POPULARITY
Die Stimme für Erfolg - Der stimmige Podcast mit Beatrice Fischer-Stracke
Die Lunge – was für beeindruckendes Organ. Von der Form her sieht sie aus wie ein umgedrehter Baum mit unzähligen Zweigen und Verästelungen. Ausgehend von der Luftröhre, die sich in 2 Hauptbronchien teilt und von denen viele kleinere Bronchien ausgehen. Daran hängen an die 350 Mill. Lungenbläschen (Alveolen). Sie sorgen für die Aufnahme von Sauerstoff und für den Abtransport von Kohlendioxid. Sie sind zudem mit einer Schleimhaut ausgekleidet, die eingeatmete Fremdkörper nach draußen transportieren kann. Die Lunge besteht aus ca. 350 Mill. Lungenbläschen. Während die äußere Lungenoberfläche etwas weniger als 1 m2 bildet, schafft die gesamte Innenfläche der Lunge etwa 200 m2 (Tennisplatz Einzel 195m2) (Quelle: Handout Klinikum Braunschweig) Über die Atmung scheiden wir bis zu 70% unseres gesamten Ausscheidungs- und Entgiftungsprozesses aus. #Podcast #Stimmerfolg
In den Materialwissenschaften ist man immer auf der Suche nach neuen Werkstoffen und Materialien. Sehr vielversprechend sind dabei Metallschäume, dessen Wärmeleitungseigenschaften Anastasia August am Institut für angewandte Materialien erforscht und über die sie uns im Gespräch mit Sebastian Ritterbusch erzählt.Zu den besonderen Eigenschaften von Metallschäumen gehören unter anderem die große Oberfläche bzw. Grenzfläche im Verhältnis zum Volumen wie bei Lungenbläschen und die hohe Wärmeleitungsfähigkeit im Verhältnis zum Gewicht. Gleichzeitig können Metallschäume mit Luft oder anderen Materialien wie Paraffin gefüllt werden, um besondere Eigenschaften zu erhalten. Neben Bierschaum ist auch der Badeschaum eine Möglichkeit Schäume mit ihrem außergewöhnlichem Verhalten kennenzulernen. Das geschäumte Materialgemisch erhält dabei aber typischerweise nicht durchschnittliche Materialeigenschaften, sondern es können Eigenschaften der einzelnen Materialien teilweise kombiniert werden; z.B. erhält ein Metall-Paraffinschaum eine recht hohe Wärmeleitfähigkeit vom Metall gepaart mit einer hohen Wärmekapazität und vor Allem mit einem günstigen Schmelzpunkt (45-80°C) vom Paraffin und ist damit ein sehr effizienter Latentwärmespeicher.In der Natur finden sich Schaumstrukturen zum Beispiel in Knochen, die bei hoher Stabilität ein deutlich geringeres Gewicht als ein massives Material haben. Aber auch für Knochenimplantate sind Metallschäume aus Titan durch die hohe Stabilität bei geringem Gewicht und guter Verträglichkeit sehr interessant.Problematisch ist für den Einsatz von Metallschäumen, dass noch viele quantitative Messgrößen fehlen, die Herstellung noch recht teuer ist, und insbesondere nur in kleinen Größen produziert werden kann. Als Unterscheidungsmerkmal hat sich neben der Unterscheidung in offen oder geschlossen porigen Schaum die ppi-Zahl als Maß für die Porendichte etabliert, dabei zählt man die Poren pro Inch (Zoll, entspricht 2,54 cm). Dazu erfasst man auch die mittlere Porengröße (Durchmesser), ihre Standardabweichung, die Porosität, die mittlere Stegdicke und deren Form. Weiterhin können sich Größen in verschiedenen Richtungen im Material unterscheiden, und dadurch merklich deren Eigenschaften verändern.Für die Herstellung von Metallschäumen gibt es unterschiedliche Verfahren: Zwei typische Vertreter sind das Pressen mit dem anschließenden Schmelzen von gemischtem Metall- und Metallhybridpulvern für geschlossen porige feste Schäume oder Gießverfahren, wo der Metallschaum für offen porige Materialien durch keramische Negativabbildungen von Polyurethan-Schäumen nachempfunden wird.Schon früh waren Schäume als möglichst dichte Packungen ein Forschungsfeld in der Mathematik. Im Jahr 1994 haben Weaire-Phelan eine noch optimalere regelmäßige Schaumstruktur veröffentlicht, die in der Architektur des zu den olympischen