POPULARITY
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Das Cad-System von Escherichia coli gehört zu den pH-induzierbaren Aminosäure-Decarboxylase- Systemen. Der Aktivator des Cad-Systems ist der membrangebundene Transkriptionsregulator CadC. CadC ist gleichzeitig Sensor für die Umweltreize pH und Lysin, und Effektorprotein, das die Expression des cadBA-Operons induziert. Im Rahmen dieser Arbeit wurden der molekulare Mechanismus der transkriptionellen Aktivierung des cadBA-Operons durch CadC und verschiedene Modelle für die Aktivierung eines membranintegrierten Transkriptionsaktivators untersucht. Im Rahmen dieser Arbeit konnten durch Footprint-Analysen innerhalb der regulatorischen Region des cadBA-Operons die zwei CadC-Bindestellen Cad1 (erstreckt sich von bp -150 bis -112, relativ zum Transkriptionsstart des cadBA-Operons) und Cad2 (bp -89 bis -59) identifiziert werden. DNA-Bindeexperimente in vitro zeigten, dass CadC mit einer höheren Affinität an Cad1 als an Cad2 bindet. Die Affinität von CadC zu Cad1 und Cad2 wurde durch unterschiedliche pH-Werte oder durch Lysin und Cadaverin nicht signifikant beeinflusst. Die Analyse der Bindestellen Cad1 und Cad2 in vivo ergab, dass das Vorhandensein beider Bindestellen für die Induktion der cadBA-Expression durch Lysin und einen niedrigen externen pH-Wert essentiell ist. Desweiteren wurde die Repression des cadBA-Operons unter nicht-induzierenden Bedingungen durch den globalen Repressor H-NS untersucht. Deletionsanalysen der regulatorischen Region des cadBA-Operons indizierten zwei H-NS-Bindestellen stromaufwärts der CadC-Bindestellen. Rechner-gestützte Sequenzanalysen legten die Existenz von zwei weiteren H-NS-Bindestellen nahe, die mit den CadC-Bindestellen und der -35/-10-Region von PCad überlappen. In hns- Deletionsstämmen war die cadBA-Expression sowohl unter induzierenden als auch unter nicht-induzierenden Bedingungen signifikant erhöht. Für die Aktivierung des cadBA-Operons war CadC essentiell. Biochemische und molekularbiologische Untersuchungen zum Oligomerisationszustand von CadC indizierten, dass CadC Tetramere ausbildet. Die periplasmatische Domäne war für die Oligomerisierung von CadC essentiell. Die Tetramere traten sowohl unter induzierenden als auch unter nicht-induzierenden Bedingungen auf. Daher scheint eine Aktivierung von CadC durch eine Oligomerisierung von CadC-Monomeren, die durch Umgebungsbedingungen wie den pH-Wert und die Lysin-Konzentration moduliert wird, unwahrscheinlich. Basierend auf den oben angeführten Daten wurde ein Modell für die transkriptionelle Aktivierung des cadBA-Operons entwickelt. Demzufolge bildet H-NS unter nicht-induzierenden Bedingungen innerhalb der regulatorischen Region des cadBA-Operons einen Repressionskomplex. Unter induzierenden Bedingungen bindet CadC als Tetramer zunächst an die Bindestelle Cad1, wodurch die anschließende Bindung an Cad2 erleichtert und stabilisiert wird. Durch die Bindung von CadC wird der H-NS vermittelte Repressionskomplex aufgelöst, wodurch eine Interaktion der RNA-Polymerase mit der -35/-10-Region von PCad und die cadBA-Transkription ermöglicht werden. Verschiedene membranintegrierte Transkriptionsfaktoren in eukaryontischen Zellen werden durch eine Regulierte Proteolyse (RP) aktiviert. Biochemische und molekularbiologische Untersuchungen zum molekularen Mechanismus des membran-integrierten Transkriptionsaktivators CadC ergaben bisher keine Hinweise darauf, dass CadC unter induzierenden Bedingungen durch einen Mechanismus ähnlich den der Regulierten Proteolyse aktiviert wird. Um die Funktion der Transmembrandomäne und der periplasmatischen Domäne für die Aktivierung von CadC genauer zu analysieren, wurden verschiedene C-terminal verkürzte CadC-Derivate hinsichtlich ihrer Funktionalität untersucht. Dabei zeigte sich, dass eine Membranassoziation oder -integration von CadC für die Induktion der cadBA-Expression notwendig war. Desweiteren war die periplasmatische Domäne für die CadC-Aktivierung essentiell. In Zusammenarbeit mit dem Department für Physik der LMU München wurde ein in silico Modell für die Regulation der cadBA-Expression erstellt. Zur Überprüfung des Modells wurde die Expression des Cad-Systems während einer simulierten Magen-Passage in vivo analysiert. Die experimentellen Daten stimmten mit dem Modell sehr gut überein. Das Modell ist also in der Lage, die in vivo-Daten zu abzubilden. Ein weiterer Aspekt dieser Arbeit war die Untersuchung der genauen physiologischen Funktion des Cad-Systems. Es konnte nachgewiesen werden, dass das Cad-System eine wichtige Funktion für die Säureresistenz von E. coli bei extremen Säurestress bei pH-Werten
