Podcasts about plasmen

  • 8PODCASTS
  • 14EPISODES
  • 15mAVG DURATION
  • ?INFREQUENT EPISODES
  • Apr 30, 2024LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about plasmen

Latest podcast episodes about plasmen

Hessen schafft Wissen
#139: Plasmaforschung in Raumfahrt und Medizin – Prof. Dr. Markus Thoma über Atom-, Plasma- und Raumfahrtphysik

Hessen schafft Wissen

Play Episode Listen Later Apr 30, 2024 47:49


Plasmen können vielfältig eingesetzt werden – neben der Beleuchtung und Oberflächenbearbeitung können sie für Ionenantriebe von Raumfahrzeugen und für Sterilisation und Wundheilung in der Medizin verwendet werden. Darüber hinaus wird mit ihnen Grundlagenforschung in Schwerelosigkeit an Bord der Internationalen Raumstation (ISS) betrieben. Prof. Dr. Markus Thoma, Professor für Plasma- und Raumfahrtphysik und Leiter der Arbeitsgruppe Atom-, Plasma- und Raumfahrtphysik der Justus-Liebig-Universität Gießen (JLU), ist an dem Plasmakristallexperiment PK-4 auf der ISS beteiligt. Wie läuft ein Experiment auf der ISS ab? Welche Bedeutung haben Plasmen für die Raumfahrt und die Medizin? Wie können sie angewendet werden? Prof. Dr. Thoma beantwortet uns diese und weitere Fragen in dieser Folge von „Hessen schafft Wissen“ und gibt uns Einblicke in seine Arbeit mit Plasmen und die Forschung an Bord der ISS.

Carrusel Deportivo
Juan Carlos Unzué: "Luis Enrique está feliz y ha elegido a esos jugadores que plasmen la felicidad en el campo"

Carrusel Deportivo

Play Episode Listen Later Jul 6, 2021 7:10


El técnico participa en Carrusel Deportivo minutos antes del Italia-España semifinales de la Euro 2020: "El partido está al 50-50%"

Carrusel Deportivo
Juan Carlos Unzué: "Luis Enrique está feliz y ha elegido a esos jugadores que plasmen la felicidad en el campo"

Carrusel Deportivo

Play Episode Listen Later Jul 6, 2021 7:10


El técnico participa en Carrusel Deportivo minutos antes del Italia-España semifinales de la Euro 2020: "El partido está al 50-50%"

