POPULARITY
Produced by: Catherine Charlwood (@DrCharlwood) and Laura Ludtke (@lady_electric). Music composed and performed by Gareth Jones. Laura and Catherine are joined by a special guest: Dr Kari Nixon (@HalfSickShadows). At the end of the episode, you can hear Kari read the poem ‘Inskripsjoner/Inscriptions’ bilingually in Norweigian and English by Tarjei Vesaas, trans. by Kenneth G. Chapman. Episode resources: Introduction: Elizabeth Gaskell, North and South (1854) Aldous Huxley, Brave New World (1932) Catherine Charlwood, ‘“Habitually Embodied” Memories: The Materiality and Physicality of Music in Hardy's Poetry’, Nineteenth-Century Music Review (2020) DOI: https://doi.org/10.1017/S1479409819000338 Sile O’Modhrain and R. Brent Gillespie (2018) ‘Once More, with Feeling: Revisiting the Role of Touch in Performer-Instrument Interaction’. In: Papetti S., Saitis C. (eds) Musical Haptics. Springer Series on Touch and Haptic Systems. Springer, Cham Roland Barthes, Mythologies (1957) Interview: Pamela K. Gilbert, Cholera and Nation (2008) Claire Hooker, Chris Degeling and Paul Mason, ‘Dying a Natural Death: Ethics and Political Activism for Endemic Infectious Disease’, in Endemic: Essays in Contagion Theory, ed. by Kari Nixon and Lorenzo Servitje (2016), pp. 265-90 Anne Finger, Elegy for a Disease: A Personal and Cultural History of Polio (2013) Giorgio Agamben, ‘L’invenzione di un’epidemia’ (25 February 2020) The Art of Advertising. Bodleian Libraries (March to August 2020) Robert Spear. ‘Arrest all dirt and cleanse everything.’ Hudson’s Dry Soap. The Sunday at Home (c. 1889) Christopher Pittard, Purity and Contamination in Late Victorian Detective Fiction (2011) Henry Stacy Marks. ‘Cleanliness is next to godliness.’ A & F Pears Ltd (c. 1889) Judith Walzer Levitt, Typhoid Mary: Captive to the Public’s Health (1996) Priscilla Wald, Contagious: Cultures, Carriers, and the Outbreak Narrative (2008) Ellen Gutoskey, ‘Super Spreader: The Strange Story of Typhoid Mary’, Mental Floss (20 March 2020) ‘Influenza’ from the handwritten manuscript magazine for the Myllin Literary and Debating Society, number 1 (1898) held in the National Library of Wales archives Kari Nixon, ‘I’m a Mom and a Vaccine Researcher. Here’s Why You Should Vaccinate Your Children’ HuffPost (25 April 2019) Welsh Newspapers Online database, National Library of Wales ‘Vaccination Exemption’, South Wales Daily News (17 August 1899)
Am 6. Juni 2018 hat Dietmar Gallistl seine Antrittsvorlesung gehalten. Dies ist der traditionelle Abschluss jedes Habilitationsverfahrens an der KIT-Fakultät für Mathematik. Der Titel des Vortrags lautete: Die Stabilitätskonstante des Divergenzoperators und ihre numerische Bestimmung. Im Zentrum des Vortrags und des Gespräches mit Gudrun stand die Inf-sup-Bedingung, die u.a. in der Strömungsrechnung eine zentrale Rolle spielt. Das lineare Strömungsproblem (Stokesproblem) besteht aus einer elliptischen Vektor-Differentialgleichung für das Geschwindigkeitsfeld und den Gradienten des Drucks und einer zweiten Gleichung. Diese entsteht unter der Annahme, dass es zu keiner Volumenänderung im Fluid unter Druck kommt (sogenannte Inkompressibilität) aus der Masseerhaltung. Mathematisch ist es die Bedingung, dass die Divergenz des Geschwindigkeitsfeldes Null ist. Physikalisch ist es eine Nebenbedingung. In der Behandlung des Problems sowohl in der Analysis als auch in der Numerik wird häufig ein Lösungsraum gewählt, in dem diese Bedingung automatisch erfüllt ist. Damit verschwindet der Term mit dem Druck aus der Gleichung. Für das Geschwindigkeitsfeld ist dann mit Hilfe des Lax-Milgram Satzes eine eindeutige Lösung garantiert. Allerdings nicht für den Druck. Genau genommen entsteht nämlich ein Sattelpunktproblem sobald man den Druck nicht ausblendet. Dieses ist nicht wohlgestellt, weil man keine natürlichen Schranken hat. Unter einer zusätzlichen Bedingung ist es aber möglich, hier auch die Existenz des Druckes zu sichern (und zwar sowohl analytisch als auch später im numerischen Verfahren solange der endliche Raum ein Unterraum des analytischen Raumes ist). Diese heißt entweder inf-sup Bedingung oder aber nach den vielen Müttern und Vätern: Ladyzhenska-Babushka-Brezzi-Bedingung. Die Konstante in der Bedingung geht direkt in verschiedene Abschätzungen ein und es wäre deshalb schön, sie genau zu kennen. Ein Hilfsmittel bei der geschickten numerischen Approximation ist die Helmholtzzerlegung des L2. Diese besagt, dass sich jedes Feld eindeutig in zwei Teile zerlegen läßt, von der eines ein Gradient ist und der andere schwach divergenzfrei. Es lassen sich dann beide Teile getrennt betrachten. Man konstruiert den gemischten Finite Elemente Raum so, dass im Druck stückweise polynomielle Funktionen (mit Mittelwert 0) auftreten und und für den Raum der Geschwindigkeitsgradienten das orthogonale