Sommerspielen 2008 in Peking errichteten Nationalen Schwimmzentrums verewigt wurde. Das ebenfalls zu den Sommerspielen errichtete Vogelnest hat im Gegenteil eine zufälligere Struktur. Lange hatte man keine verlässlichen Aussagen über die Wärmeleitfähigkeit von Metallschäumen. Bei einer Leitfähigkeit von etwa 200 W/(mK) von Aluminium erreicht ein Metallschaum Leitfähigkeiten zwischen 5-13 W/(mK) während man bei Luft von einer Leitfähigkeit von etwa 0.025 W/(mK) ausgehen kann. Außerdem haben Metallschäume einen hohen Oberflächenanteil, dies bezeichnet die vorhandene Oberfläche im Verhältnis zum Volumen. Während ein voller Metallwürfel ein Verhältnis von etwa hat, kann ein Schaum ein Verhältnis von bis zu erreichen.Eine interessante Fragestellung ist auch, ab welcher Porengröße die natürliche Konvektion in mit Luft gefüllten Metallschäumen eine Rolle gegenüber der Wärmeleitung spielt. Die relevante Größe ist hier die Rayleigh-Zahl, die für Metallschäume typischer Porengrößen ergibt, dass die natürliche Konvektion zu vernachlässigen ist.Für die Simulation wird der komplette Raum des Metallschaums diskretisiert, und es gibt eine Funktion, die als Indikatorfunktion anzeigt, ob an diesem Punkt Metall oder Luft vorliegt. Hier können sowohl aus an der Hochschule Pforzheim durchgeführten Schnitten rekonstruierte Schaumstrukturen abgebildet werden, aber auch künstlich mit Algorithmen erzeugte Schäume für die Simulation abgebildet werden. Bei der künstlichen Erzeugung von Schäumen ist die Voronoi-Zerlegung ein wichtiger Algorithmus zur Bestimmung der Poren.Den eigentlichen Wärmetransport im Metallschaum wird durch die Wärmeleitungsgleichung modelliert. Sie leitet sich aus dem Energieerhaltungssatz und dem Fourierschen Satz ab. Dieses Modell stimmt aber in dieser Form nur für homogene Materialien mit konstantem Koeffizienten . Daher müssen die Sprünge in Materialeigenschaften (etwas im Übergang Luft-Metall) zusätzlich berücksichtigt werden. Dies kann über die Phasenfeldmethode realisiert werden, wo eine künstliche, diffuse Übergangsschicht zwischen den Materialien eingeführt wird. Dies ist im Prinzip eine Art von Mollifikation, wo ein Sprung durch eine glatte monotone Funktion angenähert wird. Wenn dies zusätzlich mit der Berücksichtung der anisotropen Eigenschaften der Übergangsschicht ergänzt wird, erhält man eine Basis für die in PACE 3D implementierte Simulationsmethode, die mit verschiedenen analytischen Ergebnissen und kommerziellen Softwareprodukten erfolgreich validiert werden konnte.Die Phasenfeldmethode und die Software Pace3D stammt ursprünglich aus der Simulation von Erstarrungs- und Schmelzvorgängen auf der Mikrometerskala. Metalle erstarren in Form von sogenannten Dendriten. Das sind Kristalle, die eine gewisse Ähnlichkeit mit Schneeflocken aufweisen.Eine interessante Anwendung von Metallschäumen bietet das mutige Silent Power PC Projekt, in dem ein Metallschaum den einen Rechner effizient kühlen soll. Aus den bisherigen Erkenntnissen der Arbeitsgruppe ist anzunehmen, dass ein Großteil der Kühlleistung in einem solchen System auf der Wärmeleitung liegt - für einen Einfluss der natürlichen Konvektion scheint die Porengröße zu klein zu sein.Die Faszination für Wissenschaft inspiriert Anastasia August nicht nur in der Forschung, sondern sie demonstriert sie auch auf Science Slams und im FameLab. Sie hielt dort Vorträge über ihr Forschungsgebiet und auch über das sehr unterschätzte Thema der Stetigkeit und die Anwendung auf Temperaturen auf der Erdkugel. Mit dem Vortrag auf dem Science Slam Vorentscheid in Esslingen zu Metallschäumen hat sie sich für die Meisterschaft am 6. Dezember qualifiziert.Literatur und Zusatzinformationen A. August, B. Nestler, F. Wendler, M. Selzer, A. Kneer, E. Martens: Efficiency Study of Metal Foams for Heat Storage and