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Die TIM22-Translokase in der mitochondrialen Innenmembran vermittelt die Insertion von polytopen Innenmembranproteinen mit internen Signalsequenzen wie der mitochondrialen Metabolit-Carrier. Dabei unterstützt eine Gruppe von strukturell verwandten Proteinen mit charakteristischem Metallbindungsmotiv (Cys4-Motiv) die Passage der hydrophoben Vorstufenproteine über den Intermembranraum. Dies sind in der Hefe Tim9, Tim10 und Tim12 sowie Tim8 und Tim13. Die Familie dieser kleinen Tim-Proteine ist evolutionär konserviert. Im Menschen wurden sechs Mitglieder dieser Proteinfamilie identifiziert: Tim9, Tim10a und Tim10b sowie DDP1, DDP2 und Tim13. Im Rahmen dieser Arbeit wurden die Komponenten der TIM22-Translokase der Säugetiere strukturell und funktionell charakterisiert. Bei ihnen handelt es sich ebenfalls um mitochondriale Intermembranraumproteine. Sie sind in der Lage, mittels der vier konservierten Cysteinreste ein Zn2+-Ion zu binden und damit vermutlich eine Zinkfinger-Struktur auszubilden. Mutationen, die zu einem Verlust des DDP1 Proteins führen, sind die Ursache für das Mohr-Tranebjaerg Syndrom, einer neurodegenerativen Erkrankung, die sich im Wesentlichen durch Taubheit und Dystonie auszeichnet. Eine Punktmutation im DDP1-Gen, die zu einem Austausch eines der konservierten Cysteine führt (DDP1C66W), verursacht den Verlust der Zinkbindungskapazität und resultiert in einem fehlgefalteten, instabilen Protein. Es wurde gezeigt, dass das mutierte DDP1 nicht mehr in der Lage ist, mit seinem Partnerprotein Tim13 zu interagieren und keinen funktionellen DDP1-Tim13 Komplex ausbilden kann. Die menschlichen Proteine der Tim9 und Tim10-Gruppen, Tim9, Tim10a und Tim10b sind wie ihre homologen Hefeproteine in zwei hetero-oligomeren Komplexen organisiert, einem 70 kDa-Komplex bestehend aus Tim9 und Tim10a sowie einem 450 kDa Tim9-10a-10b-Komplex. Beide Komplexe sind fest mit der Innenmembran assoziiert. Tim10b zeigt eine geringere Sequenzhomologie zu Hefe-Tim10 als Tim10a. Es liegt genauso wie Tim12 nur in dem hochmolekularen Komplex vor und weist die stärkste Membranassoziation auf. Es zeigt damit strukturelle Ähnlichkeit zu Tim12. Aufgrund der Membranassoziation der kleinen TIM-Komplexe entfällt aber wahrscheinlich die Funktion des Tim12 als Vermittler zwischen dem löslichen Komplex und der Membran. Tim9, Tim10a und Tim10b sind wie die Hefe-Proteine am Import von mitochondrialen Carriern beteiligt. Die Bindung an Translokationsintermediate von Carrier-Vorstufenproteinen erfolgt in Abhängigkeit von zweiwertigen Kationen wie Zn2+. Die Struktur des TIM22-Komplexes weist signifikante Unterschiede zu der aus der Hefe bekannten Organisation auf. Humanes Tim22 ist im Vergleich zu Hefe-Tim22 wenig konserviert. Es liegt kein stabiler Komplex vor, der Tim22 und die kleinen Tim-Proteine enthält. Sie befinden sich vermutlich in dynamischer Interaktion mit Tim22, die wahrscheinlich nur während der Translokation eines Vorstufenproteins auftritt. Bisher ist kein Komplexpartner des humanen Tim22 bekannt. Homologe zu Tim54 und Tim18, den membranintegralen Komplexpartnern des Tim22, wurden in menschlichen Datenbanken nicht identifiziert. Aufgrund der veränderten strukturellen Organisation ist das menschliche Tim22 nicht in der Lage, mit den Proteinen aus der Hefe funktionell zu kooperieren. Es hat vermutlich eine Anpassung an veränderte Substratspezifizitäten stattgefunden, die auch die Beteiligung weiterer bisher unidentifizierter Komponenten der TIM22-Translokase einschließen könnte. Ein neues Intermembranraumprotein menschlicher Mitochondrien, Cmi1, ist an der Biogenese der kleinen Tim-Proteine beteiligt. Eine Überexpression im Hefesystem führt zur signifikanten Erhöhung der Proteinmengen von kleinen Tim-Proteinen im mitochondrialen Intermembranraum. Cmi1 unterstützt vermutlich die rasche stabile Faltung der neu importierten kleinen Tim-Proteine. Da Cmi1 in der Lage ist, Metall-Ionen zu binden vermittelt es möglicherweise den Transfer von Zink-Ionen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 01/19
