Podcasts about gesamtausbeute

  • 2PODCASTS
  • 3EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Feb 11, 2005LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about gesamtausbeute

Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 02/07
Die Bedeutung verschiedener extrinsischer Faktoren für die Embryonengewinnung beim Rind

Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 02/07

Play Episode Listen Later Feb 11, 2005


Ziel dieser Untersuchungen war es festzustellen, ob die Haltungsumwelt und die allgemeine Fruchtbarkeitslage im Betrieb Einfluss auf die Embryonenausbeute von Spenderkühen haben. Weiterhin sollte die Bedeutung subklinischer Infektionen der Donorkühe mit Chlamydien für das Spülergebnis ermittelt werden. Dazu wurden von Juni 2003 bis Februar 2004 insgesamt 50 Milchviehbetriebe Nordbayerns untersucht, die eine Embryonengewinnung durchführen ließen. Berücksichtigt wurden nur laktierende Spenderkühe der Rasse Fleckvieh die, gemessen anhand des Anteils transfertauglicher Embryonen an der Gesamtausbeute von Embryonen und Eizellen, gute (> 66 %) bzw. schlechte (< 33 %) Spülergebnisse zeigten. Alle Spender waren zu Beginn der Behandlung klinisch und gynäkologisch unauffällig, befanden sich zwischen dem 7. und 13. Zyklustag und hatten ein deutlich zu palpierendes Corpus luteum. Die Superovulation wurde mit dem FSH-Präparat Pluset® (Fa. Calier, Spanien) durchgeführt. Am Tag der Embryonengewinnung wurde die Ovarreaktion sonographisch überprüft, wobei als minimale Superovulationsantwort 5 darstellbare Corpora lutea gefordert waren. In der Gruppe mit guten Spülergebnissen (Gruppe A, n = 30) wurden im Mittel 20,1 Embryonen bzw. Eizellen gewonnen. Der Anteil transfertauglicher Embryonen betrug durchschnittlich 84,6 %. Die durchschnittlichen Ergebnisse in Gruppe B (n = 20) waren mit 14,4 Embryonen/Eizellen und 16,7 % tauglichen Embryonen pro Spülung signifikant schlechter als in Gruppe A (p < 0,05). Bei der sonographischen Untersuchung am Tag der Embryonengewinnung konnten in Gruppe A durchschnittlich 17,5 Gelbkörper, in Gruppe B 15,8 Gelbkörper diagnostiziert werden (p > 0,05). Die Gesamtzahl der sonographisch diagnostizierten persistierenden Follikel lag bei Spendertieren mit guter Embryonenausbeute (Gruppe A) bei durchschnittlich 1,2. Spender mit schlechtem Spülergebnis (Gruppe B) hatten im Mittel 1,9 persistierende Follikel, wobei die Differenz zwischen den Gruppen nicht signifikant war (p > 0,05). Tendenziell hatten Kühe der Gruppe B (50 %) häufiger Follikel mit mehr als 20 mm Durchmesser als Tiere der Gruppe A (26,7 %). Für den Anteil der Spendertiere mit Schwergeburten sowie für die Inzidenz puerperaler und postpuerperaler Erkrankungen konnte zwischen den Versuchsgruppen kein Unterschied festgestellt werden. Kühe mit einem geringen Anteil transfertauglicher Embryonen hatten jedoch durchschnittlich eine signifikant längere Rastzeit bis zur Embryonengewinnung (Gruppe B: 185,5 Tage) als Spender mit guter Embryonenausbeute (Gruppe A: 127,0 Tage; p < 0,05). Bei einem Vergleich der Herkunftsbetriebe der Spenderkühe war für die Parameter Bestandsgröße, Stallsystem, Körperkondition und Gesundheitsstatus der Herden kein Zusammenhang zur Embryonenausbeute zu erkennen. Für die Beurteilung