Podcasts about metric geometry

  • 7PODCASTS
  • 7EPISODES
  • 39mAVG DURATION
  • ?INFREQUENT EPISODES
  • Nov 8, 2022LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about metric geometry

Carry the Two
Moon Duchin on Voting & Electoral Districts

Carry the Two

Play Episode Listen Later Nov 8, 2022 22:56


If you live in the United States, have you already voted? If not, go vote! The bedrock of American democracy is the idea of citizens voting for candidates to represent their interests. However, determining how to cluster voters into districts has always been a fraught topic, particularly when it comes to ensuring that minorities have representation. How can we create the most fair electoral districts? How can we use geometric topographical analysis to recognize gerrymandering strategies like “packing” and “cracking”? We brought in Tufts University mathematician and founder of the Metric Geometry and Gerrymandering Group Redistricting Lab Moon Duchin to help us discuss these pressing issues. Find our transcript here: LINK Curious to learn more? Check out these additional links: Duchin’s collaboration about ranked choice voting: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3778021 Brief review of Duchin’s scientific paper: https://www.newamerica.org/political-reform/reports/evaluating-the-effects-of-ranked-choice-voting/the-future-is-proportional-improving-minority-representation-through-new-electoral-systems-gerdus-benade-ruth-buck-moon-duchin-dara-gold-and-thomas-weighill/ Quanta’s interview with Duchin: https://www.quantamagazine.org/moon-duchin-on-fair-voting-and-random-walks-20200407/ Follow more of IMSI’s work: www.IMSI.institute, (twitter) @IMSI_institute, (instagram) IMSI.institute Follow Moon Duchin: https://math.tufts.edu/people/faculty/moon-duchin This episode was audio engineered by Tyler Damme. Music by Blue Dot Sessions. The Institute for Mathematical and Statistical Innovation (IMSI) is funded by NSF grant DMS-1929348.

Count Me In
Moon Duchin

Count Me In

Play Episode Listen Later Oct 24, 2022 56:44


Today we feature a vibrant conversation with Moon Duchin, Professor of Mathematics at Tufts University where she oversees the Metric Geometry and Gerrymandering Group which focuses their research on data science interventions for civil rights. Moon earned her undergraduate degrees in mathematics and women's students from Harvard University and her masters and PhD in mathematics from the University of Chicago. She was awarded a Guggenheim Fellowship in 2018 and she has been a Fellow of the American Matheamtical Society since 2017. In this conversation, you will hear about Moon's strategy to build the kind of community you want to be in, about how outreach energizes her, about her skill at working just about anywhere, and about how many of her favorite places in the world serve coffee.

Philosophy Talk Starters
517: Democracy By Numbers

Philosophy Talk Starters

Play Episode Listen Later Jan 13, 2021 10:18


More at https://www.philosophytalk.org/shows/democracy-numbers. The United States prides itself on being “the world’s greatest democracy,” which adheres to the principle, “one person, one vote.” Despite this, its elections are often highly contentious—presidents can be elected after losing the popular vote, there is widespread gerrymandering and voter purging, and not everyone has equal representation in the Senate. So what can we do to make elections in the US more fair? And how do we decide what counts as fair in the first place? Is there some test or algorithm we can use to determine equal representation? Josh and Ray watch the polls with Moon Duchin from Tufts University, Director of the Metric Geometry and Gerrymandering Research Group.

Slate Daily Feed
Gist: Drawing Districts

Slate Daily Feed

Play Episode Listen Later Sep 29, 2020 39:20


On the Gist, using poker logic to analogize the upcoming presidential debates with Annie Duke. She is a former professional poker player, cognitive scientist and author of the forthcoming How to Decide: Simple Tools for Making Better Choices. In the interview, Mike passes the baton to Annie Duke once more to dig into gerrymandering. Duke talks with Moon Duchin, a mathematician and professor at Tufts University, about her research into understanding how voting districts work. Through redistricting analysis at the Metric Geometry and Gerrymandering Group, an organization Duchin co-founded, she describes how in this democracy, fairness isn’t always as easy to find when you’re considering where people live and vote. In the spiel, messing up several thousand absentee ballots was inevitable. Email us at thegist@slate.com Podcast production by Margaret Kelley and Jamila Bey. Slate Plus members get bonus segments and ad-free podcast feeds. Sign up now. Learn more about your ad choices. Visit megaphone.fm/adchoices

