Podcasts about ringstrukturen

  • 3PODCASTS
  • 3EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Oct 31, 2012LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about ringstrukturen

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06
Das Phagenschock-Protein LiaH aus Bacillus subtilis

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06

Play Episode Listen Later Oct 31, 2012


Für das Überleben von Bacillus subtilis ist eine verlässliche Überwachung der Integrität der Zellhülle essentiell, um diese zu schützen und bei Schäden adäquat zu reagieren. Neben den ECF � Faktoren spielen Zwei-Komponenten-Systeme (2KS) in der Zellhüllstressantwort von B. subtilis eine zentrale Rolle. Eines dieser Systeme, das LiaRS- 2KS reagiert auf eine große Anzahl verschiedener Zellwand-Antibiotika sowie andere zellhüllstress-auslösende Substanzen. Die zelluläre Funktion und Rolle des Lia-Systems konnte bisher nicht genau definiert werden. In der hier vorliegenden Dissertation wurde das Lia-System erstmals hinsichtlich seiner funktionalen Rolle in B. subtilis untersucht. Im ersten Teil der Ergebnisse wurde eine detaillierte Analyse der LiaR-vermittelten Zellhüllstressantwort in B. subtilisvorgenommen. Transkriptom-Studien dienten zur Identifizierung des LiaR-Regulons. Hierbei wurde die Genexpression des Wildtyps mit zwei Mutanten, die den „ON“ (�liaF) und „OFF“ (�liaR) Zustand des Lia-Systems repräsentierten, verglichen. Von den dabei identifizierten drei potentiellen LiaR-Zielloci (liaIH, yhcYZ-ydhA, ydhE) konnten durch anschließende Folgeuntersuchungen nur die Gene liaI und liaH als in vivo relevante Zielgene für LiaR verifiziert werden. Umfangreiche phänotypische Analysen zeigten, dass �liaIH-Mutanten nur schwach sensitiv auf einige Antibiotika sowie oxidativen Stress reagierten. Ebenso vermittelt eine Überexpression von LiaH in einer �liaF-Mutante keine Resistenz gegenüber stressauslösenden Substanzen. LiaH gehört zur Familie der Phagenschock-Proteine. Weitere Mitglieder dieser Familie sind PspA aus Escherichia coli und Vipp1 aus Arabidopsis thaliana, die große oligomere Ringstrukturen bilden. Die strukturelle Untersuchung von LiaH ergab, dass auch dieses Protein große Ringe bildet (>1MDa). Der zweite Ergebnisteil befasst sich mit der Untersuchung der Stimuluswahrnehmung der Zellhüllstress-detektierenden Systeme in B. subtilis. Die Zellhüllstressantwort auf das Antibiotikum Bacitracin wurde hierbei mittels �-Galaktosidase-Assay sowie Western Blot- Analyse erforscht. Das Bce-System reagiert dabei am stärksten und spezifischsten auf Bacitracin-Stress. Es wurde ebenfalls festgestellt, dass der ABC-Transporter BceAB essentiell für die Stimuluswahrnehmung ist und dass das Bce-System an sich eine Resistenzdeterminante in B. subtilis darstellt. Das Lia-System hingegen wird erst bei höheren Bacitracin-Konzentrationen induziert. Zusammengefasst deuten diese Ergebnisse darauf hin, dass das Bce-System Bacitracin direkt wahrnimmt (drug sensing) und das LiaSystem in indirekter Weise auf Zellhüllstress ausgelöst durch Bacitracin reagiert (damage sensing). Im dritten Teil der Ergebnisse wurdendie zelluläre Lokalisation von LiaI, LiaH und LiaG sowie die Beziehung der Proteine untereinander mittels Fluoreszenz-Mikroskopie und biochemische Ansätze untersucht. Die Membranproteine LiaI und LiaG sind unter Stressbedingungen in der Zellmembran lokalisiert. LiaH, ein cytoplasmatisches Protein verändert unter Stressbedingungen seine Lokalisation vom Cytoplasma an die Membran. Die Funktion von LiaH scheint sich also an der Zellmembran zu vollziehen, wobei LiaI als Interaktionspartner identifiziert wurde. Da in einer �liaI-Mutante LiaH unter Stressbedingungenebenfallsnoch an die Zellmembran assoziert ist, wurde nach weiteren Interaktionspartnern von LiaH gesucht. Eine umfangreiche bacterial-two-hybrid-Analyse ergab, dass sowohl LiaH als auch LiaI und LiaG in ein Interaktionsnetzwerk eingebettet sind, in welchem das bisher uncharakterisierte Protein YvlB eine Schlüsselrolle spielt.Die ebenso in dieses Netzwerk involvierten Proteine YjoB, DnaK und HtpG üben als Proteasen/Chaperone Funktionen in der Faltung und Degradierung von Proteinen aus. Ein Zusammenspiel des Lia-Systems und des Schlüsselproteins YvlB mit den Proteasen/Chaperonen als Reaktion auf Zellhüllstress ist denkbar. Die Phagenschock-Homologe PspA in Streptomyces lividans und E. coli üben einen erheblichen Einfluss auf die Proteinsekretion sowie die elektronenmotorische Kraft der Zelle aus. Daher wurde im letzten Teil der Ergebnisse die Rolle von LiaH in der Proteinsekretion sowie im Energiestoffwechsel näher analysiert. Ein Einfluß des Lia- Systems in der Aufrechterhaltung der elektronenmotorischen Kraft der Zelle konnte nicht bestätigt werden. Durch die Analyse des Sekretoms in B. subtilis konnte gezeigt werden, dass das extrazelluläre Proteom einer �PliaI-liaIH-Mutante im Vergleich zum Wildtyp signifikante Veränderungen in der Komposition aufwies.So wurde im Sekretom der �PliaIliaIH- Mutante vor allem das Zellwand-assoziierte Protein WapAidentifiziert, welches im Wildtyp oder in einer �liaF-Mutante nicht auftrat. Das Lia-System beeinflußt somit auch die Proteinsekretion von B. subtilis, wobei die molekularen Mechanismen noch unbekannt sind.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Filamentierung relativistischer Elektronenströme und Anomales Stoppen