der Herdenfruchtbarkeit wurden folgende Kennzahlen berechnet: Brunsterkennungsrate, Differenz zwischen Verzögerungszeit und Untergrenze 1.Belegung-1.Trächtigkeitstag, Zwischenkalbezeit, erwartete Zwischenkalbezeit, Rastzeit, Verzögerungszeit, Erstbesamungserfolg, Trächtigkeitsindex, Trächtigkeitsrate, Abgangsrate wegen Unfruchtbarkeit und Abortrate. Dabei ergaben sich keine signifikanten Unterschiede zwischen den Versuchsgruppen. Mit Hilfe eines ELISA konnten bei 22 der 50 untersuchten Spender (44 %) Antikörper gegen Chlamydien diagnostiziert werden. Mittels PCR gelang der spezifische Nachweis von Chlamydophila abortus-DNA aus dem Uterus bei 38 % der Spender (n =19). Ein Einfluss direkt oder indirekt nachgewiesener Chlamydien auf die Embryonenausbeute wurde nicht festgestellt. Der unterschiedliche Spülerfolg in den Versuchsgruppen der vorliegenden Studie war durch Parameter des Betriebs- und Fruchtbarkeitsmanagements nicht hinreichend zu erklären. Die Ergebnisse lassen den Schluss zu, dass Spendertiere im ET eine Sonderstellung in der Herde einnehmen, da ihnen seitens der Tierhalter und der ET-Fachkräfte eine verstärkte Betreuungsintensität zu Teil wird. Dennoch ist bei einer akuten Verschlechterung der Herdenfertilität eine Aufklärung möglicher Ursachen zu empfehlen, da die Spendertiere auch subklinisch von negativen Umweltfaktoren belastet sein können.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Synthese von (+)-9-Desmethyl-7,8-didesoxycalopin zur Aufklärung der Absolutkonfiguration einer neuen Gruppe von Pilzinhaltsstoffen

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Jul 17, 2002


Die vorliegende Dissertation widmet sich der Aufklärung der Absolutkonfiguration von neuartigen Pilzinhaltsstoffen aus bitter schmeckenden Röhrlingen der Gattung Boletus. Dazu werden stereo-selektive Synthesen von trisubstituierten δ -Lactonen durchgeführt. •(Z)-Selektive Darstellung des Lactons 22 Der ungesättigte Ester 42 mit (Z)-konfigurierter Doppelbindung kann selektiv durch Reaktion des von Ando entwickelten Horner-Emmons-Reagens 38 mit dem Aldehyd 41 hergestellt werden [(Z):(E) = 23:1]. Die Cyclisierung zum Lacton 22 gelingt in einer Ausbeute von 50% unter gleichzeitiger Abspaltung der Schutzgruppe. 1,4-Additionen metallorganischer Nucleophile an die ungesättigten22 42 Verknüpfung von Lacton und Arylring Durch Reaktion von Weinreb-Amid 50 und 2-Brompropen wird das α ,β -ungesättigte Keton 55 dargestellt, das in einer Sequenz aus Epoxidierung, regioselektiver radikalischer Oxiran-Öffnung und Veresterung in das Phosphonat 68 überführt wird. Eine intramolekulare Horner-Emmons-Reaktion unter sehr milden Bedingungen führt zum ungesättigten Lacton 63. Durch hoch diastereoselektive Epoxidierung erhält man 70, das als Racemat in einer achtstufigen Synthese mit 41% Gesamtausbeute ausgehend von 2,3-Dimethoxybenzoesäure zugänglich ist. Die hydrogenolytische Epoxid-Öffnung ergibt ein Gemisch der epimeren Modellverbindungen 71 und 72.OR Umsetzung des lithiierten MOM-geschützten Methylcatechols 53 mit dem literaturbekannten Weinreb-Amid (R)-52 und anschließende Veresterung liefert das Phosphonat 83. Dieses entspricht dem Intermediat 68 aus der Modellsynthese, trägt aber bereits den vollständig substituierten