POPULARITY
Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 07/07
Bei Hund und Katze sowie beim Menschen zählen Epilepsien zu den häufigsten chronischen neurologischen Erkrankungen. Im Hinblick auf eine vollständige Prävention der Epilepsieentstehung (Epileptogenese) haben sich bis heute alle therapeutischen Strategien als klinisch unwirksam erwiesen. Ein besseres Verständnis der Mechanismen, die der Epileptogenese zugrunde liegen, stellt die Grundvoraussetzung für die Identifizierung von therapeutischen Zielstrukturen und Biomarkern dar. Differentielle Proteomanalysen könnten wesentlich dazu beitragen die komplexen epileptogenese-assoziierten molekularen Veränderungen zu erforschen. Daher wurde in der vorliegenden Dissertationsstudie eine differentielle Proteomanalyse in einem Tiermodell der Epileptogenese durchgeführt. Die Induktion der Epileptogenese erfolgte in einem elektrischen Post-Status-Epilepticus-(SE)-Modell bei weiblichen Sprague-Dawley-Ratten. Hippocampales (HC) und parahippocampales (PHC) Gehirngewebe von SE- und Kontrolltieren wurde zu drei unterschiedlichen Zeitpunkten (zwei Tage, zehn Tage und acht Wochen nach SE) entnommen und mittels markierungsfreier Liquid-Chromatographie-Tandem-Massenspektrometrie analysiert. Die Zeitpunkte reflektieren die Post-Insult-Phase, die Latenzphase und die chronische Phase mit spontanen wiederkehrenden Anfällen. Unter Berücksichtigung der besonderen Rolle inflammatorischer Signalwege im Kontext der Epileptogenese, erfolgte neben der unspezifischen Datenanalyse eine fokussierte Auswertung immun- und inflammations-assoziierter Prozesse. Die anschließende immunhistochemische Untersuchung der Gewebe diente sowohl der Validierung der Methodik, als auch der Validierung des differentiellen Expressionsmusters ausgewählter Proteine. Durch die Studie konnte gezeigt werden, dass zu allen untersuchten Zeitpunkten im PHC mehr Proteine reguliert waren als im HC. Des Weiteren ließen sich in beiden Gehirnregionen die umfangreichsten molekularen Veränderungen in der Latenzphase nachweisen. Durch die Pathway-Enrichment-Analyse konnte im HC während der Post-Insult-Phase eine ausgeprägte Neurodegeneration dargestellt werden. Weiterhin zeigte sich in beiden Gehirnregionen eine Regulation Integrin-assoziierter Prozesse während der Latenzphase und der chronischen Phase. Ein signifikantes Enrichment neurodegenerativer und proliferativer Signalwege ließ sich im PHC acht Wochen nach SE darstellen. Im Hinblick auf immun- und inflammations-assoziierte Prozesse konnte eine Überrepräsentation entsprechender Pathways während der Post-Insult-Phase und der Latenzphase nachgewiesen werden. Die regulierten Pathways umfassten unter anderem Toll-like-Rezeptor-(TLR)-vermittelte Signalwege, Synthese und Regulation von Prostaglandinen, leukozytäre transendotheliale Migration und die Signaltransduktion durch transformierenden Wachstumsfaktor-β (TGF beta). Die inflammatorische Antwort während der chronischen Phase zeigte im PHC eine stärkere Regulation als im HC. Im Rahmen der immunhistochemischen Validierung konnte das differentielle Expressionsmuster der Proteine Heat shock 70 kDa protein (Hspa1a), P2Y Purinoceptor 12 (P2ry12) und P2X Purinoceptor 7 (P2rx7) bestätigt werden, die eine bedeutende Rolle bei der Aktivierung von Mikroglia spielen. Die Ergebnisse der vorliegenden Studie liefern neue Erkenntnisse über die komplexen molekularen Veränderungen der Epileptogenese. Darüber hinaus deuten sie auf eine unterschiedliche Veränderung der molekularen Muster von HC und PHC während dem Zeitverlauf der Epileptogenese hin. Die Daten stellen zudem neue Informationen über das differentielle Expressionsmuster zahlreicher Proteine zur Verfügung, die bei wichtigen inflammatorischen Prozessen und Signalwegen eine Rolle spielen. Von besonderer Bedeutung ist hierbei die Regulation TLR-assoziierter Proteine und Purinozeptoren, die zu den essentiellen Modulatoren der inflammatorischen Antwort gezählt werden. Zusammenfassend trägt die vorliegende Arbeit wesentlich zu unserem Verständnis über die molekularen und im Besonderen die inflammatorischen Mechanismen der Epileptogenese bei. Die Ergebnisse liefern eine umfassende Grundlage für die zukünftige Identifikation und Entwicklung von therapeutischen Zielstrukturen und Biomarkern für molekulare Bildgebungsverfahren. Die funktionellen Einflüsse einzelner Proteine sollten in zukünftigen Studien (zum Beispiel in Knock-out-Maus-Modellen) bestätigt und genauer untersucht werden.
Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 05/07
Das Ziel der vorliegenden Arbeit war es, molekulare Vorgänge während der B-Zellentwicklung in der Bursa Fabricii des Haushuhns mittels proteomischer Analysen zu charakterisieren. Hierfür wurden zunächst repräsentative Zeitpunkte der bursalen B-Zellentwicklung für die Probengewinnung definiert. Daran schlossen sich qualitative Proteomanalysen der Bursa Fabricii zu den gewählten Entwicklungszeitpunkten Embryonaltag 10 (ET10), Embryonaltag 18 (ET18), Tag 2 und Tag 28 nach dem Schlupf an. Diese erfolgten durch Vorfraktionierung der Proben mittels 1D-SDS-PAGE und nano-HPLC gefolgt von Tandem-MS-Analysen. Hierbei konnten für die bursalen Proteome zu jedem Zeitpunkt zwischen 1152 und 1392 Proteine identifiziert werden (FDR < 1 %). Überschneidungen der einzelnen Zeitpunkte in 537 allgemeinen Struktur- und Stoffwechsel-Proteinen berücksichtigt, wurden insgesamt 2214 verschiedene Proteine identifiziert. Eine zusätzliche qualitative Analyse aufgereinigter bursaler B-Zellen führte zur Identifizierung von 758 Proteinen. Durch genontologische Analysen konnte festgestellt werden, dass für das Zellwachstum verantwortliche Proteine va. zu den frühen Zeitpunkten zu finden waren, während Proteine, welche eine Rolle für das Immunsystem spielen, eher zu späteren Entwicklungszeitpunkten in Erscheinung traten. Dies spiegelt die Entwicklung der Bursa von der unreifen, embryonalen Wachstums- und Differenzierungsprozessen unterliegenden Bursaanlage, zum fertig ausdifferenzierten, primär-lymphatischen Organ auf molekularer Ebene wider. Konform zu den hohen Proliferationsraten der B-Zellen während der Bursaentwicklung fanden sich in den genontologischen Analysen der B-Zellen besonders hohe Anteile an Proteinen, welche für Zellteilung verantwortlich sind. Proteine, welche in Zusammenhang mit Zellmigration stehen, wurden vor allem in der B-Zell-Probe sowie an ET10 gefunden, was als Hinweis auf eine Beteiligung dieser Proteine an der Einwanderung der B-Zellen in die Bursaanlage betrachtet werden kann. Die anschließende quantitative Proteomanalyse wurde zu denselben Entwicklungszeitpunkten an je sechs biologischen Replikaten mittels 2D-DIGE durchgeführt. In der statistischen Auswertung der quantitativen Veränderungen zeigten sich 402 hochsignifikante Unterschiede zwischen den bursalen Proteomen der verschiedenen Entwicklungszeitpunkte, wobei die sehr große Übereinstimmung der Analyseergebnisse innerhalb der biologischen Replikate die gute Reproduzierbarkeit der Experimente belegte. Die deutlichsten Veränderungen zeigten sich zwischen ET10 und allen weiteren Zeitpunkten, wohingegen innerhalb der übrigen Stadien eine geringere Anzahl signifikanter Unterschiede nachgewiesen wurde. Für die 402 differentiell exprimierten Proteine konnten verschiedene charakteristische Protein-expressionsverläufe nachgewiesen werden, welche Rückschlüsse auf die biologischen Hintergründe ermöglichten. Durch massenspektrometrische Analysen der Proteine mittels MALDI-TOF/TOF und LC-MS/MS gelang es, 203 der 242 zur Identifikation vorgesehenen Spots zu identifizieren. Im Rahmen einer bioinformatischen Auswertung des erhaltenen Datensatzes erbrachten sowohl die genontologische Analysen als auch Pathway-Analysen wesentliche Anhaltspunkte für die Auswahl besonders interessanter und vielversprechender Proteine für weiterführende funktionelle Analysen. Unter den identifizierten, differentiell exprimierten Proteinen fanden sich auffällig viele Vertreter des Aktin-Zytoskelett-Pathways, welcher für die mechanische Stabilisierung von Zellen und deren aktive Bewegungen verantwortlich ist. Dabei fielen in dieser Arbeit sowohl Vinculin als auch Gelsolin durch ihre charakteristischen Expressionsmuster auf. Vinculin zeigte zu Beginn der embryonalen Entwicklung