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05

Play Episode Listen Later Nov 21, 2005


Am Max-Planck-Institut für Quantenoptik steht das 10 Hz Lasersystem ATLAS zur Verfügung, dessen Pulse bei einer Dauer von 160 fs Energien bis zu 800 mJ erreichen und auf Intensitäten bis zu 1019 W/cm2 fokussiert werden können. Bei Bestrahlung dünner Festkörper-Folien (Targets) mit solchen Intensitäten werden zuerst Elektronen auf relativistische Geschwindigkeiten   1 beschleunigt. Diese Elektronen durchdringen das Target und verlassen es rückseitig in Richtung des Laserstrahles bei ponderomotiver Beschleunigung oder entlang der Targetnormalen bei Beschleunigung durch Resonanz-Absorption. Mit konventionellen Magnetfeld-Spektrometern kann nur die Energieverteilung derartiger Elektronenströme bis in den MeV-Bereich bestimmt werden. Da die Elektronen nach dem Target im Vakuum eine Wegstrecke von einigen cm zurücklegen müssen, unterliegen diese Ströme allerdings der Alfven-Grenze IA = 17,5  kA. Ab dieser Stromstärke werden die Elektronen von ihrem eigenen Magnetfeld auf Kreisbahnen gezwungen, so daß der Teilchenfluß zusammenbricht bis der Alfven-Wert unterschritten ist. Bei Laser-Plasma-Experimenten können nun Stromstärken deutlich größer als 1 MegaAmpere auftreten, so daß man gezwungen ist, die Elektronen-Diagnostik unmittelbar mit dem Beschleunigungsbereich des Laser-Targets zu verbinden, wie dies bei der Messung von Röntgenstrahlung oder der Übergangsstrahlung möglich ist. Da der Energiebereich der Röntgendiagnostik um die 10 keV und optische Abbildungen wegen der kleinen Wellenlänge auf wenige Möglichkeiten eingeschränkt sind, können nur begrenzt Aussagen über die Auswirkungen von relativistischen Elektronen bei der Wechselwirkung mit Plasmen gemacht werden. Die Übergangsstrahlung ist sensitiv für den gesamten Energiebereich und deswegen eine Unterscheidung der Elektronen in Energie und dazugehöriger räumlicher Verteilung schwierig. Mit dem Cerenkov-Effekt steht in dieser Arbeit eine Diagnostik zur Verfügung, die auf Elektronenströme aus der Laser-Plasma-Wechselwirkung bei relativistischen Intenstitäten >1018 W/cm2 anwendbar ist. Der Brechungsindex eines optisch transparenten Cerenkov-Mediums legt zusammen mit der optischen Abbildung des Cerenkov-Lichts (im sichtbaren Spektralbereich) den Energiebereich zwischen 180 keV und 230 keV - bei Trajektorien parallel zur Targetnormalen - fest. Mit sehr dünnen Cerenkov-Medien (z.B. 50 µm Tesafilm, direkt auf die Targetrückseite aufgeklebt) und einer schnell geschalteten CCD kann eine örtliche Auflösung bis zu 4 µm genutzt werden, um die Stromprofile und die Anzahl der Elektronen zu messen. Bei Aluminium- und Polypropylen-Targets mit einer Dicke bis zu 10 µm werden filamentierte Elektronenströme großer Dichte gemessen, die von dem Laserpuls in einem