Aromaten und besitzt die stereochemische Information des Edukts (R)-39 (chiral pool). Die Reaktionsbedingung- en für die intramolekulare Horner-Emmons-Reaktion zum zentralen Zwischenprodukt 84 sowie die diastereoselektive Darstellung des Epoxids 85 können von der Modellstudie direkt übertragen werden. Abspaltung der MOM-Schutzgruppen in 84 ergibt Anhydrocalopin (93), das ausgehend von 3-Methyl- catechol in einer Gesamtausbeute von 14% über fünf Stufen dargestellt werden kann.Zusammenfassung 3 Umlagerung des Epoxids 85 bei gleichzeitiger Entschützung führt zu Dehydrocalopin (91), das als Enol vorliegt. Die Synthese von Dehydrocalopin (91) gelingt über sechs Stufen in einer Ausbeute von 13%. Nach Öffnung des Epoxids 85 in Benzylposition wird der Naturstoff 1 im Gemisch mit seinem β -Epimeren 89 erhalten. Calopin (1) kann massenspektroskopisch sowie durch Vergleich der 1 H-NMR-Spektren nachgewiesen werden. •Synthese von (+)-9-Desmethyl-7,8-didesoxycalopin (114) In einem neuen, vollständig veränderten Syntheseweg wird die Stereochemie des substituierten Lactons nicht in Bezug zur γ -Methylgruppe erstellt, sondern im Zuge einer auxiliargesteuerten En-Reaktion bei der Knüpfung der Bindung zwischen C α und C β aufgebaut. Diese Strategie führt zur erwünschten Relativkonfiguration des δ -Lactons. Die Reaktion von Phenylmenthylglyoxylat 96 mit dem Styrolderivat 99 liefert selektiv den α -Hydroxyester 101, dessen absolute Konfiguration durch eine Röntgenstrukturanalyse nachgewiesen wird. Nach Hydroborierung des Homoallylalkohols 101 und Cyclisierung wird ausschließlich das unerwünschte all-cis-Lacton 103 in einer Gesamtausbeute von 51% über drei Syntheseschritte erhalten. Die Konfiguration wird durch eine Röntgenstrukturanalyse zweifelsfrei bestimmt.sämtlicher Korrekturversuche bei der Hydroborierung macht eine Epimerisierung in γ -Position nach Oxidation des primären Alkohols 109 zum Aldehyd notwendig. Bei der anschließenden Reduktion des Epimerengemisches mit Natriumborhydrid cyclisiert das gewünschte Epimer sofort, während der diastereomere Alkohol zurückgewonnen werden kann. Abspaltung des Silylethers liefert (+)-9-Des-methyl- 7,8-didesoxycalopin (114). Die Gesamtausbeute an 114 beläuft sich auf 11% über neun Stufen ausgehend von Glyoxylat 96 und Styrol 99. •Darstellung des vollständig substituierten α -Hydroxyesters 138 als Schlüssel-Intermediat der Calopin-Synthese sowie des all-cis-Lactons 140 Nach der Darstellung der wichtigen Modellverbindung 114 wird eine Methode zur Einführung des vollständigen aromatischen Substitutionsmusters von Calopin ausgearbeitet. Die Grundlage hierfür bietet die ortho-Lithierung des MOM-geschützten Methylcatechols 53. Formylierung mit DMF gefolgt von einer Wittig-Reaktion führt zum Styrolderivat 127, das nach einem Wechsel der Catechol-Schutzgruppen für die En-Reaktion zur Verfügung steht. Innerhalb einer Versuchsreihe weisen sowohl der ortho-Nitrobenzylether 132 als auch der 3,4-Di-chlorbenzylether 133 die geforderte Stabilität zur Durchführung der En-Reaktion auf. 133 sollte im Unterschied zur Nitroverbindung 132 bei den nachfolgenden Schritten aber zu weniger Nebenreak-tionen neigen und bietet zudem die Möglichkeit, am Ende der Synthese unter milden Bedingungen abgespalten