POPULARITY
In Folge 8 der "Wissensreise für (angehende) Heilpraktikerinnen und Heilpraktiker" nehmen wir das Nervengewebe unter die Lupe. Was hat Tetanus mit Nerven zu tun und wie passen Affen hier ins Bild? Diese Fragen und Details zum Aufbau mit Soma, Axon und Dendriten an, aber auch Gliazellen, Erregungsleitung über Aktionspotentiale und Übertragung an Synapsen sind Schwerpunkte dieser Folge. Die nächste Folge wird wieder eine Frage-und-Antwort-Folge, also, viel Spaß beim Lernen ;-) Hier kannst du mich und den Podcast unterstützen: https://steadyhq.com/wissensreise
Samsung hat eine Festkörperbatterieentwickelt, die aus mehreren Gründen „bahnbrechend“ sein soll. Erstens soll die neue Batterie Elektroautos zu 800 Kilometern Reichweite verhelfen. Noch wichtiger ist, dass eins der größten Probleme bei Lithium-Batterien ebenfalls nicht mehr auftritt: Die Bildung von Dendriten, die die Lebensdauerder Akkus begrenzen.
Evolution Radio Show - Alles was du über Keto, Low Carb und Paleo wissen musst
In Folge #129 Mein heutiger Gast ist die Öko. troph. Ulrike Gonder. Ulrike Gonder ist nicht nur ein Mensch, der scheinbar von innen heraus zu strahlen scheint, sondern auch ein Quell schier unerschöpflichen Wissens. Sie hat mittlerweile zahlreiche Bücher zu diversen Ernährungsthemen geschrieben, wobei es ihr das Fett besonders angetan hat. Sie begeistert bei Vorträgen und Seminaren durch ihre mitreißende Art und ihre Fähigkeit komplexe Themen verständlich aufzubereiten. Essen! Nicht! Vergessen!: Demenzrisiko einfach wegessen - oder: Wie die Ernährung vor Alzheimer & Co. schützen kann. Ihr neues Buch, hat sie zusammen mit dem Internisten Dr. Peter Heilmeyer geschrieben. In diesem Buch widmet sie sich einem durchaus ernsten Thema - nämlich der Demenz. Alleine in Österreich gibt es 130.000 Demenzkranke und diese Zahl soll sich bis 2050 verdoppeln. In Deutschland leben gegenwärtig fast 1,6 Millionen Demenzkranke. Also ein Thema, das uns alle angeht. Doch die frohe Botschaft ist, dass dies kein unausweichliches Schicksal ist, sondern wir ALLE etwas tun können um dem vorzubeugen. Was hat Insulin mit Hirngesundheit zu tun? Wieso ist Fett so wichtig und was kannst du tun, damit das Licht im Oberstübchen nicht ausgeht!? Bitte beachten Sie auch immer den aktuellen "Haftungsausschluss (Disclaimer) und allgemeiner Hinweis zu medizinischen Themen" auf https://paleolowcarb.de/haftungsausschluss/ 20% auf alle Produkte im BRAINEFFECT Shop Gutscheincode: Evolutionradioshow - 20% auf alle Produkte im BRAINEFFECT Shop unter www.brain-effect.com Das Video der aktuellen Folge direkt auf Youtube öffnen Und nicht vergessen: Wenn du uns auf Youtube siehst, und wenn du es noch nicht getan hast, dann abonniere unseren Kanal „Evolution Radio Show“ Wenn du das Podcast hörst, dann findest du die Links für Apple iTunes und Android hier auf unserer Homepage Transkript Julia: Ja, liebe Ulrike – Herzlich Willkommen zur Evolution Radio Show! Ulrike: Hallo Julia! Julia: Du hast ja ein neues Buch geschrieben und zwar mit dem Dr. Peter Heilmeyer zusammen und das heißt „Essen! Nicht! Vergessen!“. Und das ist ein Titel der jetzt erst einmal ein wenig zum Schmunzeln anregt, ja. Aber es geht doch um ein sehr ernstes Thema. Kannst du da ein bisschen was dazu sagen? Hintergründe für die Auswahl des Buchtitels „Essen! Nicht! Vergessen!“ Ulrike: Ja, wir haben ja diesen etwas flapsigen Titel und wir haben ja auch ein flapsiges und wie ich finde ganz lustiges Cover gewählt - und das mit Absicht. Wir haben da schon auch mit dem Verlag sehr gut darüber nachgedacht. Du hast natürlich Recht, es ist ein absolut ernstes Thema. Ich glaube wir haben alle Angst davor irgendwie dement zu werden, den Verstand zu verlieren, zu verblöden, wie immer man das nennen möchte. Aber wir haben ja eine frohe Botschaft, wenn man das so sagen darf. Wir haben ja die frohe Botschaft, dass man etwas tun kann und entscheidend ist halt auch hier, dass man rechtzeitig anfängt. Und ich glaube, deswegen ist so der bisschen lustige flapsige Titel oder auch das Cover ganz gut geeignet, weil wir eben die Leute motivieren möchten bevor sie krank werden, oder zumindest ganz am Anfang etwas zu tun und sie zu motivieren, einfach ihren Lebensstil ein bisschen zu verbessern, weil man so viele Einflussmöglichkeiten hat, und das hat sich noch gar nicht rumgesprochen. Und das war so ein bisschen der Anlass, es wirklich auch fröhlich zu machen, weil ich denke so lange man noch gesund ist oder nur Risikofaktoren nur noch keine Symptome hat, darf man das Ganze auch noch fröhlich sehen. Julia: Ja, das stimmt. Ich habe das jetzt ein bissel nachgeschaut, dass ja für Österreich gibt es Zahlen, 130.000 sind irgendwie an Demenz oder Alzheimer erkrankt und das soll sich irgendwie verdoppeln bis 2050. Deutschland schaut jetzt auch nicht viel besser aus – 1,6 Millionen. Also es ist doch eine ganz schöne Zahl. Ulrike: Das ist eine große Zahl und man hat eben Sorge durch die demographische Entwicklung, dass die Zahlen zunehmen werden. Also es steigt wohl nicht so schnell wie man ursprünglich befürchtet hat. Das ist eigentlich auch eine frohe Botschaft. Aber das hängt eben damit zusammen, dass man den einen oder anderen Risikofaktor schon im Auge hat und etwas tun kann. Aber allein dadurch, dass