ausgedehnten Vorplasma beschleunigt werden. Mit zunehmender Targetdicke verschwindet die Filamentierung und geht in zwei breite Gauß-förmige Lichtverteilungen über. Entsprechend den experimentellen Verhältnissen werden diese beiden Elektronenströme den Beschleunigungsmechanismen der Resonanz-Absorption und der ponderomotiven Kraft zugeordnet. Auch im Fall der Filamentierung wird nachgewiesen, daß die Elektronen ponderomotiv beschleunigt werden. Dazu läßt sich die Anzahl der gemessenen Elektronen (proportional zur Anzahl der Cerenkov Photonen und zur Dicke des Cerenkov Mediums) als Funktion der Laser-Intensität auswerten. Darüber hinaus zeigen Experimente unter Einsatz einer weiteren Pockelszelle nach dem Regenerativen Verstärker, mit dem sich der ASE-Vorpuls (amplified spontaneous emission) mit einer Dauer zwischen 0,5 und 5 ns kontrollieren läßt, daß das Vorplasma einen wesentlichen Einfluß auf die Elektronenbeschleunigung hat. Die ASE-Intensität und -Energie ist groß genug (1012 W/cm2), um ein Vorplasma mit unterkritischer Dichte ( ) zu zünden, in dem die Länge des Dichtegradienten von der Größenordnung (100 µm) der Ringdurchmesser der filamentierten Strukturen ist. Der Durchmesser eines einzelnen Stromfilaments von mehr als 10 µm wird vor allem durch die Hintergrundplasmadichte eingestellt, in dem durch die Ladungstrennung starke Rückströme aufgebaut werden. In dieser Situation der sich begegnenden Ströme können die Magnetfelder zumindest teilweise kompensiert werden, so daß die Vorwärtsströme die Alfven-Grenze für die Stromstärke um viele Größenordnungen übersteigen können. Bei diesen Verhältnissen bilden sich über die Weibel-Instabiltiät die filamentierten Ringstrukturen, die bereits in entsprechenden 2D- und 3D-PIC-Simulationen (Particle-In-Cell) untersucht wurden. In diesem Zusammenhang wurde auch das sog. Anomale Stoppen vorhergesagt, das zu einem Energieübertrag der Elektronen an das Hintergrundplasma führt, der deutlich größer ist als bei klassischen Coulomb-Stößen. Das Anomale Stoppen geht zurück auf die Koaleszenz ("merging") benachbarter Filamente, die jeweils ein Vielfaches der Alfven-Stromstärke transportieren können. Die dabei aufgebauten starken elektrischen und magnetischen Felder (1010 V/cm, Mega-Gauss) beziehen ihren Energieinhalt aus der kinetischen Energie der Elektronen und Übertragen diesen in einer lokalen, räumlichen Expansion an die Plasma-Ionen. Durch Messung der Elektronenzahl in Abhängigkeit von der Target-Dicke kann die deutliche Abnahme der Stromstärke nach wenigen µm Festkörperdicke nachgewiesen werden. Anhand eines einfachen Modells wird der Energieübertrag numerisch simuliert und mit klassischen Verlustmechanismen verglichen.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
2-Pyridone als Katalysatoren in der Spaltungsreaktion von Ester- und Amidbindungen

