Podcasts about bei untersuchungen

  • 3PODCASTS
  • 3EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Oct 20, 2014LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about bei untersuchungen

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 17/19
Entwicklung, Validierung und Anwendung einer HPLC-MS/MS-Methode zur quantitativen Bestimmung von Tryptophan und seinen Metaboliten

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 17/19

Play Episode Listen Later Oct 20, 2014


Die vorliegende Arbeit beschäftigt sich mit der Entwicklung, Validierung und Anwendung einer HPLC-MS/MS-Methode zur quantitativen Bestimmung von Tryptophan und seinen Metaboliten. Der Stoffwechsel der proteinogenen, essentiellen Aminosäure Tryptophan umfasst nicht nur den Neurotransmitter Serotonin und das in der Epiphyse gebildete Hormon Melatonin, sondern er schließt auch den Kynurenin Pathway mit ein. Die neurobiochemische Bedeutung dieses Stoffwechselweges wird bereits durch die Tatsache offensichtlich, dass im zentralen Nervensystem mehr als 95% des Tryptophans über diesen Weg metabolisiert werden. Die Intermediate des Kynurenin Pathways spielen eine bedeutende Rolle als Mediatoren zwischen Immun- und Nervensystem. Dabei nehmen sie potenziell Einfluss auf höhere zentralnervöse Funktionen, wie Kognition, Verhalten und Affekt, weshalb sie von herausragender Bedeutung für das Forschungsgebiet der Psychoneuroimmunologie sind. Auf molekularer Ebene wird Tryptophan im ersten Schritt durch die beiden Schlüsselenzyme Tryptophan-2,3-dioxygenase und Indoleamin-2,3-dioxygenase zu N-Formylkynurenin oxidiert. Durch Kynureninformidase erfolgt eine Metabolisierung von N-Formylkynurenin zu Kynurenin - der Ausgangssubstanz des gleichnamigen Stoffwechselweges. Während die Tryptophan-2,3-dioxygenase ausschließlich Tryptophan oxidiert, ist die Indolamin-2,3-dioxygenase nicht nur für den Abbau von Tryptophan spezifisch, sondern für alle Indolamine, inklusive Serotonin und Melatonin. Die Aktivität der Tryptophan-2,3-dioxygenase wird dabei durch Glucocorticoide, die der Indolamine-2,3-dioxygenase durch bestimmte Zytokine reguliert. Die Indolamin-2,3-dioxygenase spielt ebenfalls eine wichtige Rolle in der Modulation der T-Zell-Toleranz. Des Weiteren werden die Aktivitätszustände diverser Zellen des angeborenen und des erworbenen Immunsystems durch Metabolite des Kynurenins gesteuert. Einige Bestandteile des Kynurenin Pathways besitzen neuroprotektive oder neurotoxische Eigenschaften. So ist beispielsweise die neuroprotektive Kynureninsäure der bisher einzige bekannte endogene Antagonist des NMDA-Rezeptors und zusätzlich ein nichtkompetitiver Antagonist des α7-nikotinischen Acetylcholinrezeptors. Dieser Substanz steht der alternative Kynurenin-Metabolit, das exzitotoxische Neurotoxin Chinolinsäure gegenüber, welcher ein Agonist des NMDA-Rezeptors ist. Bei Untersuchungen zum Tryptophanstoffwechsel ist es daher von entscheidender Bedeutung nicht nur einzelne Substanzen sondern die Gesamtheit der Metabolite zu quantifizieren. Nur so kann die Balance zwischen neuroprotektiven und neurodegenerativen Substanzen, aber auch die Balance zwischen inhibierenden und aktivierenden Mediatoren des Immun- und Nervensystems dargestellt werden. In klinischen Studien können so Dysbalancen mit der Pathogenese einzelner Erkrankungen assoziiert werden, wodurch die Möglichkeit