wir eben auch mehr ältere Herrschaften haben werden und mehr insulinresistente – und da kommen wir wahrscheinlich noch drauf zurück – werden natürlich die Zahlen steigen. Und wir dürfen ja auch nicht vergessen, für jeden Menschen der erkrankt – es ist ja eine fortschreitende demenzielle Erkrankung, ja also eine Erkrankung des Hirns, wo Hirnbereiche Schaden nehmen, die voran schreitet – für jeden Menschen der erkrankt ist, brauchen wir ja mindestens einen auch der ihn pflegt/oder sie pflegt. Das heißt, da kommt ja auch diese Doppelbelastung her, ja. Es trifft ja eben nicht nur die Betroffenen, sondern auch die Pfleger, sei es zu Hause oder im Krankenhaus. Und das ist ja Enormes was da geleistet wird, und im Grunde genommen haben die Gesundheitssysteme ja, oder die Vertreter auch große Sorge, ob wir das halt auch finanziell und personell irgendwie stemmen können was da auf uns zurollt. Julia: Ja, verständlich. Ich meine jeder der, ich weiß nicht entweder in der Familie vielleicht so was schon mal erlebt hat oder im nahen Bekanntenkreis, weiß wie belastend so etwas ist und dass das teilweise, auch wenn es natürlich vielleicht die Mutter oder der Vater oder eben nahe Angehörige sind, das teilweise schon auch die Familie wirklich an ihre Grenzen bringt. Ulrike: Absolut, absolut ja. Julia: Also das ist wirklich eine Riesenbelastung und das betrifft eben sozusagen nicht „nur“ die Person die jetzt davon betroffen ist direkt, sondern natürlich auch die ganze Familie, und das eben über Jahre vielleicht sogar. Ulrike: Vielleicht Jahrzehnte. Also wir haben auch im weiteren Bekanntenkreis Fälle. Die Leute sind wirklich viele viele Jahre krank und es wird ja immer schlimmer und immer beschwerlicher. Es ist auch ein bürokratischer Krieg. Für jede kleine Unterstützung müssen unendlich viele Papiere ausgefüllt werden. Es muss gestritten werden mit den Institutionen. Also das ist eben insgesamt keine erfreuliche Aussicht und das war so auch der Anlass. Nachdem sich die Hinweise gemehrt haben, dass tatsächlich Lebensstil, Lebensweise ganz viel auch mit dem Alzheimer-Risiko zu tun hat, haben wir dann irgendwann – also Peter Heilmeyer ist ja Arzt, Internist – und haben wir dann irgendwann gesagt, so jetzt haben wir eigentlich genug Indizien zusammen und Kenntnisse zusammen, Hinweise zusammen, dass man es auch wagen kann, so ein Buch zu schreiben. Man bewegt sich natürlich auch ein bisschen auf glattem Eis, weil das ja eine große Hoffnung auch ist, wenn man sagt, man kann über Lifestyle, über Lebensstil und insbesondere über Ernährung ja einiges tun. Vielleicht sage ich das auch vorweg: Wir machen hier natürlich keine seltsamen Heilsversprechen, sondern wir haben zusammengetragen was es an Evidenz gibt. Es gibt sehr sehr viele Risikofaktoren die sich mit anderen Erkrankungen überschneiden und von denen wir schon wissen, dass wir sie über Ernährung und Lebensstil günstig beeinflussen können. Und was uns eben sehr optimistisch gestimmt hat, sind neue Erkenntnisse aus den USA, wo verschiedene Systeme angewendet werden. In Deutschland beginnt das jetzt auch sehr zaghaft, aber wo tatsächlich die ersten Leute zurückgeholt wurden – natürlich nur ganz am Anfang der Erkrankung. Also ich sage ja immer, eine Hirnzelle die tot ist, die können wir natürlich nicht mehr lebendig machen. Das heißt, dort wo Hirnschäden schon weit fortgeschritten sind, kann man nicht mehr viel machen. Aber ich sage es mal auch ein bisschen flapsig, man hat doch den Eindruck, dass manche Hirnzellen zu Beginn nur schlafen, und die kann man wieder aufwecken. Julia: Wiederbeleben. Ulrike: Wieder beleben sozusagen, genau. Julia: Bevor wir uns jetzt eben genauer bissel anschauen – was sind denn so die Risikofaktoren und wie kann man die dann vielleicht mit Lebensstilintervention, mit Ernährung oder sonstigen Sachen beeinflussen? Was versteht man eigentlich unter Demenz/Alzheimer? Das wird ja teilweise so im Sprachgebrauch auch oft verwechselt, vielleicht auch gleich verwendet. Aber es sind ja doch zwei unterschiedliche Sachen. #Risikofaktoren und deren Beeinflussung Die Begriffe Demenz und Alzheimer Ulrike: Ja, also die große Überschrift ist im Grunde Demenz. Demenz bedeutet ja, dass Hirnfunktionen ausfallen, dass kognitive Fähigkeiten wegfallen. Und es gibt natürlich eine ganze Fülle an demenziellen Erkrankungen – so nennt man das glaube ich. Und es gibt auch ganz viele Ursachen. Also man kann durch, weiß ich Schläge auf den Kopf – wir denken an die Boxer, an den Kinofilm neulich mit der Football League, Infektionen, Vergiftungen, Alkoholabusus, Alter. Es gibt ganz ganz viele Gründe und Risikofaktoren für eine Demenz - das mal vorweg geschickt. Die Alzheimer-Erkankung wird als die häufigste Demenz angegeben. Etwa 2/3 der Demenzformen sagt man sind Alzheimer. Wobei man auch dazu sagen muss, aber das wäre eine abendfüllende Diskussion, ich will das nur erwähnt haben, dass eine Alzheimer-Diagnose ist immer auch ein bisschen geschätzt und geraten, weil eigentlich könnte man es erst definitiv nach einer Obduktion sehen, ob es tatsächlich Alzheimer war. Nur dann ist es ja für den Betroffenen auch zu spät. Insofern ist das eine akademische Diskussion. Aber jedenfalls ist z. B. typisch für Alzheimer-Patienten, dass die ersten Störungen so im Gedächtnis