kompelemt der schwach divergenzfreien Raviart-Thomas-Elemente gewählt ist. Dietmar Gallistl hat in Freiburg und Berlin Mathematik studiert und promovierte 2014 an der Humboldt-Universität zu Berlin. Nach Karlsruhe kam er als Nachwuchsgruppenleiter im SFB Wellenphänome - nahm aber schon kurz darauf in Heidelberg die Vertretung einer Professur wahr. Zur Zeit ist er als Assistant Professor an der Universität Twente tätig. Literatur und weiterführende Informationen D. Gallistl. Rayleigh-Ritz approximation of the inf-sup constant for the divergence. Math. Comp. (2018) Published online, https://doi.org/10.1090/mcom/3327 Ch. Bernardi, M. Costabel, M. Dauge, and V. Girault, Continuity properties of the inf-sup constant for the divergence, SIAM J. Math. Anal. 48 (2016), no. 2, 1250–1271. https://doi.org/10.1137/15M1044989 M. Costabel and M. Dauge, On the inequalities of Babuška-Aziz, Friedrichs and Horgan-Payne, Arch. Ration. Mech. Anal. 217 (2015), no. 3, 873–898. https://doi.org/10.1007/s00205-015-0845-2 D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013. Podcasts J. Babutzka: Helmholtzzerlegung, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 85, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. M. Steinhauer: Reguläre Strömungen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 113, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016
Gudrun had two podcast conversations at the FEniCS18 workshop in Oxford (21.-23. March 2018). FEniCS is an open source computing platform for solving partial differential equations with Finite Element methods. This is the first of the two episodes from Oxford in 2018. Roisin Hill works at the National University of Ireland in Galway on the west coast of Ireland. The university has 19.000 students and 2.000 staff. Roisin is a PhD student in Numerical Analysis at the School of Mathematics, Statistics & Applied Mathematics. Gudrun met her at her poster about Balanced norms and mesh generation for singularly perturbed reaction-diffusion problems. This is a collaboration with Niall Madden who is her supervisor in Galway. The name of the poster refers to three topics which are interlinked in their research. Firstly, water flow is modelled as a singularly perturbed equation in a one-dimensional channel. Due to the fact that at the fluid does not move at the boundary there has to be a boundary layer in which the flow properties change. This might occur very rapidly. So, the second topic is that depending on the boundary layer the problem is singularly perturbed and in the limit it is even ill-posed. When solving this equation numerically, it would be best, to have a fine mesh at places where the error is large. Roisin uses a posteriori information to see where the largest errors occur and changes the mesh accordingly. To choose the best norm for errors is the third topic in the mix and strongly depends on the type of singularity. More precisely as their prototypical test case they look for u(x) as the numerical solution of the problem for given functions b(x) and f(x). It is singularly perturbed in the sense that the positive real parameter ε may be arbitrarily small. If we formally set ε = 0, then it is ill-posed. The numercial schemes of choice are finite element methods - implemented in FEniCS with linear and quadratic elements. The numerical solution and its generalisations to higher-dimensional problems, and to the closely related convection-diffusion problem, presents numerous mathematical and computational challenges, particularly as ε → 0. The development of algorithms for robust solution is the subject of intense mathematical investigation. Here “robust” means two things: The algorithm should yield a “reasonable” solution for all ranges of ε, including resolving any layers present; The mathematical analysis of the method should be valid for all ranges of ε. In order to measure the error, the energy norm sounds like a good basis - but as ε^2 → 0 the norm → 0 with order ε . They were looking for an alternative which they found in the literature as the so-called balanced norm. That remains O(1) as ε → 0. Therefore, it turns out that the balanced norm is indeed a better basis for error measurement.After she finished school Roisin became an accountant. She believed what she was told: if you are good at mathematics, accountancy is the right career. Later her daughter became ill and had to be partially schooled at home. This was the moment when Roisin first encountered applied mathematics and fell in love with the topic. Inspired by her daughter - who did a degree in general science specialising in applied mathematics - Roisin studied mathematics and is a PhD student now (since Sept. 2017). Her enthusiasm has created impressive results: She won a prestigious Postgraduate Scholarship from the Irish Research Council for her four year PhD program. References R. Lin, M. Stynes: A balanced finite element method for singularly perturbed reaction diffusion problems. SIAM J. Numer. Anal., 50(5):2729–2743, 2012. T. Linß: Layer-adapted meshes for reaction-convection-diffusion problems, volume 1985 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2010. H.-G. Roos, M. Stynes, L. Tobiska: Robust Numerical Methods for Singularly Perturbed Differential Equations, volume 24 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2nd edition, 2008. Podcasts M. E. Rognes: Cerebral Fluid Flow, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 134, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017.