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05

Diese Arbeit ist eine kumulative Dissertation und besteht aus drei Aufsätzen. Sie setzt die Studien der Diplomarbeit zur eigenständig kohärenten Beschreibung der wakevermittelten Modenkopplung in Plasmakristallen fort. Der erste Aufsatz untersucht die Ionengeschwindigkeitsverteilung (idf) in einem schwach-ionisierten Gas, welches einem homogenen elektrischen Feld ausgesetzt ist und in dem Ladungsaustauschkollisionen der dominante Stoßtyp sind. Die Untersuchung geht dabei nur von elementaren Grundprinzipien aus und ist somit eigenständig kohärent. Die "Referenzverteilung" wird mittels einer Monte-Carlo-Simulation (MC-Simulation) am Beispiel des energieabhängigen Wirkungsquerschnitts für Argon berechnet. Ich nutze mehrere analytische Modelle (basierend auf einem konstanten Wirkungsquerschnitt oder konstanter Stoßfrequenz) und vergleiche die entsprechenden idfs untereinander, sowie mit der Referenzlösung. Es zeigt sich, dass kein Modell für den experimentell häufig wichtigen Fall eines schwach suprathermalen Ionenstroms mit befriedigender Genauigkeit anwendbar ist. Einen konstanten Wirkungsquerschnitt und Separabilität der idf annehmend, sowie darauf folgende Maxwell-gewichtete Mittelung, reduziert die integro-differentielle Boltzmanngleichung zu einer gewöhnlichen Differentialgleichung. Ich zeige, dass ihre Lösung die Resultate der MC-Simulation, für beliebige Stärke des Ionenstroms, mit großer Genauigkeit reproduziert. Das gewonnene Modell lässt sich auf eine Vielzahl von Problemen im Bereich der komplexen Plasmen anwenden - darunter der Ladungsvorgang der Staubteilchen, die Bildung von Wakefeldern und nicht-Hamiltonische Dynamik. Im zweiten Aufsatz behandle ich das vorrangige Beispiel eines nicht-Hamiltonischen Prozesses in zweidimensionalen (2D) Plasmakristallen: Die Modenkopplungsinstabilität (MCI), induziert durch die wakevermittelte Wechselwirkung der Staubteilchen. Durch das Einbinden des Formalismus einer linearen Plasmarückantwort (zur eigenständig kohärenten Beschreibung der Teilchenwechselwirkung) wird die bisherige Theorie erweitert. Ich verwende dazu die Ergebnisse des ersten Aufsatzes für subthermale und suprathermale Ionenströme. Ein Abbildungsverfahren setzt die eigenständig kohärenten Kopplungskoeffizienten und das effektive Dipolmoment der Wakes miteinander in Beziehung. Das Dipolmoment ist ein fundamentaler Parameter, welcher die Modenkopplung im üblicherweise verwendeten "Yukawa-Punktwake-Modell" charakterisiert. Ich wende das Abbildungsverfahren auf verfügbare experimentelle Daten an. Die resultierende Größenordnung des Dipolmoment zeigt in mehreren Fällen das Vorliegen starker Modenkopplung an. Diese wurde zuvor nie systematisch untersucht. Dieses Ergebnis motiviert die Untersuchungen der dritten Veröffentlichung: Ich studiere den Einfluss starker Staubteilchen-Wake-Wechselwirkungen auf Dispersion und Polarisation von Staubgittermoden in 2D-Plasmakristallen. Die starke Kopplung bewirkt eine "Anziehung" zwischen den Moden und macht ihre Polarisationen elliptisch. Bei Hybri- disierung rotieren die Hauptachsen der Lissajous-Ellipsen um 45° (bleiben aber weiterhin senkrecht zueinander). Um die Implikationen für Experimente aufzuzeigen, berechne ich die entsprechenden Teilchenbahnen und spektrale Dichten der longitudinalen und transversalen Moden. Beide Observablen offenbaren deutliche Spuren elliptischer Polarisation. Abschließend untersuche ich die Verschiebung der Hybridisierung bei starker Kopplung. Der Effekt ist signifikant: Das Einsetzen der Hybridisierung erfolgt bei Wellenzahlen welche merklich kleiner sind als die Grenze der Brillouin-Zone (wo die Hybridmode bei schwacher Kopplung zuerst auftritt).

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05

Bringt man Mikropartikel in ein Plasma ein, so laden sie sich elektrisch auf, man spricht von einem "`Komplexen Plasma"'. Das Komplexe Plasma besteht damit aus Elektronen, Ionen, Neutralgasteilchen und den (meist negativ) geladenen Staubpartikeln. Alle diese Teilchen wechselwirken miteinander. Mit Hilfe eines Lasers und einer Kamera, können Position und Geschwindigkeit der Staubpartikel ermittelt werden. Bei herkömmlichen Flüssigkeiten ist dies nicht möglich, da die Atombewegung nicht gleichzeitig räumlich und zeitlich in genügend hoher Auflösung zugänglich ist. In dieser Arbeit werden Ströme geladener Mikropartikel beschrieben, die in einem eigens dafür konstruierten Kanal fliessen. Im ersten Teil werden lineare Strömungen, im zweiten Teil ringförmige, quasi-unendliche Strömungen Komplexer Plasmen untersucht. Dabei steht die Frage nach den Grenzen des kooperativen Verhaltens der Teilchen im Vordergrund. Bei den linearen Strömungen geht es um kollektive Effekte in einer Laval-Düse. Die Untersuchung der Teilchenbewegung unter Schwerelosigkeit (während der Parabelflüge) auf kinetischem Level offenbart den Unterschied zwischen Einzelteilchenbewegung und der Strömung kleiner und großer Teilchenwolken. Im Labor wird die Bildung von Ketten unter Schwerkraft beschrieben. Die Analysen der Position, der Länge und der Stabilität der Ketten ergeben, dass ein bindendes Potential zwischen den negativ geladenen Staubteilchen vorhanden sein muss. In einer Erweiterung dieses Experiments zeigen sich Wellen. In horizontaler Konfiguration wird dargestellt, dass Wellen in Staubpartikelströmungen wie Wasserwellen am Strand brechen können. Das Hauptziel der Experimente mit ringförmigen Strömungen ist die Frage nach dem Strömungsverhalten bei der Bewegung um ein Hindernis. Die Antwort der Thermodynamik, dass in einem klassischen inkompressiblen Fluid das Produkt aus Geschwindigkeit und Querschnittsfläche konstant bleibt, wird für die hier untersuchten ringförmigen Strömungen nachgewiesen. Weiterhin wird das Ordnungsverhaltens der Partikel innerhalb der Strömung beim Passieren des Hindernisses analysiert. Dabei wird sehr detailliert gezeigt, wie Partikelbahnen verschmelzen oder neu entstehen. Es zeigen sich viele Analogien zu bekannten Systemen, wie z.B. dem Straßenverkehr, wenn etwa auf einer mehrstreifigen Straße eine Spur endet. Die gefundenen Ergebnisse unterstreichen eindrucksvoll die Eignung Komplexer Plasmen als interdisziplinäres Modellsystem zur Analyse dynamischer Vorgänge in der Natur.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Nonequilibrium phase transition in binary complex plasmas