besteht, dass Biomarker zur frühzeitigen Diagnose identifiziert und neue Therapieansätze postuliert werden können. In dieser Arbeit wird eine neue HPLC-MS/MS-Methode vorgestellt, mit der eine bisher unerreichte Vielfalt an Tryptophan-Metaboliten quantifiziert werden kann. Die Probenvorbereitung ist eine einfache und kosteneffiziente Proteinfällung in zwei Stufen, wobei unterschiedliche Matrices, wie beispielsweise Serum oder Liquor cerebrospinalis, als Probenmaterial verwendet werden können. Um Analyte mit sehr niedrigen physiologischen Konzentrationen zu detektieren, wurde für diese eine Derivatisierung entwickelt. Die Methode benötigt ein sehr geringes Probenvolumen, ist durch die Verwendung der HPLC-MS/MS-Technologie äußerst sensitiv und spezifisch und umfasst alle bedeutenden Metabolite des Tryptophanstoffwechsels mit nur einer Probenvorbereitung. Die Robustheit wurde in einer ausführlichen Validierung bestätigt. Dabei wurden auch die analytischen Grenzwerte und Kennzahlen ermittelt, sowie die Stabilität der Proben untersucht. In Versuchen zu präanalytischen Einflüssen wurde festgestellt, dass unterschiedliche Zeitpunkte der Blutentnahme, unterschiedliche Blutentnahmesysteme und die Nahrungsaufnahme zu gravierenden Änderungen der Konzentrationen der Analyte führen. So führt die Verwendung unterschiedlicher Blutentnahmesystem beispielsweise bei der Quantifizierung des Metaboliten Picolinsäure zu Ergebnissen, die sich um bis zu 60% unterscheiden. Es wurde nachgewiesen, dass es postprandial zu starken interindividuell unterschiedlichen Änderungen der Konzentrationen einzelner Intermediate kommt. Dabei verhalten sich die freien und proteingebundenen Metabolite ebenfalls unterschiedlich. Deshalb muss für Studien eine normierte Probengewinnung mit möglichst exakten Bedingungen eingeführt werden. Auch konnte gezeigt werden, dass die Metabolisierung des Tryptophans in vivo einer circadianen Rhythmik unterliegt. Aufbauend auf diesen Erkenntnisse wurden in einem in vitro Experiment tageszeitabhängige Schwankungen nachgewiesen und der Einfluss einer LPS-Stimulation auf den Kynurenin Pathway untersucht. Durch den Einsatz dieser neuen HPLC-MS/MS-Methode besteht die Möglichkeit, die funktionellen Zusammenhänge zwischen Intermediaten des Kynurenin Pathways und diversen immunologischen, neurochemischen und anderen pathophysiologischen Vorgängen zu untersuchen. In der Literatur gibt es eine Vielzahl an Hinweisen darauf, dass der Tryptophanstoffwechsel an der Pathogenese unterschiedlichster Erkrankungen beteiligt ist. Jedoch bedarf es der genauen Klärung der Zusammenhänge und der Möglichkeit, die Gesamtheit einer potentiellen Störung des Tryptophanstoffwechsels zu erfassen. So sind im Bereich psychiatrischer und neurologischer Erkrankungen beispielsweise Schizophrenie, Alzheimer-Krankheit, Chorea Huntington und Epilepsie zu nennen. Hier wurden in publizierten Studien häufig nur einzelne Metabolite quantifiziert und isoliert betrachtet. Darüber hinaus konnten unterschiedliche Arbeitsgruppen zeigen, dass eine Aktivierung des Kynurenin Pathways auch bei der Pathogenese von Tumoren beteiligt ist, weshalb auch hier die von uns entwickelte Methode für weitere Studien von großem Nutzen ist.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
Serotypen des Adeno-assoziierten Virus und ihre potentielle Anwendung in der Gentherapie von Tumoren