The Gist
Drawing Districts

The Gist

Play Episode Listen Later Sep 29, 2020 39:20


On the Gist, using poker logic to analogize the upcoming presidential debates with Annie Duke. She is a former professional poker player, cognitive scientist and author of the forthcoming How to Decide: Simple Tools for Making Better Choices. In the interview, Mike passes the baton to Annie Duke once more to dig into gerrymandering. Duke talks with Moon Duchin, a mathematician and professor at Tufts University, about her research into understanding how voting districts work. Through redistricting analysis at the Metric Geometry and Gerrymandering Group, an organization Duchin co-founded, she describes how in this democracy, fairness isn’t always as easy to find when you’re considering where people live and vote. In the spiel, messing up several thousand absentee ballots was inevitable. Email us at thegist@slate.com Podcast production by Margaret Kelley and Jamila Bey. Slate Plus members get bonus segments and ad-free podcast feeds. Sign up now. Learn more about your ad choices. Visit megaphone.fm/adchoices

Talk Like A Girl
Gerrymandering and Redistricting: Where, what and how the f&*k do you draw the lines?

Talk Like A Girl

Play Episode Listen Later Dec 7, 2017 62:10


Comedienne, musician, writer, and filmmaker Tasneem joins the “Talk Like a Girl” gals as they expand the boundaries of their knowledge on gerrymandering and redistricting with one of the founding members of the Metric Geometry and Gerrymandering Group, Tufts University professor, Dr. Mira Bernstein. Join us as we stay mostly within the subject lines with a small side track to math/meth cross-chat and some Beanie Baby therapy.Guest: TasneemIG: @lastmangoinparisTwitter: @iamtasneemSoundCloud: @iamtasneemYouTube: TasneemTV Expert: Dr. Mira BernsteinBio: Mira Bernstein is on the research faculty at Tufts University in the Science, Technology, and Society Program, and she is a founding member of the Tufts Metric Geometry and Gerrymandering Group.Resources:Website: Metric Geometry and Gerrymandering Group at Tufts:sites.tufts.edu/gerrymandr (note there’s no “e” between the d and the r) New Yorker Article on the Metric Geometry and Gerrymandering Group:https://www.newyorker.com/tech/elements/a-summer-school-for-mathematicians-fed-up-with-gerrymandering