anfangen. Ja und das hängt damit zusammen, dass eine bestimmte Region im Gehirn, der Hippocampus – oder auf deutsch „Seepferdchen“, wir haben zwei so Seepferdchen im Kopf – dass diese Region zunächst Schaden nimmt, und das ist eben ein Hirnbereich, wo das Kurzzeitgedächtnis sitzt. Und darüber lässt sich auch erklären, dass oft Dinge zuerst vergessen werden, die in der jüngeren Zukunft waren. Man wundert sich ja immer, dass die Patienten oft noch vom Krieg erzählen können, ja oder ganz früh zurückliegend, weiß ich als die Kinder klein waren, aber das was gestern oder gerade eben passiert ist, fällt ihnen nicht mehr ein. Das erklärt sich aber über diesen Hippocampus, der eben gerade bei Alzheimer oft zuerst betroffen ist. Bei anderen Demenzformen sind andere Hirnstrukturen betroffen. Also es gibt da große Unterschiede, aber so wie es aussieht, oder so wie es im Moment die Mediziner uns erklären, ist die Alzheimer-Demenz die häufigste mit etwa 2/3 der Fälle. Und dann gibt es noch eine Form die ungefähr ¼ ausmacht. Das ist die so genannte vaskuläre Demenz und das heißt, vaskulär bedeutet, die Gefäße sind geschädigt. Und wenn wir uns vorstellen, dass unser Hirn ja ein sehr aktives Organ ist, das sehr viel Energie verbraucht und sehr viele Nährstoffe benötigt. Und die Nährstoffe werden natürlich mit den Blutgefäßen dorthin transportiert. Und wenn die Blutgefäße kaputt sind, nicht mehr elastisch sind, verstopft sind, verkalkt sind, dann kann man sich vorstellen, dass auch die Hirnfunktion nachlässt. Da haben wir auch die erste Gruppe von Risikofaktoren. Alles was unseren Gefäßen schadet, schadet eben nicht nur dem Herzen oder macht Bluthochdruck, sondern kann auch dem Gehirn schaden. In etlichen Fällen gibt es auch Überschneidungen. Dann sind die Gefäße nicht in Ordnung und es kommen andere Risiken hinzu. Das heißt, Gefäßgesundheit ist ja was, Sport, gesunde Ernährung, Blutdruck senken - da ist man schon bei der Gefäßgesundheit. Das würde auch dem Hirn zugutekommen. Aber wir wissen, oder wir sehen zunehmend aus Beobachtungsstudien, dass z. B. Menschen die sich wenig bewegen ein erhöhtes Demenzrisiko haben. Menschen die insulinresistent sind haben ein erhöhtes Demenzrisiko und sie müssen nicht an Diabetes erkrankt sein. Das fand ich z. B. sehr spannend. Wir wissen, dass manche Infektionen das Diabetesrisiko erhöhen, dass Schwermetalle wichtig sein können. Aber wenn ich es mal ein bisschen runter breche, was auch für die Ernährung dann wieder interessant ist, so war für uns das offensichtlichste im Grunde genommen die Insulinresistenz und die Gefäßgesundheit. Noch etwas ganz wichtiges, was uns aufgefallen ist: Man findet sehr sehr früh, bevor irgendwelche Symptome auftauchen, findet man mit Bild gebenden Verfahren – man kann ja heute sozusagen die Hirnaktivität sichtbar machen mit PET-Scans z. B. – kann man sehen, dass schon bevor irgendwelche Symptome kommen bei Risikopatienten die jetzt eben z. B. Gefäßprobleme haben, die z. B. insulinresistent sind, die sehr alt sind, die in der mütterlichen Linie Demenz in der Familie hatten, was erhöhtes Risiko ist, die bestimmte Genmutationen haben, das erhöht das Risiko. Bei diesen Menschen sieht man, dass schon 10 – 15 Jahre bevor irgendetwas auffällig ist, die Energieversorgung des Gehirns leicht gestört ist, also sozusagen an der einen oder anderen Stelle der Stecker gezogen ist. Man kann sich vorstellen, unser Gehirn braucht sehr viel Energie, es macht etwa 2 % des Körpergewichts aus und es verschlingt etwa ¼ der Energie die wir in Ruhe verbrauchen. Da sieht man mal so diese Diskrepanz. Und wenn ein so Energie zehrendes Organ Schwierigkeiten im Energienachschub hat, dann kann man sich vorstellen, dass das über die Jahre und Jahrzehnte dann krank macht. Also das waren so für uns die Knackpunkte. Es gibt lange Listen von Risikofaktoren, aber das waren so die Knackpunkte. Und kommt natürlich unser moderner Lebensstil dazu, wie gesagt Bewegungsmangel, Stress, oxidativer Stress, das falsche Licht, zu wenig Schlaf – name the thing! Also vieles was uns anderswo auch krank macht kann auch dem Hirn schaden. Und das ist noch ein Punkt, der uns im Buch ganz wichtig war. Viele sehen ja so Alzheimer oder eine Demenz als eine isolierte Erkrankung des Gehirns an. Und das ist genau wie beim Krebs eigentlich Quatsch. Ganz selten ist der Mensch insgesamt gesund, nur sein Hirn gibt den Löffel langsam ab, oder lässt das Licht langsam ausgehen. Sondern oft findet man eben an vielen anderen Stellen auch Probleme, seien es Entzündungen oder - es gibt einen amerikanischen Augenarzt, der darauf hinweist, dass wenn man im Augenhintergrund schon Probleme mit den Nerven erkennen kann oder mit den Blutgefäßen, dass man dann davon ausgehen kann, dass auch im Gehirn etwas nicht stimmt. Also wir könnten auch die Früherkennung deutlich verbessern. Julia: Ja, das weißt ja auch wieder bissel auch auf die vaskuläre Seite hin. Wenn schon die Blutgefäße, ich meine wenn man eben im Augenhintergrund da Probleme mit Blutgefäßen erkennt, ist das ja nur exemplarisch dafür, wie es wahrscheinlich im Rest des Körpers auch ausschaut. Ulrike: Genau. Julia: Und gerade alles was ums Auge herum ist hat ja sehr nahe Beziehungen zum Gehirn. Ulrike: Zum Gehirn, ja. Man kann ja das Auge so als