Heat Exchange, CELLMAT 2010 Dresden Conference Proceedings, 148-151, 2010, Fraunhofer IFAM Dresden, 2010. A. August, B. Nestler, A. Kneer, F. Wendler, M. Rölle, M. Selzer: Offenporige metallische Schäume, Werkstoffe in der Fertigung, Ausgabe 6/ November 2011, S. 45-46, 2011. M. Rölle, A. August, M. Selzer, B. Nestler: Generierung offenporiger metallischer Schaumstrukturen zur Simulation der Wärmeübertragungseigenschaften, Forschung aktuell 2011, 21-23 Hochschule Karlsruhe Technik und Wirtschaft, S. 21-23, 2011. A. Vondrous, B. Nestler, A. August, E. Wesner, A. Choudhury, J. Hötzer: Metallic foam structures, dendrites and implementation optimizations for phase-field modelling, High Performance Computing in Science and Engineering, Transactions of the High Performance Computing Center, Stuttgart (HLRS), Pages 595-605, 2011. E. Wesner, A. August, B. Nestler: Metallische Schneeflocken, horizonte, Nr. 43, März 2014. J. Ettrich, A. Choudhury, O. Tschukin, E. Schoof, A. August, B. Nestler: Modelling of Transient Heat Conduction with Diffuse Interface Methods, Modelling and Simulation in Materials Science and Engineering, 2014. J. Ettrich, A. August, B. Nestler: Open Cell Metal Foams: Measurement and Numerical Modelling of Fluid Flow and Heat Transfer, CELLMAT 2014 Dresden Conference Proceedings, 2014. J. Ettrich, A. August, M. Rölle, B. Nestler: Digital Representation of Complex Cellular Sructures for Numerical Simulations, CELLMAT 2014 Dresden Conference Proceedings, 2014. Forschungsgruppen am KIT-ZBS Institute of Materials and Processes an der Hochschule Karlsruhe - Technik und Wirtschaft Das Institut für Werkstoffe und Werkstofftechnologien (IWWT) an der Hochschule Pforzheim
Hi! Schön, dass ihr wieder eingeschaltet habt! Wir melden uns heute von draußen weil’s so schön warm geworden ist. In dieser neuen Folge von Chemie in 2 Minuten geht‘s um einen Stoff, der hier bei uns unerwünscht ist, den wir aber wo anders dringend zum leben brauchen. Es handelt sich um eine besondere Form des Sauerstoffs, nämlich Ozon. Ozon kommt unter natürlichen Bedingungen hauptsächlich in der Atmosphäre vor. Dort ist es sehr wichtig, da es die gefährliche UV-Strahlung, die aus dem All kommt absorbieren kann. Hätten wir keine Ozonschicht, würden unsere Zellen durch die UV-Strahlung geschädigt werden, was zu Hautkrebs führen kann. Doch unter bestimmten Bedingungen, zum Beispiel wenn es im Sommer sehr heiß ist und die Autoabgase miteinander reagieren, kann Ozon auch in Bodennähe vorkommen. Auch das ist ziemlich problematisch. Warum das so ist, zeigt ein Blick auf die Struktur des Ozons: Das Ozon-Molekül ist kein normales Sauerstoff-Molekül. Statt aus zwei Sauerstoffatomen besteht Ozon aus 3 Sauerstoffatomen. Es kann ein einziges Sauerstoffatom abgeben und wird dann zu normalem Luftsauerstoff. Der “normale” Sauerstoff, also O2 ist für uns Menschen ungefährlich, wir brauchen ihn zum Atmen. Aber dieses einzelne Sauerstoffatom hat keinen zweiten Bindungspartner für eine Elektronenpaarbindung, ihm fehlen also 2 Elektronen, um die Edelgaskonfiguration zu erreichen. Es ist daher sehr reaktiv, man nennt dies auch “atomaren Sauerstoff”. Atomarer Sauerstoff reagiert schon bei Raumtemperatur mit zahlreichen Stoffen, deshalb ist es auch besonders giftig für uns Menschen. Eingeatmetes Ozon zerstört die Lungenbläschen und kann im schlimmsten Fall sogar zu einem tödlichen Lungenödem führen. Aber keine Angst, so hohe Ozonkonzentrationen kommen in Bodenhöhe nicht vor. Falls dennoch bedenkliche Konzentrationen entstehen, werden die Anwohner gewarnt. Das war’s schon wieder für dieses Mal, freut euch auf weitere, interessante Folgen von Chemie in 2 Minuten und, jetzt neu, Physik in 2 Minuten mit Nils Andresen. Alle Informationen dazu findet ihr ab jetzt auf unserer neuen Website www.in2minuten.com