werden zu können. Der α -Hydroxyester 138 kann ausgehend von 3-Methylcatechol (79) in einer Ausbeute von 30% über sechs Reaktionsschritte hergestellt werden (analog 136 in 33%). Die Hydroborierung von 136, gefolgt von einer Cyclisierung, führt zum all-cis-Lacton 140. Aufklärung der Absolutkonfiguration der Calopine Mit dem Modell (2S,3R,4S)-114 als Vergleichsverbindung bekannter Konfiguration ermöglicht die Hochfeld-FT-NMR-Variante der Mosher-Methode die Aufklärung der Absolutkonfiguration von Calopin (1). Hierfür werden aus 114 die diastereomeren MTPA-Ester 145 und 146 hergestellt und die 1 H-NMR-spektroskopisch bestimmten Differenzen der chemischen Verschiebungen (∆δ -Werte) mit denen der entsprechenden Calopin-Derivate verglichen. Eine gute Übereinstimmung der ∆δ -Werte bestätigt die (2S,3R,4S)-Konfiguration der Calopine und Cyclocalopine.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Ziele dieser Arbeit waren zunächst die Optimierung der Synthese der razemischen 2- Hydroxy-2,3,3-trimethyl-butansäure (4) sowie die Entwicklung einer effizienten Razematspaltung dieser Säure. Nach dem Aufbau des Glycinäquivalents sollte dieses für den stereoselektiven Aufbau 2-substituierter 1-Aminocyclobutancarbonsäuren verwendet werden. Dabei sollte zum einen auf bereits bestehende Synthesemethoden zurückgegriffen, als auch ggf. neue Synthesewege entwickelt werden. Die 1-Aminocyclobutancarbonsäuren sollten anschließend auf ihre biologische Aktivität hin untersucht werden. Razemische 2-Hydroxy-2,3,3-trimethyl-butansäure (4) konnte in einer zweistufigen Synthese dargestellt werden, indem zunächst in Anlehnung an eine literaturbekannte Methode Pinakolon (5) mit KMnO4 zur 3,3-Dimethyl-2-oxobutansäure (13) oxidiert und diese dann mit einem Überschuß MeMgCl zur gewünschten razemischen Carbonsäure 4 umgesetzt wurde (Abb. 112). Für die Razematspaltung der razemischen α-Hydroxycarbonsäure 4 erwies sich Phenylalaninol (22) als am günstigsten. Damit konnte in zwei Schritten, durch Ausfällen und Umkristallisation, die enantiomerenreinen Carbonsäuren (S)-4 und (R)-4 nach Ansäuern in einer Enantiomerenreinheit von ≥ 99.5:0.5 erhalten werden. (S)-4 wurde durch Ausfällung mit (R)-Phenylalaninol ((R)-22, Abb. 112) und (R)-4 mit (S)-22 erhalten und dies in Ausbeuten von größer 70%. Nach der Synthese des chiralen Glycinäquivalents 2 in beiden enantiomeren Formen – (S)-2 und (R)-2 – nach einem Verfahren von A. Grandl wurde als Modellreaktion für die Synthese von Cyclobutylderivaten zunächst mit 1,3-Diiodpropan (41) als 1,3-Biselektrophil umgesetzt. Als Deprotonierungsreagenz diente Phosphazenbase (tBu-P4). Dabei entstand die spiro- Verbindung (R)-42 ohne erkennbare Nebenprodukte in einer Ausbeute von 35%. Nach Hydrolyse und Elution über einen Ionenaustauscher, konnte die freie Aminocyclobutancarbonsäure 48 in Ausbeuten bis zu 92% isoliert werden (Abb. 113). Anschließend wurden weitere Biselektrophile eingesetzt, welche mit dem Glycinäquivalent 2 2-substituierte spiro-Cyclobutanderivate liefern sollten. Zunächst wurden die mit einer geschützten Hydroxymethylenseitenkette versehenen 1,3-Biselektrophile (RS)-54 und (RS)- 65 eingesetzt. Diese waren aus 1,2,4-Butantriol ((RS)-49) in Synthesen von je 6 Stufen und in Ausbeuten von 