Gudrun had two podcast conversations at the FEniCS18 workshop in Oxford (21.-23. March 2018). FEniCS is an open source computing platform for solving partial differential equations with Finite Element methods. This is the first of the two episodes from Oxford in 2018. Roisin Hill works at the National University of Ireland in Galway on the west coast of Ireland. The university has 19.000 students and 2.000 staff. Roisin is a PhD student in Numerical Analysis at the School of Mathematics, Statistics & Applied Mathematics. Gudrun met her at her poster about Balanced norms and mesh generation for singularly perturbed reaction-diffusion problems. This is a collaboration with Niall Madden who is her supervisor in Galway. The name of the poster refers to three topics which are interlinked in their research. Firstly, water flow is modelled as a singularly perturbed equation in a one-dimensional channel. Due to the fact that at the fluid does not move at the boundary there has to be a boundary layer in which the flow properties change. This might occur very rapidly. So, the second topic is that depending on the boundary layer the problem is singularly perturbed and in the limit it is even ill-posed. When solving this equation numerically, it would be best, to have a fine mesh at places where the error is large. Roisin uses a posteriori information to see where the largest errors occur and changes the mesh accordingly. To choose the best norm for errors is the third topic in the mix and strongly depends on the type of singularity. More precisely as their prototypical test case they look for u(x) as the numerical solution of the problem for given functions b(x) and f(x). It is singularly perturbed in the sense that the positive real parameter ε may be arbitrarily small. If we formally set ε = 0, then it is ill-posed. The numercial schemes of choice are finite element methods - implemented in FEniCS with linear and quadratic elements. The numerical solution and its generalisations to higher-dimensional problems, and to the closely related convection-diffusion problem, presents numerous mathematical and computational challenges, particularly as ε → 0. The development of algorithms for robust solution is the subject of intense mathematical investigation. Here “robust” means two things: The algorithm should yield a “reasonable” solution for all ranges of ε, including resolving any layers present; The mathematical analysis of the method should be valid for all ranges of ε. In order to measure the error, the energy norm sounds like a good basis - but as ε^2 → 0 the norm → 0 with order ε . They were looking for an alternative which they found in the literature as the so-called balanced norm. That remains O(1) as ε → 0. Therefore, it turns out that the balanced norm is indeed a better basis for error measurement.After she finished school Roisin became an accountant. She believed what she was told: if you are good at mathematics, accountancy is the right career. Later her daughter became ill and had to be partially schooled at home. This was the moment when Roisin first encountered applied mathematics and fell in love with the topic. Inspired by her daughter - who did a degree in general science specialising in applied mathematics - Roisin studied mathematics and is a PhD student now (since Sept. 2017). Her enthusiasm has created impressive results: She won a prestigious Postgraduate Scholarship from the Irish Research Council for her four year PhD program. References R. Lin, M. Stynes: A balanced finite element method for singularly perturbed reaction diffusion problems. SIAM J. Numer. Anal., 50(5):2729–2743, 2012. T. Linß: Layer-adapted meshes for reaction-convection-diffusion problems, volume 1985 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2010. H.-G. Roos, M. Stynes, L. Tobiska: Robust Numerical Methods for Singularly Perturbed Differential Equations, volume 24 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2nd edition, 2008. Podcasts M. E. Rognes: Cerebral Fluid Flow, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 134, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017.