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05

Play Episode Listen Later Jan 16, 2013


Komplexe Plasmen sind Systeme bestehend aus schwach ionisierten Gasen und mesoskopischen Partikeln. Partikel in einem Plasma erhalten ihre Ladung hauptsächlich durch den Fluß von Ionen und Elektronen auf denen Oberflächen. Abhängig von der Teilchengröße und den Plasmabedinungen kann die Ladung pro Teilchen mehrere tausend Elementarladungen betragen. Da das Hintergrundgas sehr dünn ist, können Partikelsysteme unabhängig von dem Plasma betrachtet werden. In vielen Fällen kann das Partikelwechselwirkungspotential als Yukawapotential angenähert werden, welches im Wesentlichen ein abgeschirmtes Coulombpotential ist. Kapitel 1 ist eine kurze Einleitung in die theoretischen Konzepte komplexer Plasmen. Aufgrund der Bedeutung des Mechanismus, beginne ich diese Arbeit mit der Diskussion der Teilchenladung für zwei verschiedene Situationen in Kapitel 2. Zunächst beschreibe ich ein einzigartiges Experiment, die "Coulomb-Explosion", zur Messung der Teilchenladung tief in der Plasmarandschicht. Ein Hybrid-Analyseverfahren, bestehend aus Teilchenverfolgung, MD und PIC Simulationen, wurde angewendet um die Ladung im Anfangsstadium der Explosion abzuschätzen. Dieses wird mit einer theoretische Methode zur Bestimmung der Partikelladung im Bulk-Plasma bei verschiedenen Entladungsfrequenzen ergänzt. Die Abhängigkeit der Partikelladung von der Entladungsfrequenz wird bei drei verschiedenen Drücken gezeigt. Das verwendete Modell ist hilfreich um die Veränderung der Teilchenladung in Abhänigkeit der Entladungsfrequenz abzuschätzen. Die hohe Teilchenladung und die damit verbundene abstoßende Teilchenwechselwirkung verhindern Partikelagglomeration. In Kapitel 3 stelle ich ein Experiment vor, in dem Partikelagglomeration durch selbst-angeregte Wellen induziert wird. Innerhalb der Wellen werden die Teilchen derart beschleunigt, dass das abstoßende Potential durch die erhöhte kinetische Energie überwunden werden kann. Die resultierenden Agglomerate werden mit einem "Long-Distance" Mikroskop überprüft. Im Folgenden stelle ich ein System binärer komplexer Plasmen vor. Unter bestimmten Bedingungen können monodisperse Partikel in einer Monolage eingefangen werden. Die Teilchen ordnen sich in einem Dreiecksgitter mit hexagonaler Symmetrie an. Dies ist als 2D Plasmakristall bekannt. Wenn ein sich bewegendes, einzelnes Teilchen einer anderen Spezies in das System eingeführt wird, verursacht es eine Störung des Kristallgitters. In Kapitel 4 werden die Untersuchungen der Wechselwirkung des Kristallgitters mit einem sich oberhalb des Gitters (stromaufwärts des Ionenflusses) befindlichen Teilchens diskutiert. Dieses zusätzliche Partikel erzeugt einen Mach-Kegel, da es sich mit einer Geschwindigkeit, schneller als der Schall in dem System bewegt. Das stromaufwärts befindliche Teilchen neigt dazu sich zwischen Reihen von Teilchen in dem Gitter zu bewegen, was als "Channeling-Effekt" bekannt ist. Wenn Teilchen einer Spezies eine Partikelwolke einer anderen durchdringen, bilden sowohl die durchfliessende als auch die durchflossene Teilchenwolke Kettenstrukturen ("Lanes") aus. In komplexen Plasmen ist die Wechselwirkung verschiedener Partikel immer stärker abstoßend als das geometrische Mittel der Wechselwirkung gleicher Partikel. Diese Asymmetrie in der gegenseitigen Wechselwirkung heißt "Positive nicht-Additivität". Deren Grad wird von dem nicht-Additivitäts Parameter bestimmt. In Kapitel 5 beschreibe ich zuerst die Ergebnisse von Langevin-Simulationen, um die Abhängigkeit der "Lane - Formation" von dem nicht-Additivitäts Parameters zu studieren. Weiterhin wurde die Rolle des Anfangszustands numerisch untersucht. Zusätzlich wurde eine Reihe umfassender Experimente zur "Lane - Formation" an Bord der Internationalen Raumstation (ISS) durchgeführt. Die Auswertung der Experimente konzentrierte sich auf die Struktur der durchflossenen Teilchen. Der Einfluss der Partikeldichten und -größe wurden untersucht. Das Studium zweier aufeinanderfolgenden Durchdringungen offenbarte einen "Memory-Effekt" in der Kettenstruktur. Zusätzlich wurde ein Übergang von freier "Lane-Formation" zu einem, von Entmischung dominierten, Zustand des Nichtgleichgewichtsystems innerhalb einer Experimentreihe beobachtet. Schließlich stelle ich einen ergänzenden Versuch zur "Lane-Formation" in erdgebundenen Experimenten vor. Die Schwerkraft wurde hier durch thermophoretische Kräfte kompensiert. In dieser Versuchsreihe konnten die durch unregelmässige Teilchengeschwindigkeiten und Inhomgenitäten in der durchflossenen Teilchenwolke entstehenden Nachteile erfolgreich überwunden werden. Mit diesem Modell-System kann die "Lane-Formation" im Detail untersucht werden und die Ergebnisse mit denen numerischer Simulationen und denen aus Experimenten in Kolloiden verglichen werden.