Ausstülpung des Gehirns sehen. Wir haben hier auch ganz viel DHA, diese Fischfettsäure die sehr oxidationsempfindlich ist und auch das gleiche Nervensystem. Also mir hat es in einem der Bücher, die ich für die Recherche verwendet habe, der Spruch sehr gut gefallen: Wir haben nur ein Nervensystem und nur einen Blutkreislauf und alles hängt zusammen. Deswegen kann man nicht sagen, jetzt ist nur das Hirn krank oder nur das Auge. Es sind dann eben oft Stoffwechselstörungen. Und nur so können wir ja eigentlich auch erklären, warum bestimmte Ernährungsmaßnahmen oder gesunder Schlaf, oder Ketonkörper – werden wir auch drauf kommen – warum die auch bei so vielen Erkrankungen hilfreich sein können, weil das klingt ja nach Woodoo, wenn wir halt sagen, ich weiß nicht, das ist günstig für den Krebspatienten, für den Diabetiker, für den der abnehmen will und auch der, der sein Hirn schützen will - der denkt, na ja ok, jetzt sind wir hier in der Abteilung Wunderheilung. Julia: Genau! Ulrike: Aber das Entscheidende ist ja, dass wir uns hier im Grunde auf ganz grundlegenden Stoffwechselvorgängen der Zelle - die Energiegewinnung ist einfach grundlegend fürs Leben auch jeder Zelle wichtig – dass wir uns auf der Basis eigentlich aller Stoffwechselaktivität befinden. Und deswegen kann es auch so viele Auswirkungen haben natürlich dann. Julia: Ja, eben, und vor allem, wenn eben die eigentliche Ursache all dieser Sachen die du angesprochen hast womöglich eine ähnliche ist, ja also Fehlregulationen des Stoffwechsels z. B., dann macht’s ja auch wieder Sinn, warum die gleiche Intervention bei diesen scheinbar unterschiedlichen Erkrankungen so positive Ergebnisse zeigt. Ulrike: Genau. Julia: Jetzt ist es ja so, dass momentan wenn man jetzt die Diagnose Alzheimer, Demenz oder so etwas bekommt, ist das ja praktisch gefühlt das Todesurteil sozusagen und man hat das Gefühl, ja da kann man gar nichts machen, man ist praktisch hilflos ausgeliefert. Oder so wird es einem auf jeden Fall vermittelt in erster Linie. Kannst du ganz kurz sagen, wie würde jetzt momentan die Standardtherapie ausschauen? Ich meine wird da überhaupt….. Der momentane Stand der Alzheimer Therapie Ulrike: Also, im Grunde genommen steht auch überall noch zu lesen: Es ist eine unumkehrbare Hirnerkrankung. Das ist ja sehr fatalistisch, ist es auch. Und tatsächlich hat die Medizin auch fast nichts zu bieten. Es gibt ganz wenige zugelassene Medikamente, die bestenfalls Dinge etwas aufschieben. Also ich rede jetzt nicht davon, dass man natürlich den Bluthochdruck behandeln kann mit Lifestyle, mit Medikamenten, dass man für die Gefäßgesundheit was machen kann. Das ist klar. Und deswegen glaube ich gehen auch die Zahlen, steigen auch die Zahlen nicht so stark, weil die Medizin in dem Bereich schon einiges bewirken kann. Aber wenn die Diagnose gestellt ist und dann gibt’s eigentlich fast gar nichts. Wie gesagt, 2 – 3 Medikamente und es werden Unmengen an Geldern in den Sand gesetzt sage ich mal, weil auch immer wieder daran geforscht wird, wie man diese Ablagerungen – es gibt ja diese Amyloidablagerungen und solche Fibrillen, die man in einem Alzheimer-Hirn findet. Das sind typische Anzeichen, also spezielle Strukturen, die da eigentlich nicht hingehören. Und mein Eindruck ist, dass immer daran geforscht wird, wie man diese Ablagerungen wegkriegt, oder wenn sie schon mal da sind, oder wie man sie verhindert. Und da wird ein ums andere Mal werden die Millionen in den Sand gesetzt. Und Peter Heilmeyer und mich erinnert das so ein bisschen an die Cholesteringeschichte, wo man auch immer versucht, das Cholesterin aus den Plugs oder in den Plugs zu verhindern. Aber das ist ja eine Reaktion des Körpers auf etwas. Und wenn man dann anfängt zu recherchieren, dann stellt man fest, dass das Amyloid – das ist also ein Protein – dass das ganz viele Aufgaben auch im Gehirn hat, dass das überall im Körper vorkommt. Und wenn es aber eben falsch gespalten wird, wenn es nicht mehr abtransportiert werden kann, weiß ich weil man insulinresistent ist, wenn also was in diesem ganzen Amyloidstoffwechsel schiefläuft oder wenn der oxidative Stress zu hoch ist, wenn zu viele Schadstoffe, schädliche Stoffe da sind, dann kann sich eben dieses Amyloid anhäufen. Jetzt kann man sich glaube ich ganz gut vorstellen, dass Medikamente, die immer nur an diesen Symptomen rumdoktern, auch wenig Aussicht auf Erfolg haben. Ich glaube, so allmählich findet da ein bisschen Umdenken auch statt in der Medizin. Aber große Erfolge sind bisher noch nicht zu verzeichnen. Und das spricht natürlich wiederum für die Lebensstil-Intervention, wenn da jetzt tatsächlich auch erste Erfolge – es sind zwar erst Fallstudien, also wir haben noch keine großen Studien. Aber wir haben jetzt mehrere hundert Fallbeschreibungen, die zeigen, dass man tatsächlich etwas tun kann. Julia: Ja, der Vergleich mit dem Cholesterin glaube ich ist wirklich sehr gut, weil das sehr sehr ähnlich vom…. Ulrike: Von der Denke her Julia: ...von der Denkweise her ist, ja genau. Ich meine du hast das ja schon gesagt. Es gibt eben viele Risikofaktoren, aber für viele ist der einzige Faktor der immer zählt: Ja, meine Oma hat das schon gehabt oder meine Mama, oder meine Tante oder mein Onkel, was auch immer, also immer nur dieser familiäre