gewisse Rolle spielt, aber nicht essentiell ist. Auch konnte gezeigt werden, dass alle Zellpopulationen einen CD4+-Phänotyp besaßen. Um über das tumorprotektive Verhalten dieser in vitro reaktiven CD4-T-Zellen auch in vivo einen Überblick zu bekommen, wurden die Zellen nach mehreren Stimulationsrunden zusammen mit Tumorzellen in eine unbehandelte Maus transferiert: Nur die Zellen aus der Triom-immunisierten Maus konnten einen vollkommenen Langzeit-Tumorschutz vermitteln. Dagegen konnten die Zellen aus der tumortragenden Maus das Tumorwachstum nur verlangsamen, und die Zellen aus der unbehandelten Maus zeigten keinerlei Schutzwirkung. Um zu prüfen, ob die unterschiedlichen In-vitro- und In-vivo-Daten zur Tumorspezifität auf der Benutzung von unterschiedlichen T-Zell-Rezeptoren (TZR) beruhten, wurden Studien zum TZR-Repertoire der untersuchten Zellen durchgeführt. In TZR-Vβ-spezifischen RT-PCR-Versuchen konnte gezeigt werden, dass das ursprünglich polyklonale TZR-Repertoire der Zellen erst nach vielen Stimulationsrunden starke Einschränkungen zeigt. Nach kurzer Stimulationszeit fallen hingegen im Vergleich zum Zustand ohne Stimulation keine nennenswerten Unterschiede auf. Die Befunde deuten darauf hin, dass für die Induktion tumorprotektiver T-Zellen eine In-vivo-Aktivierung ablaufen muss, die in vitro nicht simuliert werden kann. In dieser Arbeit wird zum ersten Mal gezeigt, dass eine Einschränkung des TZR-Repertoires mit einem Tumorschutz nach adotivem Transfer der T-Zellen korreliert.