DMW - Deutsche Medizinische Wochenschrift
Was ist und was kann Plasmamedizin?

DMW - Deutsche Medizinische Wochenschrift

Play Episode Listen Later Oct 21, 2011 6:26


Beim Begriff Plasma kann es zwischen Medizinern und Physikern leicht zu Verständigungsschwierigkeiten kommen: Die beiden Berufsgruppen meinen damit meist nicht das Gleiche. Für Physiker ist Plasma (griech.: das Formbare) neben „fest“, „flüssig“ und „gasförmig“ der vierte Aggregatzustand. Plasmamedizin ist die Anwendung kalter physikalischer Plasmen zu therapeutischen Zwecken am oder im menschlichen bzw. tierischen Körper. Ein noch junges, sich schnell entwickelndes Forschungsbiet, von dem Experten schon in wenigen Jahren interessante Anwendungen erwarten.

DMW - Deutsche Medizinische Wochenschrift
Was ist und was kann Plasmamedizin?

DMW - Deutsche Medizinische Wochenschrift

Play Episode Listen Later Oct 21, 2011 6:26


Beim Begriff Plasma kann es zwischen Medizinern und Physikern leicht zu Verständigungsschwierigkeiten kommen: Die beiden Berufsgruppen meinen damit meist nicht das Gleiche. Für Physiker ist Plasma (griech.: das Formbare) neben „fest“, „flüssig“ und „gasförmig“ der vierte Aggregatzustand. Plasmamedizin ist die Anwendung kalter physikalischer Plasmen zu therapeutischen Zwecken am oder im menschlichen bzw. tierischen Körper. Ein noch junges, sich schnell entwickelndes Forschungsbiet, von dem Experten schon in wenigen Jahren interessante Anwendungen erwarten.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05