Aspekt. Das heißt, ich bin verdammt dazu an Demenz und Alzheimer zu erkranken, ja so fatalistisch ein wenig. Ist Demenz in der Familie ein unausweichliches Schicksal? Ulrike: Genau. Also das wäre vielleicht die erste frohe Botschaft, dass man sagt, es gibt eigentlich nur, also von der Genetik her gibt’s einmal Mutationen in den sog. Präsenilin-Genen. Die sind tatsächlich eine genetische Ursache. Das kann jeder haben, bekommen, die das Alzheimer-Risiko sehr deutlich erhöhen. Aber natürlich kriegen auch diese Leute das nicht zu 100 %. Aber sie kriegen es zu einem höheren Prozentsatz und auch früher. Die erkranken oft schon in der 5. Lebensdekade. Normalerweise sagt man ja, weiß ich, über 70 oder 80 dann fängt das an. Und dann gibt’s genetische Besonderheiten. Es gibt spezielle Cholesterintransporter, Moleküle. Da gibt’s verschiedene Varianten und das vererbt sich natürlich auch. Und wir wissen auch tatsächlich, dass in der mütterlichen Linie, wenn da Alzheimer oder Demenz war, dass es dann auch das Risiko für die Nachkommen erhöht. Auch hier heißt es aber natürlich nicht, dass man mit 100 %iger Wahrscheinlichkeit erkrankt, aber man hat eine höhere Wahrscheinlichkeit als jemand, in dessen Familie die Krankheit noch nicht aufgetreten ist. Aber, selbst wenn ich da eine gewisse Vorbelastung habe - und das ist wieder die frohe Botschaft – dann kann ich mit gewissen Lebensstilfaktoren, gesunder Schlaf, richtiges Licht, gesunde Ernährung, bestimmte Fette, bestimmte Lebensmittel, auch Fastenzeiten, kann ich dafür sorgen, dass mein Risiko auch wieder sinkt. Und ich meine wir reden bei Ernährung und Lebensstilmaßnahmen sowieso nie über 0 oder 100 %, sondern es geht ja immer um erhöhte oder verminderte Wahrscheinlichkeiten. Nur wenn man das mit ganz einfachen Maßnahmen wirklich die Wahrscheinlichkeit verringern kann, dann denke ich ist es ja, wäre das auszuprobieren, ja. Man weiß tatsächlich, dass z. B. bei Menschen, die das in der Familie, gerade in der mütterlichen Linie hatten – was übrigens für die Mitochondrien spricht in der Zelle, das sind die kleinen Zellkraftwerke, die von der Mutter auf die Kinder übertragen werden, die für die Energiegewinnung zuständig sind – also diese besondere Belastung durch die mütterliche Linie zeigt auch wieder, dass wir hier ganz viel mit Energiegewinnung, mit dem Energiestoffwechsel zu tun haben. Bei diesen Menschen sieht man das z. B. auch sehr früh. 20 Jahre bevor es Symptome gibt haben die schon eine Unterversorgung. Julia: Ja Wahnsinn. Ulrike: Also schon Beeinträchtigungen – so muss ich es sagen – Beeinträchtigungen in der Energieversorgung. Und das bedeutet eben bei der heutigen normalen Lebensweise, dass die Zuckerverwertung gestört ist der Gehirnzellen. Julia: Ich meine du hast jetzt ein paar mal sozusagen das Schlagwort gebracht ja gesunde Ernährung. In Bezug auf Gehirngesundheit und natürlich du hast auch Insulinresistenz erwähnt: Was bedeutet gesunde Ernährung für das Gehirn, welche Rolle spielt da die Insulinresistenz? #Gehirngesundheit und gesunde Ernährung Insulinresistenz Ulrike: Ich fange mal mit der Insulinresistenz an. Also wir sprechen ja von einem ganz wichtigen Hormon das eben im Kohlenhydratstoffwechsel eine Rolle spielt. Insulin sorgt ja dafür, dass viele Zellen den Zucker erst nutzen können der in unserem Blut unterwegs ist und der ja da auch sein muss in geringer Menge. Wir denken bei Insulinresistenz, also wenn das Hormon nicht mehr wirkt, dann wissen wir ja kommt der Fettstoffwechsel durcheinander, wie Gewichtszunahme usw., alle diese Geschichten die passieren können bei Menschen die insulinresistent sind. Die werden auch früher oder später zum Diabetiker. Das heißt das Insulin wirkt nicht mehr richtig. Der Stoffwechsel kommt durcheinander, und dann ist eben eine eher fett-/ eiweißbetonte Ernährung viel günstiger, weil die Zuckerverwertung ja nicht mehr stimmt und weil auch oft viel zu viel Zucker im System ist. Jetzt muss man dazu wissen, dass auch ein Gehirn insulinresistent werden kann. Und dann müssen wir aufpassen, dass wir nicht in die Falle tappen und denken, im Gehirn ist das Insulin dafür verantwortlich, dass die Neuronen, also die Hirnzellen die für die Signalweiterleitung verantwortlich sind, dass die jetzt Insulin bräuchten, um Zucker aufzunehmen. Das wäre eine doofe Sache, wenn das im Gehirn so wäre. Dann würde da glaube ich öfter mal ein Blackout passieren. Das stellt sicher, dass es so gut wie möglich mit Zucker versorgt wird. Das heißt, für die eigentliche Zuckeraufnahme brauchen die Neuronen gar kein Insulin in der Regel. Es gibt ein paar Zellen die das auch brauchen. Aber wir machen es jetzt mal ganz einfach, braucht nicht. Aber das Insulin hat ganz viele verschiedene wichtige Aufgaben im Gehirn. Zum Beispiel wirkt es im Gehirn als Sättigungshormon. Jetzt haben wir ja ganz oft schon gehört, Insulin ist ein Masthormon und fördert Hunger, tirili und was nicht alles. Das ist auch richtig, wenn zu viel im System ist. Nur wenn wir zu viel Insulin im Blut haben – und jetzt wird’s spannend – kommt im Hirn zu wenig an. Das heißt, zu viel Insulin im Blutkreislauf im Körper außerhalb des Gehirns bedeutet in der Regel zu wenig Insulin im Gehirn. Also hier müssen wir quasi ganz umdenken. Und wenn wir zu wenig Insulin im