POPULARITY
In dieser besonderen Folge begleitet ihr Laura auf ihrem Spaziergang durchs Handschuhsheimer Feld und habt an ihren Überlegungen zur MINT-Bildung teil. Ihre Fragestellung: Stärkt die Verschulung die außerschulische MINT-Bildung? Eigentlich empfinden wir "Verschulung" als negativ, weil sie mit Vorgaben, Einengung und Linearisierung assoziiert wird. Als Werkzeug für die Steigerung von Passung und Transparenz ist die Verschulung bzw. die inhaltliche Systematisierung mehr als eine Überlegung wert.
Mathematik mit Kunst und Design erklären - das war ein Ziel des Cooking Math-Projekts. Robert Winkler forscht an der Fakultät für Mathematik zu numerischen Verfahren für schlecht gestellte Probleme. Das hilft z.B. Elektrische Impedanztomographie genauer und schneller zu machen. Seine Teilnahme am Cooking Math Projektes hat uns zum jetzigen Zeitpunkt zusammengeführt. Die Aufgabenstellung der Elektrischen Impedanztomographie ist es, aus Messungen auf der Oberfläche eines Körpers Rückschlüsse auf die Zusammensetzung im Inneren zu ziehen. Dazu dient bei der Elektrische Impedanztomographie die elektrische Leitfähigkeit im Innern, die Auswirkungen auf gemessene elektrische Potentiale an der Körperoberfläche hat. Aus physikalischen Zusammenhängen (hier Ohmsches Gesetz und Kirchhoffsche Regeln) lassen sich partielle Differentialgleichungen herleiten, die aus der Leitung im Innern die Oberflächenpotentiale berechenbar machen. Das nennt man Vorwärtsproblem. In der Praxis braucht man aber genau die andere Richtung - das sogenannte inverse Problem - denn man hat die Werte auf dem Rand gemessen und will unter den gleichen physikalischen Annahmen auf den Ablauf im Inneren schließen. Der Zusammenhang, der so modellhaft zwischen Leitfähigkeit und Potential am Rand entsteht, ist hochgradig nichtlinear. Außerdem ist er instabil, das heißt kleine Messfehler können dramatische Auswirkungen auf die Bestimmung der Leitfähigkeit haben. Daher müssen bei der numerischen Bearbeitung Verfahren gefunden werden, die die partielle Differentialgleichung numerisch lösen und dabei diese Nichtlinearität stabil behandeln können. Etabliert und sehr effektiv ist dabei das Newtonverfahren. Es ist weithin bekannt zur Nullstellensuche bei Funktionen von einer Variablen. Die grundlegende Idee ist, dass man ausgehend von einem Punkt in der Nähe der Nullstelle den Tangenten an der Funktion folgt um sich schrittweise der Nullstelle zu nähern. Durch die Information, die in der Tangentenrichtung verschlüsselt ist, entsteht so ein Verfahren zweiter Ordnung, was in der Praxis heißt, dass sich nach kurzer Zeit in jedem Schritt die Zahl der gültigen Stellen verdoppelt. Großer Nachteil ist, dass das nur dann funktioniert, wenn man nahe genug an der Nullstelle startet (dh. in der Regel braucht man zuerst ein Verfahren, das schon eine gute erste Schätzung für die Nullstelle liefert). Außerdem gibt es Probleme, wenn die Nullstelle nicht einfach ist. Wenn man das Newtonverfahren zum finden von Optimalstellen nutzt (dort wo die Ableitung eine Nullstelle hat), kann es natürlich nur lokale Minima/Maxima finden und auch nur dasjenige, das am nächsten vom Startwert liegt. Im Kontext der inversen Probleme wird das Newtonverfahren auch eingesetzt. Hier muss natürlich vorher eine geeignete Verallgemeinerung gefunden werden, die so wie die Ableitungen im eindimensionalen Fall eine Linearisierung der Funktion in einer (kleinen) Umgebung des Punktes sind. Der Kontext, in dem das recht gut möglich ist, ist die schwache Formulierung der partiellen Differentialgleichung. Der passende Begriff ist dann die Fréchet-Ableitung. Betrachtet man das Problem mathematisch in einem Raum mit Skalarprodukt (Hilbertraum), kann die Linearisierung mit dem Verfahren der konjugierten Gradienten behandelt werden. Dieses Verfahren findet besonders schnell eine gute Näherung an die gesuchte Lösung, indem es sich Eigenschaften des Skalarprodukts zunutze macht und die aktuelle Näherung schrittweise in besonders "effektive" Richtungen verbessert. Um das lineare Problem stabiler zu machen, nutzt man Regularisierungen und geht von vornherein davon aus, dass man durch Fehler in den Daten und im Modell ohnehin in der Genauigkeit eingeschränkt ist und in der numerischen Lösung nicht versuchen sollte, mehr Genauigkeit vorzutäuschen. Eine typische Regularisierung bei der Elektrische Impedanztomographie ist die Erwartung, dass die Leitfähigkeit stückweise konstant ist, weil jedes Material eine zugehörige Konstante besitzt. Im zugehörigen Cooking Math-Projekt soll der Modellerierungs- und Lösungsfindungsprozess visualisiert werden. Eine Idee hierfür ist das Spiel "Topfschlagen". Literatur und weiterführende Informationen R. Winkler, A. Rieder: Model-Aware Newton-Type Inversion Scheme for Electrical Impedance Tomography, Preprint 14/04 am Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung, KIT, 2014. (Eingereicht zur Veröffentlichung in Inverse Problems 31, (2015) 045009). O. Scherzer: Handbook of Mathematical Methods