Komplexe Plasmen bestehen aus geladenen Mikropartikeln, die in ein teil- weise ionisiertes Gas, ein Plasma, eingebettet sind. Die Mikropartikel treten in Wechselwirkung, ihre Dynamik wird vom Gas nur schwach gedämpft. Auf- grund ihrer Größe können die Partikel mikroskopisch beobachtet werden und ihre Positionen bestimmt, sowie ihre Dynamik untersucht werden. Komple- xe Plasmen sind daher ein ideales Modellsystem, um Vorgänge in Fluiden, Festkörpern und bei Phasenübergängen zu studieren. In dieser Arbeit werden insbesondere die Vorgänge während der Kristal- lisation betrachtet. Ein 3-dimensionaler Plasmakristall wird aufgeschmolzen, um ihn anschließend wieder kristallisieren zu lassen. Dabei wird wiederholt die Position der Teilchen innerhalb der Wolke gemessen und ihre Struktur mit der von idealen Kristallen verglichen. So kann man Teilchen individu- ell einer bestimmten Struktur zuweisen. Auf diese Weise ist es möglich, nicht nur die Anteile einer bestimmten Kristallordnung, sondern auch deren exakte räumliche Verteilung zu bestimmen. Das Ergebnis dieser Analyse wird verwendet, um kristalline und flüssige Regionen zu identifizieren, sowie die Grenzflächen dazwischen zu bestimmen. Die zeitliche Entwicklung der Struktur von flüssig über hexagonal-dichteste Kugelpackung hin zu kubisch-flächenzentrierter Ordnung wird mit einem Mo- dell erklärt. Der Kristallisationsprozess wird mit einer molekulardynamischen Simu- lation nachvollzogen. Es wird die gleiche zeitliche Entwicklung der Kristall- strukturen beobachtet. Da die Experimente unter Einfluss der Schwerkraft durchgeführt werden, ergibt sich ein höhenabhängiger Druck innerhalb der Teilchenwolke. Mit Hilfe der Teilchendichte wird dieser Druck bestimmt. Im Vergleich der Kristallisa- tion verschiedener Teilchengrößen wird der Einfluss dieses Druckes sowie der unterschiedlichen Ladung und Dämpfung der Teilchen gezeigt.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Phasenübergänge in komplexen Systemen mit anisotropischen Potenzialen

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05

Play Episode Listen Later Sep 16, 2010


Elektro- und magnetorheologische Effekte (ER/MR) sind in vielen physikalischen Systemen zu beobachten, unter anderem in Kolloiden und komplexen Plasmen. Der elektro- und magnetorheologische Effekt bietet die Möglichkeit, die strukturellen Eigenschaften durch äußere Einflüsse zu justieren. Dies ermöglicht den Einsatz in zahlreichen technologischen Anwendungen, etwa in der Photonik, in der Regelung von hydraulischen Schaltungen oder in der Medizintechnik. Die speziellen Eigenschaften finden ihren Ursprung in der anisotropen Wechselwirkung zwischen den Teilchen auf mikroskopischer Ebene, denn durch das äußere Feld werden parallel ausgerichtete, dipolartige Momente der Teilchen hervorgerufen. Die dipolartigen Wechselwirkungen können dabei der gewöhnlichen Dipol-Dipol-Wechselwirkung entsprechen oder denen einer negativ-dipolartigen Wechselwirkung. Unabhängig von der Ursache dieser Wechselwirkung wird ein gemeinsames mathematisches Modell verwendet. Bei der Untersuchung des Phasenverhaltens wurde das Augenmerk auf drei charakteristische Bereiche gerichtet, nämlich den Phasengrenzen zwischen festen Phasen, flüssige Phasen mit schwacher Anisotropie und schließlich flüssige Phasen mit langreichweitiger Ordnung. Übergänge zwischen festen Phasen wurden anhand eines variationstheoretischen Ansatzes, basierend auf der Bogoliubov-Ungleichung, bestimmt. Hierbei konnte das aus Simulationen und Experimenten bereits bekannte Verhalten qualitativ und teilweise quantitativ reproduziert werden. Zudem wurden drei Regime gefunden, die gemäß der Härte des sphärisch symmetrischen Anteils der Wechselwirkung als weiches, mittleres und hartes Regime zu klassifizieren sind; das mittlere Regime ist den bisher bekannten Bereich zuzuordnen, aufgrund des Ansatzes war es zudem möglich die Phasenübergänge auf kritische Phänomene zu untersuchen, sodass ein Kandidat für eine Lambda-Linie zwischen bco- und bct-Strukturen gefunden wurde. Ergänzend wurde das Phasendiagramm der Systeme mit negativ-dipolartigen Wechselwirkungen bestimmt. Dieses ermöglicht die Erzeugung kristalliner separierter Schichten.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Analysis, modeling and numerical simulation of complex plasmas under microgravity conditions