Gehirn haben, dann ist z. B. das Gedächtnis beeinträchtigt, das Lernen beeinträchtigt, die Konsolidierung von Gedächtnisgeschichten. Also die Sättigung kann beeinträchtigt sein. Also wir haben im Hirn ganz andere Aufgaben fürs Insulin. Und wir haben dann wenn jemand insulinresistent ist, also wenn er sich falsch ernährt, übergewichtig ist, zu viel Insulin im Blut hat, haben wir meistens zu wenig Insulin im Gehirn. Jetzt gibt es natürlich Leute die sagen, gut, dann pfeif ich mir noch ein bisschen was rein. Man kann Insulin inhalieren z. B. durch die Nase. Das hat man auch ausprobiert – ja, doch. Daran wird geforscht und das Gute ist eben oder das Einfache, man müsste es nicht spritzen, sondern es würde eben durch die Nase kann man es direkt ins Gehirn, deswegen kann man ja auch schnüffeln, ja. Schlechte Droge, aber wirkt, geht durch. Aber das hat im Grunde auch die Hoffnungen nicht erfüllt. Es bewirkt ein bisschen was, aber meistens nur vorübergehend und auch nicht bei allen. Also es scheint doch nicht der Königsweg zu sein. So, wie kriegt jetzt die Hirnzelle, wie kriegt die genug Zucker. Die eigentliche Frage ist eigentlich – braucht die so viel Zucker? Bei unserer normalen üblichen Ernährung wo wir so viel Kohlenhydrate essen läuft unser Hirn mit Zucker. Das ist der Normalfall heute, war aber nicht immer so, bzw. wir müssen immer bedenken, dass unser Hirn flexibel ist und auch flexibel sein muss. Wenn man so ein empfindliches Ding da oben in der Schädelkalotte hat, dann kann man das nicht mit einem Brennstoff versorgen. Bei jeder leichten Unterzuckerung würden wir ja umkippen, bzw. bei jeder Hungerphase die es früher immer gegeben hat. Bei jeder Fastenkur würden wir umkippen, wenn unser Hirn nicht in der Lage wäre eben auch andere Energieträger zu nutzen. Die Fette selber, so wie das z. B. Muskelzellen können, sind dafür nicht so gut geeignet. Erstens gehen sie nicht schnell genug durch die Blut-Hirnschranke. Ein paar kommen durch, aber das ist nicht so die Masse wie es dann vom Muskel verwertet werden kann als Energieträger. Und deswegen hat die gütige Natur den Umweg über die Ketonkörper gebaut. Das heißt, wenn wir nicht essen, wenn wir fasten, so wie das immer in unserer Evolution war und wie das auch früher war – man hat eben nicht 17 Stunden am Tag gemümmelt und genascht und geschnuckelt, wie man hier in Hessen sagt, sondern hatte längere Nahrungspausen – dann wird eben Körperfett abgebaut. Und bei einem Teil dieser Fette wird der Fettabbau an einer Stelle unterbrochen. Dann werden Ketone gebildet und diese Ketone die können genauso leicht wie Zucker ins Gehirn gelangen. Die Leber gibt die ab, also sie baut sie aber nutzt sie nicht selber - das ist ja auch clever eingerichtet - werden ins Blut abgegeben. Und die können genauso gut und genauso leicht ins Gehirn gelangen wie Zucker. Sie werden genauso prima zur Energieversorgung hergenommen. Und jetzt kommt’s aber: Wenn die Zuckerversorgung schon gestört ist – warum auch immer, ich glaube man weiß es nicht ganz genau. Kann sein, dass zu wenig Zucker ins Gehirn gelangt, kann sein, dass die Zellmembranen der Hirnzellen nicht mehr richtig funktionieren, dass die Signalkaskaden nicht stimmen. Also es gibt ganz viele Möglichkeiten, warum so eine Hirnzelle nicht mehr genug Zucker aufnehmen kann. Aber sie kann sehr lange noch Ketone aufnehmen, also sowohl bei gesunden aber jungen Menschen, auch bei alten Menschen - das hat man messen können – kann das Gehirn eben auch Ketonkörper aufnehmen und sogar auch bei beginnender Demenz. Auch hier wieder: Wenn die Hirnzellen schon zu weit geschädigt sind, wenn die Mitochondrien schon kaputt sind, geht es nicht mehr, weil für die Ketonkörperverwendung braucht die Zelle Mitochondrien. Aber am Anfang einer Schädigung oder wenn die Zellen noch schlafen, wenn sie sozusagen ihre Mitochondrien nur runtergefahren haben, aber wenn die nicht kaputt sind, um mal so ein bisschen ganz einfach bildlich das zu sprechen, dann können eben Ketonkörper ganz hilfreich sein, auch kurzkettige Fettsäuren. Die eine oder andere flutscht auch durch und kann sogar im Gehirn dann zu Ketonkörpern umgebaut werden. Die Astrozyten, die Neuronentankstellen die können das. Die versorgen ihre Kollegen. Das heißt wir haben einen alternativen Brennstoff ja, wo der Zucker nicht mehr verwertet werden kann. Wo er nicht hinkommt oder einfach die Mechanik nicht mehr stimmt, kann das Keton rein, kann der Ketonkörper rein. Dann ist die Energieversorgung wieder glatt gezogen. Und Stephen Conain aus Kanada der hat so ein schönes Bild entwickelt. Also der sagt, das Hirn zieht Zucker nach Bedarf. Ja, also wenn irgendwo die Innenaktivität steigt und es wird mehr Energie benötigt, dann zieht das Hirn normalerweise mehr Zucker aus dem Blut. Aber wenn das nicht geht, sei es, dass die Blut-/Hirnschranke kaputt ist oder das irgendwelche Transporter nicht funktionieren, dann kommt halt nicht genug Zucker an. Aber wenn Ketonkörper im Blut da sind, die gehen durch, weil die werden vom Blut ins Hirn geschoben. Das ist ein ganz anderer Weg. Ja, also die gehen flutsch rein. Und rein theoretisch könnte man bis zu 70 % des Energiebedarfs des Gehirns über Ketonkörper decken. Also nicht alles, wir brauchen immer auch ein bisschen Zucker. Insofern ist es