Podcasts about md simulationen

  • 3PODCASTS
  • 4EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Jun 2, 2010LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about md simulationen

Latest podcast episodes about md simulationen

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Entwicklung und Analyse polarisierbarer Potentialfunktionen für Molekulardynamiksimulationen

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05

Play Episode Listen Later Jun 2, 2010


Molekülmechanische (MM) Molekulardynamik-(MD)-Simulationen sollen eine virtuelle Realität von Makromolekülen im Computer erschaffen. Dabei zeigten sorgfältige Tests wiederholt, dass die bisherigen MM-Kraftfelder nur bedingt geeignet sind, um experimentelle Referenzdaten zu reproduzieren. In vielen Fällen sind die Mängel der Beschreibung auf die Vernachlässigung von nicht-additiven Effekten, insbesondere der elektrostatischen Polarisation, zurückzuführen. Das Wassermolekül ist stark polarisierbar und muss in MD-Simulationen von Biomolekülen einbezogen werden. Aus diesem Grund werden im ersten Teil meiner Arbeit die Effekte von externen elektrischen Feldern auf Wassermoleküle untersucht. In polarisierbaren MM-Modellen für Wasser wird das induzierte Dipolmoment zumeist an das Feld am Ort des Sauerstoffatoms gekoppelt – die Elektronendichte eines realen Wassermoleküls reagiert aber auf ein Volumenmittel des Feldes. Es wird gezeigt, dass im Gegensatz bisherigen Meinung, das elektrische Feld, dem ein Wassermolekül im Volumenwasser ausgesetzt ist, nicht homogen, sondern selbst auf dem kleinen Volumen, welches das Molekül einnimmt, hochgradig inhomogen ist. Die Feldinhomogenität ist aber dergestalt, dass sie durch eine mittlere Feldinhomogenität beschrieben werden kann. Deshalb ist das mittlere Feld annähernd proportional zum Feld am Ort des Sauerstoffatoms und kann daraus mit Hilfe eines Skalierungsfaktors berechnet werden. Das skalierte Feld kann dann zur Berechnung des Dipolmoments von punkt-polarisierbaren Wassermodellen herangezogen werden. Es wird außerdem gezeigt, dass die Polarisierbarkeit, die als Proportionalitätskonstante bei der Berechnung des Dipolmoments auftaucht, in der flüssigen Phase den gleichen Wert wie bei isolierten Wassermolekülen hat, obwohl ihre Geometrie dort von der Gasphasengeometrie abweicht. Dies ist darauf zurückzuführen, dass sich für die spezifische Geometrieänderung, die beim Transfer in die flüssige Phase beobachtet wird, zwei Beiträge zur Polarisierbarkeit gegenseitig aufheben. Diese Beiträge resultieren allgemein aus der Elongation der Bindungslängen und der Kompression des Bindungswinkels. Die Frage, ob der Einsatz eines solchen polarisierbaren Kraftfeldes die Beschreibung von Makromolekülen, wie beispielsweise Proteinen, verbessert, kann nur durch Vergleich mit dem Experiment beantwortet werden. Infrarotspektren sind hoch sensitiv bezüglich lokaler elektrischer Felder und wären deshalb eine gute Referenz. Theoretische Vorhersagen solcher Spektren sind allerdings nur für eine der in Proteinen auftretenden Banden – und auch hier nur bedingt – möglich. Der zweite Teil dieser Dissertation beschäftigt sich deshalb mit der Entwicklung eines Kraftfelds zur Berechnung aller Schwingungsbanden des Proteinrückgrats. Hier wird der Einfluss der lokalen elektrischen Felder auf die Stärke der kovalenten Bindungen explizit berücksichtigt. Aufbauend auf einer Vorabversion eines solchen Kraftfelds wird eine Methode entwickelt, um Schwingungsspektren mit spektroskopischer Genauigkeit, d.h. mit Fehlern im Bereich von wenigen Wellenzahlen, vorherzusagen. Der minimale Parametersatz, der zur korrekten Beschreibung dieser Schwingungsspektren notwendig ist, wird identifiziert, und die entbehrlichen Parameter werden eliminiert. Anhand des Moleküls N-Methylacetamid wird demonstriert, dass das neue Kraftfeld in der Lage ist, solvatochrome Verschiebungen für verschiedene polare Lösungsmittel gut zu reproduzieren.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Molekulare Grundlagen von Proteinfehlfaltungskrankheiten