Modellansatz
Metrische Geometrie

Modellansatz

Play Episode Listen Later Jul 28, 2016 42:41


Petra Schwer ist seit Oktober 2014 Juniorprofessorin an unserer Fakultät. Sie arbeitet im Institut für Algebra und Geometrie in der Arbeitsgruppe Metrische Geometrie. Ab Oktober 2016 startet in diesem Institut ein neues Graduiertenkolleg mit dem Titel Asymptotic Invariants and Limits of Groups and Spaces und Petra Schwer freut sich darauf, dort viele mit ihrer Begeisterung anstecken zu können. Ihr Weg in die Algebra war nicht ganz direkt: Sie hat zunächst Wirtschaftsmathematik in Ulm studiert. Ein Wechsel an die Uni Bonn ebnete den Weg ins etwas abstraktere Fahrwasser. Zwei Ausflüge in die Industrie (zwischen Diplom und Promotionszeit und in der Postdoc-Phase) haben ihre Entscheidung für die akademische Mathematik bekräftigt. Im Gegensatz zur Differentialgeometrie, die von Ihrem Ursprung her auf analytischen Methoden und Methoden der Differentialrechnung (wie zum Beispiel des Ableitens) beruht, untersucht die Metrische Geometrie Mengen mit Abstandsfunktion. Darunter fallen auch die klassischen Riemannschen Geometrien, aber auch viel allgemeinere geometrische Strukturen, wie zum Beispiel Gruppen oder Graphen. Eine Metrik ist nichts anderers als eine Funktion, die einen Abstand zwischen zwei Punkten definiert. Die Euklidische Geometrie (in zwei bzw. drei Dimensionen) ist sicher allen aus der Schule bekannt. Sie ist ein Beispiel eines Geometriemodells in der metrischen Geometrie. Euklid versuchte erstmals Geometrie von Ihren Grundbausteinen her zu beschreiben. Er hat sich gefragt: Was ist ein Punkt? Was ist eine Gerade? Wie lässt sich der Abstand eines Punktes zu einer Geraden definieren? Schließlich stellte er eine Liste von grundlegenden Objekten sowie deren Eigenschaften und Beziehungen auf (Axiome genannt) die eine Geometrie erfüllen soll. Diese Axiome sind dabei die Eigenschaften, die sich nicht aus anderen ableiten lassen, also nicht beweisbar sind. Eines dieser Axiome besagte, dass durch einen festen Punkt genau eine Gerade parallel zu einer vorgegebenen anderen Geraden verläuft. Es entbrannte ein Jahrhunderte dauernder Streit darüber, ob sich dieses Parallelenaxiom aus den anderen aufgestellten Axiomen ableiten lässt, oder ob man diese Eigenschaft als Axiom fordern muss. Sehr viel später wurde klar, dass der Streit durchaus einen wichtigen und tief liegenden Aspekt unserer Anschauungsgeometrie berührte. Denn es wurden gleich mehrere Mengen (mit Abstandsfunktion) entdeckt, in denen diese Eigenschaft nicht gilt. Deshalb nannte man die Geometrien, in denen das Parallelenaxiom nicht gilt nichteuklidische Geometrien. Ein sehr nahe liegendes Beispiele für nichteuklidische Strukturen ist z.B. die Kugel-Oberfläche (damit auch unsere Erdoberfläche) wo die euklidische Geometrie nicht funktioniert. In der Ebene ist der traditionelle Abstand zwischen zwei Punkten die Länge der Strecke, die beide Punkte verbindet. Das lässt sich im Prinzip auf der Kugeloberfläche imitieren, indem man einen Faden zwischen zwei Punkten spannt, dessen Länge dann anschließend am Lineal gemessen wird. Spannt man den Faden aber "falschrum" um die Kugel ist die so beschriebene Strecke aber nicht unbedingt die kürzeste Verbindung zwischen den beiden Punkten. Es gibt aber neben der klassischen Abstandsmessung verschiedene andere sinnvolle Methoden, einen Abstand in der Ebene zu definieren. In unserem Gespräch nennen wir als Beispiel die Pariser Metrik (oder auch SNCF oder Eisenbahnmetrik). Der Name beschreibt, dass man im französischen Schnellzugliniennetz nur mit umsteigen in Paris (sozusagen dem Nullpunkt oder Zentrum des Systems) von Ort A nach Ort B kommt. Für den Abstand von A nach B müssen also zwei Abstände addiert werden, weil man von A nach Paris und dann von Paris nach B fährt. Das verleiht der Ebene eine Baumstruktur. Das ist nicht nur für TGV-Reisende wichtig, sondern gut geeignet, um über Ordnung zu reden. Ebenso sinnvoll ist z.B. auch die sogenannte Bergsteiger-Metrik, die nicht allein die Distanz berücksichtigt, sondern auch den Aufwand (bergauf vs. bergab). Damit ist sie aber in den relevanten Fällen sogar asymmetrisch. D.h. von A nach X ist es "weiter" als von X nach A, wenn X oben auf dem Berg ist und A im Tal. Analog ist es wenn man mit dem Boot oder schwimmend mit bzw. gegen die Strömung oder den Wind unterwegs ist. Dann misst man besser statt der räumlichen Distanz die Kraft bzw. Energie, die man für den jeweiligen Weg braucht. Für Karlsruher interessant ist sicher auch die KVV-Metrik, die wie folgt beschrieben wird: Um den