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Dec 15, 2004


Im Rahmen dieser Arbeit wurde eine Serie von unterschiedlichen, bifunktionalen 3-Cyano-2-pyridonderivaten synthetisiert. Die Substanzen wurden in einem unpolaren Reaktionsmedium auf ihre katalytische Aktivität überprüft. Als Modellreaktion diente dabei die n-Butylaminolyse von p-Nitrophenylacetat, die mit Hilfe von 1H-NMR-Messungen in CDCl3 spektroskopisch verfolgt wurde. Wegen der begrenzten Löslichkeit der 3-Cyano-2-pyridone in unpolaren Medien war es notwendig, den Grundkörper durch Ringstrukturen und Alkylketten zu erweitern. Durch sukzessive und unabhängige Bestimmung der in der Reaktionskinetik vorhandenen Variablen wurde deren Anzahl im formulierten Geschwindigkeitsgesetz vermindert und eine exaktere Ermittlung der katalysatorabhängigen Geschwindigkeitskonstanten kkat ermöglicht. In diesem Zusammenhang wurde eine detaillierte Untersuchung des Assoziationsverhaltens der 2-Pyridone sowohl im angewandten Reaktionsmedium, als auch in den Festkörperstrukturen durchgeführt. Bei den kinetischen Untersuchungen der Aminolysereaktion wurde ein nichtlineares Verhalten der katalytischen Aktivität bei der konzentrationsabhängigen Zugabe von 2-Pyridonderivaten festgestellt. Ein kinetisches Modell, bei dem die Bildung von katalytisch abgeschwächten Pyridondimeren für die eingeschränkte Aktivität verantwortlich ist, wurde durch Kombination von temperatur- und konzentrationsabhängigen 1H-NMR-Messungen näher untersucht. Ein Vergleich der Ergebnisse zeigte eindeutig, dass eine Dimerenbildung nicht für die auftretende Nichtlinearität verantwortlich sein kann. Als wesentlich besser geeignet stellte sich ein kinetische Modell heraus, welches über ein vorgelagertes Gleichgewicht beschrieben wird. Die Bildung eines Katalysator-Substrat-Komplexes führt hierbei zur Erklärung der Nichtlinearität. Eine veränderte Einwirkung der unterschiedlichen Substitutionmuster der getesteten 3-Cyano-2-pyridone auf die Katalysatorkonstante kkat konnte kaum festgestellt werden. Eine weitere Motivation dieser Arbeit stellte die Entwicklung einer Modellreaktion für die Ester- und Amidspaltung unter physiologischen Bedingungen dar. Die Analytik wurde dabei auf eine HPLC-Analysenmethode übertragen. Dies ermöglichte die Detektion kleinster Veränderungen in den Konzentrationsverhältnissen und das Auffinden geringer Spuren von Nebenprodukten. Als Esterkomponente kam hier das in Gram-positiv Bakterien vorhandene Depsipeptidmotiv D-Ala-D-Lac zum Einsatz. Zur Visualisierung der Leitstruktur und der möglichen Reaktionsprodukte mit UV/Vis-Technik wurden die entsprechenden p-Nitrobenzoylderivate synthetisiert. Mit diesen Referenzsubstanzen wurde eine kinetische Analysenmethode entwickelt, welche eine einwandfreie Verfolgung der Reaktion des Substrats mit Nucleophilen wie Wasser, n-Butylamin und ausgewählten 2-Pyridonderivaten in einem wässrigen, gepufferten Medium bei 37 °C gewährleistet. Sie eignet sich außerdem zur routinemäßigen Überprüfung von Katalysatorsubstanzen und ermöglicht eine Quantifizierung der entsprechenden Reaktanten und Reaktionsprodukte.Über pH-Wert-abhängige Messungen der Hydrolysereaktionen konnte eine allgemeine Basenkatalyse für das vorliegende System festgestellt werden. Neben der starken Hydrolyse des D-Ala-D-Lac-Motivs in der mit n-Butylamin basenkatalysierten Reaktion konnte eine Bildung eines entsprechenden Aminolyseprodukts nicht nachgewiesen werden. Eine Beschleunigung der Aminolyse beim Einsatz der Pyridonderivate in der basenkatalysierten Reaktion mit n-Butylamin konnte ebenfalls nicht festgestellt werden. Eine verstärkt auftretende Spaltung der Amidbindung zwischen der chromophoren Einheit und dem D-Ala-D-Lac-Motiv dagegen konnte zweifelsfrei nachgewiesen und quantifiziert werden.