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05

Play Episode Listen Later Oct 2, 2009


Bei vielen neurodegenerativen Erkrankungen ist die Fehlfaltung und Aggregation von Proteinen und Peptiden ein wichtiger pathogener Faktor, dessen Ursachen und Mechanismen bis heute größtenteils unbekannt sind. Teilweise entfaltete Zustände der beteiligten Proteine und Peptide, die oftmals Startpunkte der Fehlfaltung bilden, sind mit den gängigen experimentellen Techniken strukturell kaum aufzuklären. Im Gegensatz dazu lassen sich mit Hilfe von Molekulardynamik-(MD)-Simulationen die beteiligten Strukturen im Prinzip mit atomarer Auflösung charakterisieren. Ziel dieser Arbeit war es daher, Methoden zur MD-Simulation von Modellpeptiden zu entwickeln und anzuwenden, um Einsichten in die ersten Schritte der angesprochenen Fehlfaltungsprozesse zu gewinnen. Da die Faltungseigenschaften von Peptiden insbesondere von der Temperatur abhängen, habe ich im ersten Teil meiner Arbeit eine Strategie zur minimalinvasiven Temperaturkontrolle für MD-Simulationen entwickelt. Im Gegensatz zu gängigen Vorgehensweisen werden hierbei die Konformationsübergänge eines Peptids nicht verlangsamt, und das durch die Simulation abgetastete statistische Ensemble bleibt ungestört. Um den Konformationsraum mit der Fehlfaltung assoziierter Peptide effizient abzutasten, muss darüberhinaus auf sogenannte replica-exchange-Techniken zurückgegriffen werden, die durch einen regelmäßigen Konfigurationsaustausch zwischen parallelen Simulationen bei unterschiedlichen Temperaturen eine schnellere Konformationsdynamik des Peptids bewirken. Ein weiterer methodischer Teil meiner Arbeit beschäftigt sich daher mit Regeln zur optimalen Wahl der Temperaturleiter und des Austauschschemas für den Einsatz dieser Techniken. Insbesondere habe ich gezeigt, dass bisher bei der Ableitung entsprechender Regeln von falschen Voraussetzungen ausgegangen wurde, weshalb nur suboptimale Ergebnisse erzielt werden konnten. Aus der mathematischen Analyse des Problems und anhand eines Monte-Carlo-Modells habe ich eine tatsächlich optimale Strategie entwickelt. Schließlich habe ich diese Strategien angewandt um einen Aspekt der Fehlfaltung des Prion-Proteins (PrP) näher zu untersuchen. Ziel einer Reihe von replica-exchange-Simulationen war es, die Stabilität der ersten alpha-Helix (H1) von PrP gegen ihre Entfaltung zu untersuchen. Hierzu wurde ein Modell-Peptid mit einer H1 entsprechenden Sequenz in unterschiedlichen Lösungsmitteln simuliert. Dabei zeigte sich, dass die entsprechende Peptidsequenz in Wasser mehrheitlich keine alpha-helikale Faltung annimmt und vergleichsweise schnell entfaltet, während mit abnehmender Polarität des Lösungsmittels die Stabilität deutlich zunimmt. Damit bestätigt sich eine Hypothese von Hirschberger et al. [Biophys. J. 90, 3908-3918 (2006)] daß H1 für die Fehlfaltung von PrP keine Barriere darstellt, falls dieser Prozess, wie vermutet, als ersten Schritt den Wechsel von H1 von einer schwach in eine stark polare Umgebung beinhaltet.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Molekulardynamik-Simulationen von amyloidogenen Proteinen in Lösung: Stabilitätsuntersuchungen und Weiterentwicklung einer Kontinuumsmethode