Abstand von einem Punkt A zu einem anderen Punkt B der Ebene zu messen, läuft man von A und B senkrecht zur x-Achse (und trifft diese in Punkten A', bzw B') und addiert zu diesen beiden Abständen den Abstand von A' zu B'. Anschaulich gesprochen muss man also immer erst von A zur Kaiserstrasse, ein Stück die Kaiserstraße entlang und dann zu B. Eben so, wie die KVV ihre Strecken plant. Zwischen einer Ebene und z.B. der Kugeloberfläche gibt es einfach zu verstehende und doch wichtige geometrische Unterschiede. Eine Strecke in der Ebene läßt sich z.B. in zwei Richtungen unendlich weit fortsetzen. Auf der Kugeloberfläche kommt nach einer Umrundung der Kugel die Verlängerung der Strecke an dem Punkt wieder an, wo man die Konstruktion begonnen hat. D.h. insbesondere, dass Punkte auf einer Kugeloberfläche nicht beliebig weit voneinander entfernt sein können. Es gibt außerdem genau einen Punkt, der genau gegenüber liegt und unendlich (!) viele kürzeste Wege dorthin (in jeder Richtung einen). Verblüffend ist dabei auch: So verschieden sich Ebene und Kugeloberfläche verhalten, in einer fußläufigen Umgebung jedes Punktes fühlt sich die Erdoberfläche für uns wie ein Ausschnitt der Ebene an. Mathematisch würde man sagen, dass sich eine Kugel lokal (also in einer sehr kleinen Umgebung) um einen Punkt genauso verhält, wie eine Ebene lokal um einen Punkt. Die Krümmung oder Rundung der Kugel ist dabei nicht spürbar. Versucht man die gesamte Kugel auf einer ebenen Fläche darzustellen, wie zum Beispiel für eine Weltkarte, so kann dies nur gelingen, wenn man Abstände verzerrt. Für unsere ebenen Darstellungen der Erdkugel als Landkarte muss man also immer im Hinterkopf behalten, dass diese (zum Teil stark) verzerrt sind, d.h. Längen, Winkel und Flächen durch die ebene Darstellung verändert werden. Ein wichtiges Konzept zur Unterscheidung von (z.B.) Ebene und Kugeloberfläche ist die eben schon erwähnte Krümmung. Es gibt verschiedene Definitionen - insbesondere, wenn man Flächen eingebettet im dreidimensionalen Raum untersucht. Dabei hat ein flachgestrichenes Blatt Papier keine Krümmung - eine Kugeloberfläche ist gekrümmt. Um das formal zu untersuchen, werden Tangentialflächen an Punkte auf der Oberfläche angelegt. In einer kleinen Umgebung des Berührpunktes wird die Abweichung der Tangentialebene von der Oberfläche betrachtet. Bei der Kugel liegt die Kugeloberfläche immer auf einer Seite von der Tangentialebene. Das muss nicht so sein. Die Tangentialfläche kann z.B. in einem Sattelpunkt die zu untersuchende Fläche durchdringen - d.h. in unterschiedliche Richtungen ist die Krümmung entweder positiv oder negativ. Man braucht aber eigentlich gar keine Tangentialflächen, denn auch Winkelsummen verraten uns etwas über die Krümmung. In der Ebene ergeben die drei Innenwinkel jedes Dreiecks zusammen addiert immer 180 Grad. Auf der Kugel, also auf einer gekrümmten Fläche, sind es immer mehr als 180 Grad. Legt man zum Beispiel einen Punkt in den Nordpol und zwei weitere so auf den Äquator, dass die Verbindungsstrecken zum Nordpol einen Winkel von 90 Grad einschließen, so hat das entstehende Dreieck eine Winkelsumme von 270 Grad. Etwas komplexer ist die Situation bezüglich Krümmung auf einem Torus (der sieht aus wie ein Schwimmreifen oder Donut). Betrachtet man das lokale Krümmungsverhalten in Punkten auf der Donut-/Torusoberfläche ist sie außen so gekrümmt wie eine Kugel, innen sieht sie aber aus wie eine Sattelfläche. Es läßt sich aber auch ein abstraktes Modell des Torus konstruieren, das genauso flach, wie die euklidische Ebene ist. Dazu wähle in der Ebene ein Quadrat mit fester Seitenlänge und klebe gedanklich die gegenüberliegenden Seiten (also oben und unten, sowie links mit rechts) zusammen. Man erhält so ein "periodisches" Quadrat: Wenn man auf einer Seite hinauswandert, kommt man gegenüber an der gleichen Stelle wieder in das Quadrat hinein. Dieses Objekt ist topologisch ebenfalls ein Torus, hat aber, weil das Quadrat Teil der Ebene ist, Krümmung 0. Literatur und weiterführende Informationen D. Hilbert, S. Cohn-Vossen: Anschauliche Geometrie, eine sehr schöne, (in weiten Teilen) auch mit wenig mathematischen Vorkenntnissen gut verständliche Einführung in viele verschiedene Bereiche der Geometrie. D. Burago, Y. Burago, S. Ivanov: A Course in Metric Geometry, eines der Standardlehrbücher über metrische Geometrie. Euklid, Elemente, Digitale Version der 5 Bücher von Euklid. Gromov: Metric Structures for Riemannian and Non-Riemannian Spaces. Das "grüne Buch" - Kursnotizen einer Vorlesung von Gromov, die später in Buchform gebracht wurden.