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05

Play Episode Listen Later Nov 16, 2006


Diese Dissertation hat sich mit dem Prozess der Implementierung numerischer Simulationen auf komplexe Plasmen auseinandergesetzt, aufbauend auf ein Set gekoppelter Partielle Differentialgleichungen. Die Dynamik komplexer Plasmen ist durch die Wechselwirkung ihrer unterschiedlichen Komponenten auf mikroskopischen und mesoskopischen Ebenen charakterisiert worden. Diese Wechselwirkungen resultieren in einer Mischung elektrodynamischer und strömungsdynamischer Effekte. Dieses Differentialgleichungssystem ist mit der Methode der finiten Elemente gelöst worden, die die Verkuppelung verschiedener physikalischer Phänomene in beschränkten Bereichen ermöglicht. Die Sturm-Liouville Theorie ist als mathematisches Gerüst verwendet worden, um Maxwellsche Gleichungen in beschränkten Hohlraumresonatoren mit inhomogenen Randbedingungen zu lösen. Die Profile der elektrischen Energiedichte sind kalkuliert worden, sowohl für den elektrostatischen Fall, als auch für die ersten sechs Eigenresonanzfrequenzen der elektromagnetischen Wellen. Es hat sich herausgestellt, dass die angelegte Hochfrequenz niedriger als die erste Eigenfrequenz der HF-Plasmakammer ist. Es hat sich erwiesen, dass sich die elektromagnetische Energie innerhalb der HF-Plasmakammer unter den Eigenfrequenzen aufspaltet, und dass die Rahmenbedingungen bestimmte Resonanzen erzeugen. Die Form und Verteilung dieser elektromagnetischen Energie korrelieren mit den Eigenfunktionen der respektiven Eigenresonanzfrequenzen. Um eine makroskopische Beschreibung der Dynamik komplexer Plasmen zu erreichen, ist die kinetische Theorie für Modellierung der Strömungsdynamik verwendet worden. Die Kopplung zu den elektromagnetischen Feldern ist auf der kinetischen Ebene durchgeführt worden. Dieses Herangehen überbrückt den Sprung von der mikroskopischen Beschreibung der Boltzmann Gleichung zu einer makroskopischen Beschreibung. Wir haben festgestellt, dass sowohl die dielektrischen Partikel als auch der Dielektrikumfluss einen “Elektrodruck” empfinden. Hohe Gradienten der elektrischen Energiedichte können die komplexen Plasmen zum Wirbeln bringen. Diese Herangehensweise ist neu, denn die gegenwärtige Theorie betrachtet das Neutralgas im Ruhezustand, dabei wird der Reibungswiderstand auf die komplexen Plasmen ausüben. Die beobachteten Wirbel in dem PK-3 Plus Experiment können durch die Stromlinien dieser Gradienten erklärt werden. Wir haben herausgefunden, dass der partikelfreie Raum in dem PK-3 Plus Experiment erklärt werden kann, wenn man sowohl die Elektrostatik als auch die erste Eigenresonanzfrequenz der elektrischen Energiedichte der HF-Plasmakammer berücksichtigt. Dies ist durch ein dreidimensionales Modell visualisiert worden. Dieses Model erklärt auch die Bildung sekundürer Räume, die durch die Einführung metallischer Tastkopfe in die HF-Plasmakammer hervorgebracht werden. Die Hypothese der elektrischen Energiedichte als Quelle der partikelfreien Räume kann durch die Trennung der Partikel in den Plasmakristall-Experimenten geklärt werden. Dielektrophoretische Kräfte stoßen Partikel mit höheren Permittivität (oder größere Partikel, falls alle aus demselben Material sind) in die Richtung der Regionen mit höherer elektrischer Energiedichte. Die Grenze zwischen Partikeln unterschiedlicher Permittivität (oder Größe) ist durch Isoflächen dieser Energiedichte geformt. Die Erklärung dieser Phänomene (die auf der Distribution elektrischer Energiedichte beruht) bietet einen neuen Standpunkt zur aktuellen Theorie, die auf der Reibungskraft der Ionenströmung basiert.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Filamentierung relativistischer Elektronenströme und Anomales Stoppen