32% ((RS)-65) und 25% ((RS)-54) zugänglich (Abb. 114). Trotz ausführlicher Variation der Versuchsbedingungen ließen sich diese mit 2 nicht zu den gewünschten spiro- Cyclobutanderivaten (ent)-64a/b umsetzen (Abb. 114). Als weiteres Biselektrophil kam trans-1,4-Dichlorbut-2-en (68) zum Einsatz. Anstelle der erwünschten diastereomeren Monoalkylierungsprodukte (ent)-69a/b wurden jedoch die vier diastereomeren spiro-Cyclopropylverbindungen (ent)-71a/b/c/d in einer Gesamtausbeute um 32% und in einem Isomerenverhältnis von 60:35:4:1 erhalten (Abb. 115). Da der Einsatz von Biselektrophilen nicht zu den gewünschten Verbindungen führte, wurde im Weiteren mit funktionalisierten Monoelektrophilen alkyliert. Der Ringschluß hatte dann in einem Folgeschritt zu erfolgen. Als Modell diente das allylierte Glycinderivat 83. Dieses wurde mit mCPBA zu den diastereomeren Epoxiden 84 und 85 umgesetzt (Ausbeuten >80%). Die anschließende Cyclisierung führte jedoch nicht zu den spiro-Cyclobutylverbindungen, was nicht unerwartet war, sondern zu den bereits bekannten spiro-Cyclopropylverbindungen 88 und 89 (Abb. 116). Aufgrund dieser Ergebnisse wurden vergleichbare Versuche mit dem homologen Alken (ent)- 135a/b durchgeführt. Das dafür erforderliche butenylsubstituierte Glycinderivat (ent)-135a/b ließ sich mit Phosphazenbase tBu-P4 als Deprotonierungsreagenz und Butenylbromid (134) in 60% Ausbeute darstellen, wobei jedoch das Auftreten des doppelt alkylierten Produktes (ent)- 82 nicht vermieden werden konnte. Mit Butentriflat (136) als Elektrophil – unter Verwendung von sBuLi als Base – ließ sich dieses Nebenprodukt vermeiden und die Ausbeute an (ent)- 135a/b betrug 69% (Abb. 117). Die Verbindung (ent)-135a ließ sich mit mCPBA in einer Ausbeute von 86% in ein Gemisch der isomeren Epoxide (ent)-97a/b überführen, wobei die Diastereoselektivität etwa 1:1 betrug (Abb. 118). Alle Versuche, die Verbindungen (ent)-97a/b zu den spiro- Cyclobutylverbindungen (ent)-139a/b zu cyclisieren blieben aber erfolglos (Abb. 118). Eine Umsetzung des monobutenylierten chiralen Glycinäquivalents (ent)-135a mit Iod, in der Absicht, das Diiodaddukt des Alkens zu erhalten, führte zu den diastereomeren monoiodierten Bicyclen (ent)-145a/b in Ausbeuten von etwa 70 % und Diastereoselektivitäten von etwa 65:35 ds (Abb. 119). Bei einer weiteren Route wurden (R)-2 und (S)-2 zunächst mit Iodessigsäureethylester alkyliert, was in sehr guten Ausbeuten (85% und 83%) gelang (Abb. 120, nur Alkylierung an (R)-2 dargestellt). Versuche, (ent)-98a/b mit 1,2-Dibromethan als Biselektrophil zur spiro- Cyclobutylverbindung (ent)-100 umzusetzen, blieben trotz Variation der Reaktionsbedingungen erfolglos (Abb. 120). In Analogie zur Arbeit von O. Achatz ließ sich jedoch der Syntheseweg zu den spiro- Cyclobutylphenylsulfonylverbindungen 133a/b erfolgreich nachvollziehen. Das Glycinäquivalent (S)-2 wurde dazu zunächst mit den silylgeschützten Iodethanolderivaten 108 und 109, und anschließend mit Iodmethylphenylsulfid (116) alkyliert und die Produkte anschließend zu den entsprechenden Sulfonen 119 und 120 oxidiert. Abspaltung der Silylschutzgruppe lieferte dann das Derivat 121 (Abb. 121). 