schon richtig, dass auch Zucker benötigt wird. Aber eben nicht in dieser Masse. Und dann wird es noch viel spannender, weil die Ketone, sagen wir mal das Beta-Hydroxybutyrat als wichtigster Ketonkörper, der kann noch viel mehr als Energie liefern. Und das macht die Sache so wahnsinnig spannend. Also ich weiß ja immer nicht, ob das normal ist, dass man über solche Moleküle, oder von Molekülen so begeistert sein kann. Aber wenn ich das alles lese, bin ich hin und weg, weil ich finde auch, das hat die Natur, die Schöpfung, die Evolution – wie auch immer – so wunderbar eingerichtet, dass das alles so ineinander greift und sich ersetzen kann. Es ist halt so, dass Ketone – zumindest das Beta-Hydroxybutyrat - auch entzündungshemmend wirken. Ganz oft haben wir eine Entzündungskomponente bei einer Alzheimer-Erkrankung, nicht bei allen aber bei den meisten. Dieser Ketonkörper kann einen Teil der Insulinwirkung übernehmen, ja, für Gedächtnisbildung usw. Das Beta-Hydroxybutyrat kann im Hippocampus, da in diesem Gedächtnis, Seepferdchen da, trallala, wo das alles stattfindet, kann es dafür sorgen, dass neue Neuronen gebildet werden. Ja, es sorgt dafür, dass der brain derived neurotrophic factor – das ist wieder so ein englisches Wort, BDNF – dass der gebildet wird. Das heißt, da können neue Zellen entstehen. Wir brauchen ja für die Gedächtnisbildung neue Verknüpfungen, neue Zellen. Und es gibt ganz wenige Hirnregionen, wo überhaupt neue Zellen bei Erwachsenen gebildet werden können. Und das ist im Hippocampus. Und da können die Ketonkörper das anstoßen. Sie wirken antioxidativ. Das heißt, wir haben hier nicht nur ein Energiesubstrat, was noch viel länger durchgeht, auch wenn der Zucker schon nicht mehr durchgeht oder nur noch teilweise. Sondern wir haben einen wunderbaren Schutzstoff, der eben auch einen Teil der fehlenden Insulinwirkung abdeckt, der für Neubildung, der Mitochondrienbildung anregen kann. Also ein ganzer Blumenstrauß an tollen Funktionen, und das ist einfach Klasse. Und deswegen sind die Ketone so wichtig. Julia: Ja, das ist auch was, was mich, also warum mich die ketogene Ernährung oder Ketone und das alles so wahnsinnig fasziniert, weil es einfach unglaublich ist, welche Signalmoleküle das eigentlich sind und was die alles machen. Ulrike: Und so kleine Biester, ne. Die sind so ganz einfach, so ganz kleine Sachen. Julia: Alles was perfekt ist, das ist einfach unglaublich was die Dinger können, ja. Ulrike: Ich brauch mal grad ein bisschen hell hier; bisschen dunkel irgendwie. Es wird auch gerade dunkel. Julia: Ist dir das Licht ausgegangen? Ulrike: Nein, ich hoffe, dass es noch nicht so schnell ausgeht! Das war übrigens ein Satz von Melanie Newport. Die hat ja so ein bisschen auch Ketone und Kokosöl und diese Geschichten bekannt gemacht in der Behandlung. Das war übrigens ein Satz ihres Mannes. Der hat gesagt, nachdem die das ausprobiert haben: Das Licht in meinem Kopf ist wieder da. Das finde ich so eindrucksvoll, wenn ein Betroffener das sagt. Und das Ende sagt ketogene Ernährung. Also für mich war schon auch wichtig, dass wir jetzt nicht alle Senioren auf eine ketogene Ernährung setzen müssen. Julia: Da würde es wohl eh viel leichter. Ulrike: Das wird ein bisschen schwierig glaube ich. Weil das spannende ist, man braucht gar nicht so viel. Also wir wissen ja aus der Behandlung von Epilepsie-kranken Kindern, dass wir da relativ viele Ketonkörper brauchen und auch eine relativ strenge Ernährung. Aber auch wieder die kanadische Arbeitsgruppe um Stephen Conain die haben eigentlich genaue Messungen gemacht. Es sind am Anfang nur 10, 15, 20 % die den Zellen an Energie fehlen. Und die kann man mit relativ geringen Ketonmengen schließen diese Energielücke. Das heißt, ich muss am Anfang gar keine strenge Ernährungsform machen. Und deswegen haben wir in unserem Buch, haben wir das auch LOGI+ genannt. Also die LOGI-Methode ist ja eine Form der kohlenhydratreduzierten Ernährung, aber relativ moderat. Das heißt, wir sagen eben weniger Stärke, weniger Zucker, um diese Blutzucker- und Insulinspitzen wegzunehmen, die ja auch dann zu Insulinresistenz führen können bzw. die das wieder, wenn man das weniger isst, eben zurücknimmt. Dann ganz viel Gemüse für die Schutzstoffe, da können wir noch drauf kommen, aber eben gesunde Fette, genug Eiweiß. Auch das Hirn braucht Eiweiß. Und mit Plus meinen wir Kokosöl. Das Kokosöl wird ja auch immer so ein bisschen entweder gehypt als Wundermittel oder es wird eben gesagt, das ist ganz gefährlich und macht wieder Herzinfarkt und schlag-mich-tot. Es wundert mich immer, dass solche Geschichten immer noch für Schlagzeilen sorgen können. Und wie so oft liegt die Wahrheit in der Mitte. Kokosöl hat wunderbare Eigenschaften, nämlich u. a. die, dass es auch dann die Ketonbildung etwas ankurbeln kann, wenn man jetzt keine strenge Ernährung macht. Ich würde jetzt natürlich nicht empfehlen, Fastfood und Kokosöl zu essen oder Junkfood und Kokosöl. Das macht ja irgendwie keinen Sinn. Aber zu einer moderat kohlenhydratreduzierten Ernährung, bisschen Kokosöl dazu geben, das ist sicherlich sinnvoll. Und das kann man auch nachmessen. Das ist ein milder Effekt. Und es gibt auch andere Möglichkeiten, um die Ketone zu erhöhen, z. B. mit MCT-Öl, die schneller wirken als