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05

Play Episode Listen Later Nov 21, 2005


Am Max-Planck-Institut für Quantenoptik steht das 10 Hz Lasersystem ATLAS zur Verfügung, dessen Pulse bei einer Dauer von 160 fs Energien bis zu 800 mJ erreichen und auf Intensitäten bis zu 1019 W/cm2 fokussiert werden können. Bei Bestrahlung dünner Festkörper-Folien (Targets) mit solchen Intensitäten werden zuerst Elektronen auf relativistische Geschwindigkeiten   1 beschleunigt. Diese Elektronen durchdringen das Target und verlassen es rückseitig in Richtung des Laserstrahles bei ponderomotiver Beschleunigung oder entlang der Targetnormalen bei Beschleunigung durch Resonanz-Absorption. Mit konventionellen Magnetfeld-Spektrometern kann nur die Energieverteilung derartiger Elektronenströme bis in den MeV-Bereich bestimmt werden. Da die Elektronen nach dem Target im Vakuum eine Wegstrecke von einigen cm zurücklegen müssen, unterliegen diese Ströme allerdings der Alfven-Grenze IA = 17,5  kA. Ab dieser Stromstärke werden die Elektronen von ihrem eigenen Magnetfeld auf Kreisbahnen gezwungen, so daß der Teilchenfluß zusammenbricht bis der Alfven-Wert unterschritten ist. Bei Laser-Plasma-Experimenten können nun Stromstärken deutlich größer als 1 MegaAmpere auftreten, so daß man gezwungen ist, die Elektronen-Diagnostik unmittelbar mit dem Beschleunigungsbereich des Laser-Targets zu verbinden, wie dies bei der Messung von Röntgenstrahlung oder der Übergangsstrahlung möglich ist. Da der Energiebereich der Röntgendiagnostik um die 10 keV und optische Abbildungen wegen der kleinen Wellenlänge auf wenige Möglichkeiten eingeschränkt sind, können nur begrenzt Aussagen über die Auswirkungen von relativistischen Elektronen bei der Wechselwirkung mit Plasmen gemacht werden. Die Übergangsstrahlung ist sensitiv für den gesamten Energiebereich und deswegen eine Unterscheidung der Elektronen in Energie und dazugehöriger räumlicher Verteilung schwierig. Mit dem Cerenkov-Effekt steht in dieser Arbeit eine Diagnostik zur Verfügung, die auf Elektronenströme aus der Laser-Plasma-Wechselwirkung bei relativistischen Intenstitäten >1018 W/cm2 anwendbar ist. Der Brechungsindex eines optisch transparenten Cerenkov-Mediums legt zusammen mit der optischen Abbildung des Cerenkov-Lichts (im sichtbaren Spektralbereich) den Energiebereich zwischen 180 keV und 230 keV - bei Trajektorien parallel zur Targetnormalen - fest. Mit sehr dünnen Cerenkov-Medien (z.B. 50 µm Tesafilm, direkt auf die Targetrückseite aufgeklebt) und einer schnell geschalteten CCD kann eine örtliche Auflösung bis zu 4 µm genutzt werden, um die Stromprofile und die Anzahl der Elektronen zu messen. Bei Aluminium- und Polypropylen-Targets mit einer Dicke bis zu 10 µm werden filamentierte Elektronenströme großer Dichte gemessen, die von dem Laserpuls in einem ausgedehnten Vorplasma beschleunigt werden. Mit zunehmender Targetdicke verschwindet die Filamentierung und geht in zwei breite Gauß-förmige Lichtverteilungen über. Entsprechend den experimentellen Verhältnissen werden diese beiden Elektronenströme den Beschleunigungsmechanismen der Resonanz-Absorption und der ponderomotiven Kraft zugeordnet. Auch im Fall der Filamentierung wird nachgewiesen, daß die Elektronen ponderomotiv beschleunigt werden. Dazu läßt sich die Anzahl der gemessenen Elektronen (proportional zur Anzahl der Cerenkov Photonen und zur Dicke des Cerenkov Mediums) als Funktion der Laser-Intensität auswerten. Darüber hinaus zeigen Experimente unter Einsatz einer weiteren Pockelszelle nach dem Regenerativen Verstärker, mit dem sich der ASE-Vorpuls (amplified spontaneous emission) mit einer Dauer zwischen 0,5 und 5 ns kontrollieren läßt, daß das Vorplasma einen wesentlichen Einfluß auf die Elektronenbeschleunigung hat. Die ASE-Intensität und -Energie ist groß genug (1012 W/cm2), um ein Vorplasma mit unterkritischer Dichte ( ) zu zünden, in dem die Länge des Dichtegradienten von der Größenordnung (100 µm) der Ringdurchmesser der filamentierten Strukturen ist. Der Durchmesser eines einzelnen Stromfilaments von mehr als 10 µm wird vor allem durch die Hintergrundplasmadichte eingestellt, in dem durch die Ladungstrennung starke Rückströme aufgebaut werden. In dieser Situation der sich begegnenden Ströme können die Magnetfelder zumindest teilweise kompensiert werden, so daß die Vorwärtsströme die Alfven-Grenze für die Stromstärke um viele Größenordnungen übersteigen können. Bei diesen Verhältnissen bilden sich über die Weibel-Instabiltiät die filamentierten Ringstrukturen, die bereits in entsprechenden 2D- und 3D-PIC-Simulationen (Particle-In-Cell) untersucht wurden. In diesem Zusammenhang wurde auch das sog. Anomale Stoppen vorhergesagt, das zu einem Energieübertrag der Elektronen an das Hintergrundplasma führt, der deutlich größer ist als bei klassischen Coulomb-Stößen. Das Anomale Stoppen geht zurück auf die Koaleszenz ("merging") benachbarter Filamente, die jeweils ein Vielfaches der Alfven-Stromstärke transportieren können. Die dabei aufgebauten starken elektrischen und magnetischen Felder (1010 V/cm, Mega-Gauss) beziehen ihren Energieinhalt aus der kinetischen Energie der Elektronen und Übertragen diesen in einer lokalen, räumlichen Expansion an die Plasma-Ionen. Durch Messung der Elektronenzahl in Abhängigkeit von der Target-Dicke kann die deutliche Abnahme der Stromstärke nach wenigen µm Festkörperdicke nachgewiesen werden. Anhand eines einfachen Modells wird der Energieübertrag numerisch simuliert und mit klassischen Verlustmechanismen verglichen.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Analyse dynamischer Volumenprozesse in komplexen Plasmen