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19

Play Episode Listen Later Apr 19, 2007


Gentherapie ist ein vielversprechender neuer Ansatz für die Tumortherapie. Daher ist die Entwicklung eines effizienten Vektorsystems von großer Bedeutung. Bisher wurden unterschiedliche Serotypen des Adeno-assoziierten Virus (AAV) beschrieben, welche einen erheblichen Unterschied im Tropismus für bestimmte Gewebearten und Zelltypen aufweisen. Daraufhin haben wir systematisch den effizientesten Serotyp unter den AAV Serotypen 1 bis 5 bezüglich der Effektivität des Gentransfers in humanen Tumorzellen untereinander verglichen. Um alle Einflüsse außer denen, die auf das Kapsid zurückzuführen sind, auszuschließen, enthalten alle fünf Serotypen die gleiche Transgen-Kassette, einheitlich flankiert von der ITR (Invertierte terminale Wiederholung = inverted terminal repeat) des AAV-Serotyp 2. AAV2 war der effizienteste Serotyp in einer Reihe klinisch relevanter Tumorzelllinien mit einer Transduktionseffizienz von über 99,5±0,2 % bei nur 1000 genomische Partikeln / Zelle. Transduktionseffizienzen um die 70 % konnte durch den Serotyp 1 in Prostata- und Zervixkarzinom und durch den Serotyp 3 in Prostata-, Mamma-, Kolon- und Zervixkarzinom beim Einsatz von 1000 genomischen Partikeln pro Zelle erzielt werden. AAV4 und AAV5 haben durchgehend schlecht transduziert. Die höchste Transduktionseffizienz unter den humanen Tumorzelllinien betrug für AAV4, 40,6±3,1 % und 25,4±2,2 % für AAV5 beim Zervixkarzinom. Die jüngsten Fortschritte in der AAV-Vektor-Technologie weisen darauf hin, dass AAV- basierte Vektoren für die Tumorgentherapie eingesetzt werden können. Unsere Vergleichsanalysen zeigen, dass AAV2 zwar der am vielversprechenste Kandidat für eine solche Anwendung ist, aber AAV1 und AAV3 auch als gute Alternativen verwendet werden können. Dies ist besonders dann von Bedeutung, wenn eine Anwendung mit AAV2 durch neutralisierende Antikörper verhindert wird. Gao et al. konnten zeigen, dass diese Serotypen trotz des Vorhandensein neutralisierender Antikörper gegen AAV2 zum effizienten Gentransfer befähigt sind. Die Transduktionseffizienz von AAV4 und AAV5 ist generell zu niedrig, was eine effiziente Anwendung in der Tumorgentherapie derzeit unmöglich macht. Bei Untersuchungen einiger muriner Zelllinien stellten wir fest, dass sie sich am besten von AAV1 transduzieren lassen. Um nachzuweisen, ob AAV1 generell murine Zellen besser transduziert als AAV2, müssten weitere Untesuchungen durchgeführt werden. Dies ist für die zukünftige AAV-Forschung von Bedeutung, da eine Bestätigung unserer Beobachtung bedeuten würde, dass die Ergebnisse aus den zahlreichen in-vivo-Experimenten mit Mäusen nicht auf den Menschen übertragbar wären.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
cAMP als zentraler Botenstoff der hyperosmotischen Stressantwort in Dictyostelium discoideum

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Jul 6, 2001


Zyklisches 3’:5’-Adenosinmonophosphat (cAMP) ist sowohl als extrazellulärer Lockstoff als auch als intrazelluläres Signalmolekül von entscheidender Bedeutung in der Entwicklung von Dictyostelium discoideum. In der vorliegenden Arbeit wird gezeigt, dass dieser sekundäre Botenstoff auch eine zentrale Rolle in der hyperosmotischen Stressantwort von D. discoideum spielt. Wildtypzellen reagieren auf hyperosmotischen Stress mit einem transienten Anstieg der intrazellulären cAMP-Konzentration, der von dem Hybridhistidinkinase-Homolog DokA abhängig ist. DokA ist essentiell für das Überleben von D. discoideum-Zellen unter hyperosmotischen Bedingungen. Die Osmosensitivität von dokA--Zellen beruht auf dem gestörten cAMPMetabolismus und kann durch die transiente Zugabe eines membrangängigen cAMP-Analogs weitgehend aufgehoben werden. Der Einfluss von DokA auf den intrazellulären cAMP-Spiegel zeigt sich auch in ungeschockten Zellen: Während die basale cAMP-Konzentration in dokA-- Zellen reduziert ist, weisen Zellen, die die Regulator-Domäne von DokA überexprimieren, einen erhöhten cAMP-Spiegel auf. Basierend auf diesen Daten wurde ein Modell der Regulation des intrazellulären cAMP-Spiegels durch DokA entwickelt. Die Regulator-Domäne von DokA wirkt hierbei als Phosphatase des Histidin-Phosphotransferproteins RdeA, welches durch Phosphorylierung die Phosphodiesterase RegA aktiviert. Durch die Phosphatase-Aktivität von DokA wird somit der über den RdeA/RegAPhosphorelay gesteuerte intrazelluläre cAMP-Abbau inhibiert. Die in vitro-Dephosphorylierung von RdeA durch die Regulator-Domäne von DokA konnte ebenso nachgewiesen werden wie die verringerte Phosphodiesterase-Aktivität bei homologer Überexpression des DokA-Regulators. Die Effekte dieser Überexpression auf cAMP-Haushalt und Entwicklung sind DokA-spezifisch und von dem konservierten Aspartylrest D1567 der Regulator-Domäne abhängig. Bei Untersuchungen zu den Effektoren der hyperosmotischen Stressantwort in D. discoideum wurden Veränderungen in Aufbau und Zusammensetzung von Membran und Cytoskelett beobachtet. Dabei konnten sieben Proteine identifiziert werden, die eine deutliche Translokation bei hyperosmotischem Stress erfahren. Eine Übersicht stellt die osmoregulatorischen Signalwege in D. discoideum dar und vergleicht die Rolle von 2-Komponenten-Systemen in der Osmoregulation bei Eukaryoten.