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05

Play Episode Listen Later Feb 7, 2007


Viele neurodegenerative Erkrankungen, wie die transmissiblen spongiformen Enzephalopathien (TSE), die Alzheimer- und die Huntington-Krankheit, sind durch charakteristische Ablagerungen im Gehirn, sogenannte Amyloide, gekennzeichnet. Amyloide sind oftmals fibrilläre Aggregate von normalerweise löslichen Proteinen, deren dreidimensionale Strukturen sich bei der Aggregation verändern. Bedauerlicherweise waren hochauflösende Methoden biophysikalischer Strukturaufklärung bislang auf Amyloide nicht anwendbar. Dagegen können Molekulardynamik (MD)-Simulationen amyloidogener Proteine und Peptide in ihrer Lösungsmittelumgebung dazu beitragen, die Mechanismen der auftretenden Konformationsänderungen zu verstehen und die Strukturen amyloider Fasern aufzuklären. Die korrekte und effiziente Beschreibung der Lösungsmittelumgebung spielt dabei eine entscheidende Rolle. Im ersten Teil dieser Arbeit wird die Konformationsdynamik Amyloid bildender Peptide und Proteine in expliziter wässriger Umgebung untersucht. In MD-Simulationen des zellulären Prion Proteins (PrPC) werden durch Einführung der Punktmutationen M205S und M205R entscheidende Faktoren für die korrekte Faltung und strukturelle Stabilität des Proteins identifiziert. Ferner wird für die Grundstruktur der bei TSE auftretenden pathogenen Isoform PrPSc ein Modell basierend auf dem Strukturmotiv einer parallelen beta-Helix entwickelt. Analog dazu werden Peptide aus poly-Glutamin, die den mutmaßlichen Aggregationskeim bei der Huntington-Krankheit darstellen, als parallele beta-Helizes unterschiedlicher Formen und Größen modelliert. In MD-Simulationen ermitteln wir aus diesen Strukturen thermodynamisch stabile monomere und dimere Aggregationskeime. Da die erreichbaren Simulationszeiten in expliziten Lösungsmitteln verglichen mit den Zeitskalen der Proteindynamik zu kurz sind, wird im zweiten Teil dieser Arbeit eine effiziente Kontinuumsmethode für Proteine in polaren Lösungsmitteln weiterentwickelt. In dieser Methode wird das durch die Polarisation des Lösungsmittels hervorgerufene Reaktionsfeld (RF) durch normalverteilte RF-Dipoldichten an den Orten der Proteinatome beschrieben. Die sich daraus ergebenden RF-Kräfte auf die Proteinatome berücksichtigen aber nicht den Druck an den dielektrischen Grenzflächen, der vom Kontinuum auf das Protein ausgeübt wird, und verletzen damit das 3. Newtonsche Gesetz. Dies führt in MD-Simulationen zu erheblichen Artefakten. In dieser Arbeit wird diese Kontinuumsmethode so umformuliert und erweitert, dass die resultierenden RF-Kräfte dem Prinzip Actio=Reactio gehorchen. Die modifizierte Kontinuumsmethode wird in ein MD-Programm implementiert und an Hand geeigneter Systeme parametrisiert. In ausgedehnten MD-Simulationen des Alanin-Dipeptids wird die Korrektheit und Effizienz der Methode demonstriert.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Proteine in wässriger Umgebung: Kontinuumstheorie der Lösungsmittelelektrostatik und ihre effiziente Berechnung

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05

Play Episode Listen Later Jul 19, 2004


Die biologisch funktionale Struktur und Dynamik globulärer Proteine entfaltet sich in ihrer nativen Umgebung, die aus ionenhaltigem Wasser besteht. Die entscheidenden Wechselwirkungen sind dabei elektrostatischer Natur. Bei Molekulardynamik-(MD-)Simulationen von Protein-Lösungsmittel-Systemen müssen diese Wechselwirkungen daher genau erfasst und, wegen der Größe der behandelten Systeme, numerisch effizient berechnet werden. Es bietet sich dazu an, das üblicherweise betrachtete mikroskopische Ensemble der Lösungsmittelatome durch ein Lösungsmittelkontinuum zu ersetzen, welches die auf das Protein ausgeübten Reaktionsfeldkräfte erzeugt. Die Entwicklung einer atombasierten Kontinuumsmethode, mit der sich Reaktionsfeldkräfte und -energien bei solchen MD-Simulationen effizient und genau berechnen lassen, war das Hauptziel der vorliegenden Arbeit. Die Methode wird zunächst für Proteine in rein dielektrischen Lösungsmittelkontinua hergeleitet [B. Egwolf und P. Tavan, J. Chem. Phys. 118, 2039-2056 (2003)] und anschließend um Ionenkontinua erweitert [B. Egwolf und P. Tavan, J. Chem. Phys. 120, 2056-2068 (2004)], welche der linearisierten Poisson-Boltzmann-Gleichung gehorchen. Die zugrundeliegende Theorie wird so weit wie möglich in exakter Form vorangetrieben. Sie führt in natürlicher Weise zu einigen wenigen Näherungen, so dass sich das vom Lösungsmittelkontinuum ausgehende Reaktionsfeld in effizienter Weise mittels selbstkonsistent zu bestimmender Ladungen und Dipole darstellen lässt, die an den mikroskopisch beschriebenen Proteinatomen lokalisiert sind. Die Qualität der atombasierten Kontinuumsmethode wird anhand von Vergleichen mit dem auf sphärische Geometrien beschränkten, analytischen Kirkwood-Reaktionsfeld, einer mikroskopischen Protein-Wasser-Simulation und einer Finite-Differenzen-Methode untersucht. Darüber hinaus wird ein Verfahren für MD-Simulationen von mikroskopisch beschriebenen Protein-Lösungsmittel-Systemen mit periodischen Randbedingungen vorgestellt [G. Mathias, B. Egwolf, M. Nonella und P. Tavan, J. Chem. Phys. 118, 10847-10860 (2003)]. Dabei werden die Coulomb-Wechselwirkungen zwischen den Atomen mit Hilfe der effizienten, linear skalierenden und strukturadaptierten Multipolmethode (SAMM) bis zu einem Grenzabstand explizit berechnet und für größere Abstände durch das Kirkwood-Reaktionsfeld modelliert. Durch dieses Vorgehen können die von den Randbedingungen erzeugten Periodizitätsartefakte weitgehend unterdrückt werden. Ferner kann das Kirkwood-Reaktionsfeld im Rahmen des SAMM-Ansatzes unter vernachlässigbarem Aufwand berechnet werden.