121 war jedoch noch über eine weitere Syntheseroute zugänglich. Dazu wurde das allylierte chirale Glycinäquivalent 83 zunächst ebenfalls mit Iodmethylphenylsulfid (116) alkyliert. Anschließend wurde die dann vorliegende Verbindung 123 oxidiert und damit die Sulfidfunktion in ein Sulfon überführt und die Doppelbindung zum Aldehyd gespalten. Nach Reduktion des Produktes 128 gelangte man zum oben beschriebenen Derivat 121 mit Sulfonund OH-Funktion. Diese wurde anschließend in das Iodid 132 überführt, welches nach Behandlung mit Base (tBu-P4) in guten Ausbeuten zu den gewünschten diastereomeren spiro- Cyclobutylverbindungen 133a/b cyclisiert werden konnte. Die Hydrolyse zu den freien 1- Amino-2-phenylsulfonylcyclobutylcarbonsäuren 102a/b steht noch aus (Abb. 121). Schließlich wurde noch eine weitere Syntheseroute entwickelt, welche letztendlich zu den gewünschten diastereomeren 1-Amino-2-hydroxymethylencyclobutancarbonsäuren 150, (ent)-150, 151 und (ent)-151 führte. Für diese Route wurde von den diastereomeren butenylsubstituierten Verbindungen 135a/b, bzw. (ent)-135a/b ausgegangen und diese zunächst mit OsO4 und Trimethylamin-N-oxid behandelt, wodurch die Doppelbindung bishydroxyliert wurde. Die dabei gebildeten vicinalen Diole entstanden in einer Gesamtausbeute bis zu 90% und in einem Verhältnis von etwa 4:4:1:1. Im nächsten Schritt wurde das Isomerengemisch 146a/b/c/d, bzw. (ent)-146a/b/c/d, ohne sie zu trennen, selektiv an der primären Hydroxyfunktion mit einem Silylrest geschützt (90% Ausbeute). Die sekundäre Hydroxyfunktion wurde dann in ein Iodid überführt. Die Ausbeute des Isomerengemisches 148a/b/c/d, bzw. (ent)-148a/b/c/d lag bei 90% und das Isomerenverhältnis bei etwa 4:4:1:1. Die Produkte wurden dann mit der Phosphazenbase tBu- P4 zu den gewünschten spiro-Cyclobutylverbindungen 149a/b/c/d, bzw. (ent)-149a/b/c/d cyclisiert (Ausbeute über 80%, Isomerenverhältnis etwa 45:35:15:5). Nach Desilylierung wurden in 90%iger Ausbeute Isomerengemische der freien Alkohole 139a/b/c/d, bzw. (ent)- 139a/b/c/d erhalten, die durch präparative HPLC in ihre Einzelkomponenten getrennt wurden (Isomerenverhältnis: 48:31:18:3 , Abb. 122, die Synthesesequenz ausgehend von (S)-2 ist dargestellt). Da die beiden Nebendiastereomere 139c/d, bzw. (ent)-139c/d nur in einem Anteil von zusammen 21% anfielen, wurden diese nicht für die Generierung der freien Aminosäuren verwendet. Hydrolyse der Hauptdiastereomere 139a und 139b lieferte die freien Aminosäuren 150 und 151. Zur Darstellung der spiegelbildlichen Aminosäuren (ent)-150 und (ent)-151 wurden die für diesen Zweck dargestellten Enantiomere (ent)-139a und (ent)-139b der vorgenannten Hauptisomere hydrolysiert. Die Ausbeuten für die freien Aminosäuren lagen bei über 70% (Abb. 123). Zudem wurde noch versucht, die Cyclobutaneinheit über eine thermische [2+2]-Cycloaddition aufzubauen. Angewendet wurde dabei eine Methode von Ghosez. Dabei wurde die Ethylidenverbindung (R)-154, die durch eine Aldolkondensation von (R)-2 mit Acetaldehyd (153) zugänglich war (78%), mit dem Keteniminiumsalz des N-Propionylpyrrolidins, das in situ erzeugt wurde, umgesetzt. Es entstand jedoch nur ein Produktgemisch der verschiedenen möglichen Diastereomere und dies auch nur in einer Gesamtausbeute von etwa 10%. Deshalb wurden keine weiteren Versuche in dieser Richtung unternommen (Abb. 124).