Bei Blue Yonder, einem führenden Lösungsanbieter im Bereich Prognosen und Mustererkennung in Europa, arbeitet Florian Wilhelm an verschiedenen Kundenprojekten und spricht darüber mit Gudrun Thäter. Ein konkretes Beispiel sind Absatzprognosen für einen Kunden im Einzelhandel. Mit diesen Prognosen kann der Disponent eine optimale Entscheidung treffen wie viele Produkte er von einem Großhändler kauft, um bei hoher Warenverfügbarkeit möglichst geringe Abschreibungen durch verdorbene Ware zu haben. Zur Generierung dieser Prognosen werden sowohl Methoden aus dem Bereich des Maschinellen Lernens wie auch der Statistik angewendet. Manche Methoden haben ihren Ursprung in der Teilchenphysik, wo sie verwendet werden um Teilchen in den Experimenten am CERN nachzuweisen. Literatur und Zusatzinformationen V. Mayer-Schönberger, K. Cukier: Big Data: A Revolution That Will Transform How We Live, Work and Think, HMH Books, 2013. A. Beck, M. Feindt: Einführung in die Blue Yonder Basistechnologie, Research Paper, 2013. M. Feindt: Why cutting edge technology matters for Blue Yonder solutions, Research Paper, 2014. C. Bishop: Pattern Recognition and Machine Learning (Information Science and Statistics), Springer Science, 2006. T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer Series in Statistics, 2009. Predictive Analytics (19MB,mp3)
Mon, 1 Jan 1990 12:00:00 +0100 http://epub.ub.uni-muenchen.de/3759/ http://epub.ub.uni-muenchen.de/3759/1/3759.pdf Gray, Kevin A.; Farchaus, J. W.; Wachtveitl, J.; Breton, J.; Finkele, Ulrich; Lauterwasser, Christoph; Zinth, Wolfgang; Oesterhelt, Dieter Gray, Kevin A.; Farchaus, J. W.; Wachtveitl, J.; Breton, J.; Finkele, Ulrich; Lauterwasser, Christoph; Zinth, Wolfgang und Oesterhelt, Dieter (1990): The role of tyrosine M210 in the initial charge separation in the reaction center of Rhodobacter sphaeroides. In: Michel-Beyerle, M.E. (Hrsg.), Springer Series in Biophysics: Reaction Centers of Photosynthetic Bacteria. Bd. 6, Springer: Berlin, pp. 251-264.
Mon, 1 Jan 1990 12:00:00 +0100 http://epub.ub.uni-muenchen.de/3757/ http://epub.ub.uni-muenchen.de/3757/1/3757.pdf Finkele, Ulrich; Dressler, K.; Lauterwasser, Christoph; Zinth, Wolfgang Finkele, Ulrich; Dressler, K.; Lauterwasser, Christoph und Zinth, Wolfgang (1990): Analysis of transient absorption data from reaction centers of purple bacteria. In: Michel-Beyerle, M.E. (Hrsg.), Springer Series in Biophysics: Reaction Centers of Photosynthetic Bacteria. Bd. 6, Springer: Berlin, pp. 127-134. Biologie,
Mon, 1 Jan 1990 12:00:00 +0100 http://epub.ub.uni-muenchen.de/2861/ http://epub.ub.uni-muenchen.de/2861/1/2861.pdf Bischof, Norbert Bischof, Norbert (1990): Phase Transitions in Psychoemotional Development. In: Haken, Herman (Hrsg.), Synergetics of cognition. Springer Series in Synergetics 45. Springer: Berlin, pp. 361-378. Psychologie und Pädagogik