in Imaging, Springer Verlag, ISBN 978-0-387-92919-4, 2011. Podcasts S. Hollborn: Impedanztomographie, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 68, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. http://modellansatz.de/impedanztomographie J. Enders, C. Spatschek: Cooking Math, Gespräch mit G. Thäter und S. Ritterbusch im Modellansatz Podcast, Folge 80, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/cooking-math J. Eilinghoff: Splitting, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 81, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/splitting P. Krämer: Zeitintegration, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 82, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/zeitintegration D. Hipp: Dynamische Randbedingungen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 83, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/dynamische-randbedingungen
Catherine Bandle war bis 2003 Professorin am Mathematischen Institut der Universität in Basel. Aber auch über die Emeritierung hinaus ist sie sehr rege in der Forschung zu elliptischen und parabolischen partiellen Differentialgleichungen. Das zeigt sich an einer beeindruckenden Zahl von Publikationen, der Teilnahme an Tagungen und im Einbringen ihrer Erfahrung in die Tätigkeit von Gremien wie dem Landeshochschulrat Brandenburg und dem Steering Committee of the European Science Foundation program: Global and Geometric Aspects of Nonlinear Partial Differential Equations. Ihre Faszination für die Vielseitigkeit dieses Themas in den Anwendungen und die Zusammenhänge zur Geometrie haben sich über viele Jahrzehnte erhalten. Für den Workshop Nonlinear Days 2015 wurde sie für einen Hauptvortrag nach Karlsruhe eingeladen. Wir haben diese Gelegenheit genutzt, das Thema der Modellbildung mit Hilfe von partiellen Differentialgleichungen mit ihr etwas allgemeiner zu beleuchten. Traditionell stehen elliptische wie parabolische Gleichungen am Beginn der modernen Modellbildung von Prozessen in der Physik, der Biologie und Chemie. Hier sind es Diffusions-, Reaktions-, Transport- und Wachstumsprozesse, die zunächst durch gewöhnliche Differentialgleichungen beschrieben wurden. Allerdings waren vor etwa 150 Jahren die Anwendungen in Teilen schon zu komplex für dieses zu einfache Modell. Abhängigkeiten von Veränderungen in allen Raum- und der Zeitrichtung sollten interagierend erfasst werden. Das führte zwingend auf die partiellen Differentialgleichungen. Mit dem Aufstellen der Gleichungen verband sich die Hoffnung, durch die zugehörigen Lösungen Vorhersagen treffen zu können. Um diese Lösungen zu finden, brauchte es aber ganz neue Konzepte. Am Anfang der Entwicklung standen beispielsweise die Fourierreihen, die (unter den richtigen Voraussetzungen) eine Darstellung solcher Lösungen sein können. Werkzeuge wie Fourier- und Lapalacetransformation konnten zumindest für bestimmte Geometrien hilfreiche Antworten geben. Später wurder der Begriff der schwachen Lösung bzw. schwachen Formulierung geprägt und die damit verbundenen Sobolevräume auf verschiedenen Wegen entwickelt und untersucht. Die Suche nach den Lösungen der Gleichungen hat damit die theoretische Entwicklung in der Mathematik stark vorangetrieben. Heute sind wir froh, dass wir in der linearen Theorie (siehe auch Lemma von Lax-Milgram) vieles verstanden haben und versuchen uns Stück für Stück nichtlineare Modellen anzueignen. Ein erster Schritt ist häufig eine lokale Linearisierung oder das Zulassen von Nichtlinearitäten in untergeordneten Termen (semilineare Probleme). Ein integraler Bestandteil ist hier jedoch auch die Möglichkeit, mehr als eine Lösung der Gleichung zu haben und wir brauchen deshalb Konzepte, die physikalisch relevante unter ihnen zu finden. Hier sind Konzepte der Stabilität wichtig. Nur stabile Lösungen sind solche, die zu beobachtbaren Phänomenen führen. Wichtige Werkzeuge in der Lösungstheorie sind auch die Normen, in denen wir unsere Lösungen messen. Am überzeugendsten ist es, wenn sich Normen in Energien des Systems übersetzen lassen. Dann kann man auch die Stabilität im Rahmen von Energieerhaltung und Energieminimierung diskutieren. Literatur und Zusatzinformationen Catherine Bandle: Die Mathematik als moderne Weltsprache - Am Beispiel der Differenzialgleichungen, UniNova Wissenschaftsmagazin der Universität Basel, Band 87, 2000. R.Farwig: Skript zu Elementaren Differentialgleichungen, Technische Universität Darmstadt, 2008. Videos zu PDEs (in Englisch) Video zur Fourierreihenidee auf Deutsch
Die bei der Analyse binärer Flüssigkeitsgemische mit Hilfe der Dichte erforderlichen nichtlinearen Eichkurven werden mit einer Zwei-Parameter-Gleichung linearisiert (r>0,9998, N= 30 ... 70). Das Analysenverfahren läßt sich dadurch wesentlich vereinfachen. Bei Verwendung des mit der Dichte korrigierten Brechungsindex ist eine analoge Linearisierung möglich. Die letztere Methode ist besonders dann als Komplementärverfahren einsetzbar, wenn die Dichten beider Komponenten ähnlich sind.