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05

Play Episode Listen Later Jun 10, 2003


Tue, 10 Jun 2003 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/1111/ https://edoc.ub.uni-muenchen.de/1111/1/Goldbeck_Dirk_David.pdf Goldbeck, Dirk David ddc:530, ddc:500, Fakultät für Physik

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Zur Dynamik relativistischer Teilchen in astrophysikalischen Plasmen

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05

Play Episode Listen Later Jul 25, 2002


Mit der vorliegenden Arbeit wird die weltweit erste numerische Simulation eines selbstinduzierten freien Elektronen Lasers (FEL) vorgestellt. Zu ihrer Durchf¨uhrung wurde ein massen– und energieerhaltender ”Particle in Cell Code“–(PIC) verwendet, der es erlaubt eine Region in einer Pulsarmagnetosph¨are entsprechend der kinetischen Plasmatheorie zu behandeln und damit den dort agierenden FEL–Prozeß zu modellieren. Zun¨achst wird die Existenz eines FEL–Szenarios in einer Pulsarmagnetosph¨are motiviert und die physikalischen Parameter an einem solchen Ort dargelegt. Anschließend werden die f¨ur diese Arbeit relevanten Teile der relativistischen, kinetischen Plasmatheorie erarbeitet, soweit dies f¨ur das Verst¨andnis des FEL notwendig ist. Nach einer genauen Beschreibung der verwendeten, numerischen Verfahren werden die Ergebnisse aus der Simulation im Detail diskutiert. Dabei wird nicht nur auf das Anwachsen von elektrostatischen Langmuirwellen eingegangen, sondern auch die Energetik der beteiligten Plasmen und der emittierten Strahlung genau besprochen. In der Simulation zeigen sich viele, bisher nur in theoretischen Arbeiten vorhergesagte Vorg¨ange, deren prognostiziertes Auftreten in der Natur nun noch st¨arker untermauert werden kann. Insgesamt best¨atigen die Ergebnisse aus der Simulation auf eindrucksvolle Weise die Vorstellung, wie ein FEL–Prozeß in einer Pulsarmagnetosph ¨are ablaufen soll. Sowohl die Zeitskalen, als auch die emittierte Leistung und Frequenzen lassen sich gut mit den Erkenntnissen aus den Radiobeobachtungen von Pulsaren in Einklang bringen, was ein starkes Argument f¨ur den FEL als zugrundeliegenden, koh¨arenten Emissionsmechanismus bei Pulsaren ist.