Reaktive – Sauerstoff - Spezies (ROS) spielen in der Physiologie und Pathophysiologie des vaskulären Systems eine wichtige Rolle. So kommt es z.B. bei Hypertonie, Atherosklerose, Ischämie / Reperfusion und weiteren Krankheiten und Stoffwechselstörungen, wie z.B. Hypercholesterinämie und Diabetes mellitus zu einem Ungleichgewicht zwischen Sauerstoffradikalbildung und anti - oxidativen Mechanismen. Superoxidanionen (O2 -) spielen insofern eine besondere Rolle, als sie durch direkte Interaktion endotheliales NO inaktivieren, so daß es seine vasodilatatorische, anti – proliferative und plättchenaggregationshemmende Funktion nicht mehr voll erfüllen kann. Damit ist O2 - maßgeblich an der Induktion der Endotheldysfunktion beteiligt. Bei Beginn dieser Arbeit gab es erste Hinweise, daß eine der leukozytären NAD(P)H - Oxidase ähnlichen Oxidase auch im Endothel existiert und wesentlich zur endothelialen O2 - - Bildung beiträgt. Wenig erforscht waren jedoch die Regulationsmechanismen dieser Oxidase. Ein bisher noch nicht bekannter Stimulus zur Steigerung der endothelialen O2 - - Bildung wurde 1996 beschrieben. In Endothelzellen aus bovinen Pulmonararterien führte eine Depolarisation zu einer gesteigerten O2 - - Bildung. Dies kann insofern von Bedeutung sein, als es sowohl unter physiologischen, als auch pathophysiologischen Bedingungen zu akuten oder chronischen Veränderungen des endothelialen Membranpotentials kommt. In dieser Arbeit wurde nun untersucht, ob eine NAD(P)H – Oxidase in der Tat auch in humanen Endothelzellen vorhanden ist, ob sie im Gegensatz zur leukozytären Form konstitutiv aktiv ist, und welchen Beitrag sie zur basalen endothelialen O2 - - Bildung leistet. Weitere Untersuchungen in HUVEC sollten zeigen, ob und wie sich sowohl De – als auch Hyperpolarisation der Zellmembran auf die O2 - - Bildung auswirken, welches Enzym hierbei eine Rolle spielt und welche Signaltransduktionsmechanismen beteiligt sind. Zur O2 - - Messung an vaskulären Zellen war die Verwendung der Lucigenin – Chemilumineszenz – Methode etabliert, so daß auch hier anfänglich mit dieser Methode gearbeitet wurde. Da jedoch dann Befunde veröffentlicht wurden, die zeigten, daß Lucigenin in Enzymsyste-men, die sonst kein oder nur wenig O2 - produzieren, zu einer erheblichen O2 - - Bildung führte, mußte mit weiteren Methoden der O2 - - Messung überprüft werden, ob diese Nachteile auch unter unseren Versuchsbedingungen auftraten. Verwendet wurden hierzu die MCLA – verstärkte Chemilumineszenz, die NBT – und Cytochrom C – Methode. Mit diesen verschiedenen, voneinander unabhängigen Methoden zeigte sich, daß in Anwesenheit von NADH Lucigenin selbst zu einer wesentlich gesteigerten O2 - - Bildung in Lysaten von humanen Umbilikalvenenendothelzellen (HUVEC) führt. Daher wurde zur Untersuchung der endothelialen O2 - - Bildung in dieser Arbeit schließlich nur die Cytochrom C Methode verwendet. Zur Überprüfung der Auswirkungen der verwendeten Substanzen auf das Membranpotential wurde die Membranpotentialmeßmethode mittels dem Potential – sensitiven Fluoreszenzfarbstoff Bis - oxonol aufgebaut und verwendet. Intakte HUVEC zeigten eine basale O2 - - Produktion, die durch bekannte Inhibitoren der leukozytären NAD(P)H – Oxidase, mit unterschiedlichen Wirkmechanismen signifikant gehemmt wurde (Diphenyleniodonium ca. 48%, Phenylarsenoxid ca. 34% ). Ebenso resultierte die Inaktivierung des GTP - bindenden - Proteins rac mit Clostridium difficile Toxin B in einer signifikanten Reduktion der basalen endothelialen O2 - - Produktion um ca. 30%. Weiterhin konnte gezeigt werden, daß nach Aufhebung der zellulären Integrität durch das Lysieren der HUVEC die Gabe von NADH eine um ca. 2.7 fach erhöhte O2 - - Produktion im Vergleich zu NADPH bewirkte. Mit Hilfe der Immunfluoreszenz bzw. rtPCR konnten außerdem zumindest ein Teil der leukozytären NAD(P)H – Oxidase Untereinheiten, p67phox und gp91phox auch in HUVEC nachgewiesen werden. Zur gezielten Depolarisation des Membranpotentials wurden ein Puffer mit erhöhter Kaliumkonzentration (90 mM), der nicht selektive Kalium – Kanal - Blocker Tetrabutylammonium Chlorid (1 mM) und das Kation – Ionophor Gramicidin (1 µM) verwendet. Die basale endotheliale O2 - - Produktion wurde durch diese Substanzen in ähnlichem Ausmaß (~ 60% ) signifikant gesteigert (n=23, p