erhöhte Abundanzwerte, welche nach ET18 steil abfielen. Als fokales Adhäsionsprotein stellt es ein Schlüsselprotein in der Regulation der Übertragung von kontraktilen Kräften dar, welche die Voraussetzung für die Migration von Zellen sind. Gelsolin, ein wichtiges Apoptose-Effektorprotein, welches auch in Verbindung mit Zellmotilität gebracht wird, zeigte erhöhte Expressionslevel an ET18, welche über die nachfolgenden Entwicklungszeitpunkte abfielen. Gelsolin konnte in drei verschiedenen Ladungs-Isoformen detektiert werden. Für die Fragestellung dieser Arbeit interessant erschien weiterhin eine Gruppe differentiell exprimierter Proteine des Retinolsäure-Metabolismus. Im Einzelnen wurden die Retinaldehydrogenase 2 (ALDH1A2), das „retinol-binding protein 5“ (RBP5), das „fatty acid-binding protein 7“ (FABP7), und Transthyretin (TTR) mit ähnlichen Proteinexpressions-profilen detektiert, welche ihr Expressionsmaximum jeweils an ET10 aufwiesen. Das könnte ein Hinweis sein, dass die embryonale Entwicklung der Bursa Fabricii von ähnlichen Faktoren gesteuert ist wie die embryonale Ausbildung der sekundär-lymphatischen Organe beim Säuger, bei der Retinolsäure-abhängige Proteine eine entscheidende Rolle spielen. Über die Thematik dieser Arbeit hinausgehend, stellt der umfangreiche proteomische Datensatz dieser Arbeit eine wertvolle Ressource dar, die sowohl für weitere Fragestellungen bezüglich der Bursa Fabricii des Huhns, als auch für die Vervollständigung der Annotation des Hühnergenoms genutzt werden können.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Ziel dieser Arbeit war es, die aus der Genomsequenz von M. jannaschii identifizierten Komponenten der Biosynthese und Inkorporation von Selenocystein biochemisch und molekularbiologisch zu charakterisieren. Folgende Ergebnisse wurden erhalten: a) Die tRNASec von M. jannaschii konnte mit gereinigter Seryl-tRNA-Synthetase von E. coli korrekt in vitro mit L-Serin beladen werden. Die Umwandlung der Seryl-Gruppe in eine Selenocysteyl-Gruppe war mit gereinigter Selenocystein-Synthase und Selenophosphat- Synthetase von E. coli ebenfalls erfolgreich. In Extrakten von M. jannaschii konnte darüber hinaus die Selenocystein-Synthase-Aktivität nachgewiesen werden. Eine rekombinante tRNASec von M. maripaludis, bei der eine Base im Anticodon-"Loop"ausgetauscht worden war, konnte im heterologen Wirt E. coli Selenocystein inserieren. b) Die Natur und die Lokalisation des archaeellen SECIS-Elements konnte durch die heterologe Expression eines Selenoprotein-Gens von M. jannaschii in M. maripaludis bewiesen werden. Die heterologe Selenoprotein-Synthese war dabei abhängig vom Vorhandensein und der strukturellen Unversehrtheit des RNA-Elements in der 3'-nicht-translatierten Region der Selenoprotein-mRNA. c) Die biochemische Charakterisierung des heterolog in E. coli überproduzierten MJ0495- Proteins von M. jannaschii ergab Dissoziationskonstanten für Guanin-Nukleotide, wie sie für bakterielle SelB-Spezies typisch sind. Darüber hinaus diskriminiert das MJ0495-Protein zwischen der kognaten Ser-tRNASec und Sec-tRNASec; letztere wird mit höherer Affinität gebunden. MJ0495 stellt deshalb den Selenocystein-spezifischen Translationsfaktor in Archaea (aSelB) dar. Das in der nicht-translatierten mRNA-Region liegende SECIS-Element wird allerdings (im Unterschied zu SelB von E. coli) nicht von aSelB gebunden. d) Es konnten mehrere SECIS-bindende, und ein aSelB-bindendes Protein identifiziert werden, die möglicherweise für die notwendige Kommunikation zwischen aSelB und dem SECISElement sorgen. e) Durch die Proteomanalyse konnte gezeigt werden, dass in M. maripaludis einige Proteine in Abhängigkeit von der Selenversorgung gebildet werden. Dabei wurden auch solche Proteine selenabhängig synthetisiert, die kein Selenocystein enthalten.