POPULARITY
Nichtlineare Kontinuumsmechanik 2019 (QHD 1920 - Video & Folien)
Gudrun spricht mit Lydia Wagner über Elastoplastizität. Lydia hat im Rahmen ihrer im Mai 2019 abgeschlossenen Promotion Versetzungen in kristallinen Festkörpern numerisch simuliert. Elastizität beschreibt die (reversible) Verformung von Festkörpern unter Belastung. Bei zu großer Belastung reagieren Materialien nicht mehr elastisch, sondern es entstehen irreversible Deformationen. Das nennt man Plastizität. Im Rahmen der Kontinuumsmechanik wird die Deformation durch ein Kräftegleichgewicht basierend auf der Impuls- und Drehimpulserhaltung modelliert. Die konkreten Eigenschaften des Materials werden hierbei über eine spezifische Spannungs-Dehnungs-Relation berücksichtigt. Dabei tritt Plastizität auf, wenn im Material eine kritische Spannung erreicht wird. In klassischen phänomenologischen Plastizitätsmodellen der Kontinuumsmechanik wird dieses Verhalten über eine Fließbedingung in Abhängigkeit der Spannung modelliert. Diese wird durch eine Fließregel und ggf. eine Verfestigungsregel ergänzt, die das plastische Materialverhalten nach Erreichen der Fließgrenze beschreiben. Plastizität ist ein physikalischer Prozess, der auf Kristallebene stattfindet. Ein kristalliner Festkörper wird plastisch verformt, wenn sich eindimensionale Gitterfehler – Versetzungen – durch Belastung im Kristallgitter bewegen, d. h. wenn sich die atomaren Bindungen umordnen. Durch Mittelungsprozesse kann dieses diskrete Verhalten in einem Kontinuumsmodell, dem Continuum dislocation dynamics (CDD) Modell, beschrieben werden. Eine numerische Realisierung von diesem erweiterten Modell und die Evaluation im Vergleich zu diskreten Simulationen ist die Themenstellung der Dissertation von Lydia. Die Physik erarbeitete sich Lydia in Zusammenarbeit mit Materialwissenschaftlern und Ingenieuren in der DFG-Forschergruppe Dislocation based Plasticity am KIT. Literatur und weiterführende Informationen C. Wieners: Effiziente numerische Methoden in der Elasto-Plastizität, Vortragsfolien. P.M. Anderson, J.P. Hirth, J. Lothe: Theory of dislocations Cambridge University Press, New York, 2017, ISBN: 978-0-521-86436-7 T. Hochrainer et al.: Continuum dislocation dynamics: Towards a physical theory of crystal plasticity Journal of the Mechanics and Physics of Solids, 63, 167–178,2014. doi:10.1016/j.jmps.2013.09.012 K. Schulz, L. Wagner and C. Wieners: A mesoscale continuum approach of dislocation dynamics and the approximation by a Runge-Kutta discontinuous Galerkin method International Journal of Plasticity. doi:10.1016/j.ijplas.2019.05.003 Podcasts J. Fröhlich: Poroelastische Medien, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 156, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. A. Rick: Bézier Stabwerke, Gespräch mit S. Ritterbusch im Modellansatz Podcast, Folge 141, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. A. August: Materialschaum Gespräch mit S. Ritterbusch im Modellansatz Podcast, Folge 037, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014.
Nichtlineare Kontinuumsmechanik 2019 (QHD 1920 - Video & Folien)
Nichtlineare Kontinuumsmechanik 2019 (QHD 1920 - Video & Folien)
Nichtlineare Kontinuumsmechanik 2019 (QHD 1920 - Video & Folien)
Nichtlineare Kontinuumsmechanik 2019 (QHD 1920 - Video & Folien)
Nichtlineare Kontinuumsmechanik 2019 (QHD 1920 - Video & Folien)
Nichtlineare Kontinuumsmechanik 2019 (QHD 1920 - Video & Folien)
Nichtlineare Kontinuumsmechanik 2019 (QHD 1920 - Video & Folien)
Nichtlineare Kontinuumsmechanik 2019 (QHD 1920 - Video & Folien)
Ein Auslandsstudium ist eine ganz besondere Ergänzung zum Studium: Benedikt Kottler und Hakan Demirel konnten im Rahmen einer Direktkooperation ihr Studium und ihre Forschungen für ein Semester in Brasilien durchführen. Mit Gudrun Thäter sprechen die beiden über ihre dortigen mathematischen Arbeitsgebiete und ihren Aufenthalt. Benedikt Kottler hat sich in Vorbereitung seiner Master-Arbeit mit der Molekulardynamik befasst. Er möchte die Interaktion von molekularen Partikeln im Rahmen der Kontinuumsmechanik modellieren und mit der Software OpenLB durchführen. Diese Prozesse treten schon in der Betrachtung des Wassermoleküls auf. Eine naheliegende Anwendung ist daher die Simulation von Filtrationsprozessen, wo kleine Schmutzpartikel aus einem Fluid herausgefiltert werden sollen. Das Forschungsthema von Hakan Demirel dreht sich um Feinstaub im Stadtgebiet, genauer um die drei Themen Windsimulation, Partikelsimulation und Feinstaub-Emission durch den Autoverkehr. Dazu konnte er in Brasilien auf eine Verkehrssimulation zurückgreifen und ein stochastisches Modell für Windrichtungen und -intensitäten aufstellen. Dabei hat sich ergeben, dass sich die Stadtgeometrie in der Form von Gebäuden und Straßenzügen einen großen Einfluss auf die sinnvolle Diskretisierung der Windmodelle haben und entsprechend berücksichtigt werden müssen. Die Idee für das Auslandssemester in Brasilien entstand nach einem Vortrag über die Simulationssoftware OpenLB, zu der bestehende Kooperationen zwischen Forschungseinrichtungen in Brasilien und dem KIT bestehen. Die Finanzierung wurde dabei insbesondere durch das Baden-Württemberg-Programm nach Bewerbungsphase ermöglicht. Natürlich gehört auch der Besuch von Vorlesungen zum Auslandsstudium, die teilweise für die beiden in englisch gehalten wurden- und sich teilweise von Vorlesungen in Karlsruhe unterschieden. Die positiven Kontakte zu den Studierenden und Gastfamilien in Brasilien gehören dabei genauso zum Austausch, wie die Erfahrungen unterschiedlicher bürokratischer Systeme. Literatur und Zusatzinformationen OpenLB - Open source lattice boltzmann code International Student Office am KIT I. Waltschläger: Windsimulation im Stadtgebiet, Gespräch mit S. Ritterbusch im Modellansatz Podcast, Folge 14, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014.