Kokosöl. Kokosöl wirkt dafür etwas anhaltender. Und mit solchen Sachen kann man diese kleine Energielücke die am Anfang ist ganz gut schließen. Und was mir auch gut gefallen hat aus den Berichten aus Amerika, dass es eben auch sinnvoll ist wirklich mindestens über Nacht eine 12stündige, besser 14-/15stündige Nahrungskarenz einzuhalten, weil auch in dieser Zeit der Körper kleine Mengen Ketone bildet und die dann eben ihre günstigen Effekte ausüben können und – deswegen haben wir auch immer nebenbei, es ist zwar ein Ernährungsbuch, aber wir haben immer Schlaf und Licht und alles das mit erwähnt, weil es ja ineinander geht – in der Nacht und wenn wir gut schlafen und in der Dunkelheit wird eben auch repariert, werden eben auch ungünstige Stoffe aus dem Gehirn abtransportiert. Wir wissen ja heute, dass das Hirn auch so eine Art Lymphsystem hat und dass eben in der Nacht da geputzt und aufgeräumt wird und eben alles was da nichts verloren hat rauskommt, ja und dann über den Körper sozusagen entsorgt wird. Wobei das Hirn ja auch zum Körper gehört, aber du weißt was ich meine. Julia: Ja. Ulrike: Das heißt, das eben auch, dass wir auch mit dem bisschen regelmäßig essen bzw. auch mal ein paar Stunden nicht essen und am besten halt über Nacht, dass wir auch diese Prozesse unterstützen. Ja, das wir einmal die milde Ketonbildung haben und andererseits – ich sage es jetzt wieder flapsig – die Reinigungs- und Reparaturvorgänge im Hirn unterstützen können. Das ist natürlich am Anfang, wenn wir noch ganz halbwegs beieinander sind, reicht das wahrscheinlich. Je mehr man betroffen ist, desto strenger muss man natürlich sein. Und dann kann auch eine ketogene Ernährung sinnvoll sein. Julia: Ja, das ist auch so etwas eben was vielleicht auch wichtig ist, dass man, weil das was du ansprichst mit deinem LOGI+ oder einer ähnlichen Form der Ernährung, dass man einfach sagt, wenn ich die Insulinresistenz und diese vaskulären Schäden und freie-Radikale-Schäden z. B. als Basis nehme für die Progression der Erkrankung, dann kann ich natürlich sagen, gut wenn ich jetzt eine Ernährungsform wähle, die weniger Kohlenhydrate enthält und nährstoffdicht ist, gute Fette enthält, eben auch die ganzen Baustoffe nutzt oder bringt und natürlich die Radikalbelastung minimiert, dann ist das ja auch eine Art von Prävention. Ulrike: Ganz wichtig! Entzündungshemmend, viele Antioxidantien, hohe Nährstoffdichte. Wir dürfen nicht vergessen, dass unser Hirn ja nicht nur Energie braucht, sondern eben auch die richtigen Fette. Es braucht antioxidative Mikronährstoffe. Es baut natürlich einen Teil seiner Antioxidantien selber. Auch da helfen die Ketone mit. Aber es braucht dafür natürlich Mineralien. Es braucht Selen. In unserem Hirn ist relativ viel Vitamin C. Es baut sein Glutathion selbst, auch ein antioxidativer Stoff. Und dafür muss es natürlich auch Energie übrig haben, aber dafür braucht es auch die richtigen Baustoffe. Und deswegen ist genau was du sagst eine Ernährung die eben auf Grundnahrungsmitteln basiert, die sehr nährstoffdicht sind, auch tierisch und pflanzlich ist immer ideal, wenn man es kombiniert. Wer das eine oder andere weglässt, muss natürlich wieder, braucht wieder viel mehr knowhow, muss wieder viel mehr kombinieren. Aber eigentlich ist die Kombination dafür ideal, Lebensmittel aus dem Meer, ja, nicht nur Fisch, Meeresfrüchte, Seetang, Algen, ich weiß nicht was. Alles das was aus dem Meer kommt hat eine wunderbare Kombination. Also wir haben die für das Hirn wichtigen Fettsäuren wie DHA. Wir haben das Jod, was die Doppelbindungen schützt, was antioxidativ wirkt. Wir haben das Selen, was auch in die gleiche Richtung geht. Wir haben Vitamin D. Wir haben Vitamin B12. Also wir dürfen gerade die tierischen Lebensmittel nicht unterschätzen. Die bringen einen super Nährstoffmix mit. Und natürlich die Pflanzen, die eben wieder andere Vitamine und Mineralien mitbringen, die lösliche Ballaststoffe mitbringen, die die Darmflora gesund halten. Es gibt auch Erkenntnisse die zeigen, dass wahrscheinlich ein durchlässiger Darm auch die Blut-Hirnschranke schädigen kann. Das heißt auch hier wieder eine Verschränkung was unseren Darm gesund hält, trägt indirekt auch zur Hirngesundheit bei, weil es einfach dafür sorgt, dass die Schleimhäute, dass die Barrieren richtig funktionieren, dass keine Entzündungsstoffe, keine Krankheitserreger von einem zum anderen Ort gelangen. Und das zeigt eigentlich auch wie vielfältig und wie grundsätzlich Ernährung helfen kann. Julia: Ja, das wird ja leider immer ein bissel also runtergespielt, dass irgendwer von Bedeutung, dass eben Ernährung in irgendeiner Weise einen Beitrag dazu leisten könnte zur Gesunderhaltung bzw. auch in der Progression von Erkrankungen sich noch irgendwie mit einbringen kann. Und dann natürlich, dass sich das doch auch langsam glaube ich auch schon in der Wahrnehmung irgendwie rumspricht. Ulrike: Soll ich mal das große Licht anmachen? Julia: Ja mach mal an, mach. Ulrike: So, jetzt sieht man mich glaube ich wieder ein bisschen besser. Also ich bin noch kein Grufti. Guck mal, ich habe dir mein Neuron mitgebracht. Ich habe ein kleines Stoffneuron mit Axonen und Dendriten, das gibt’s in Stoffform. Leider gibt’s noch keine Astrozyten, das sind ja die – ich sag ja immer flapsig Neuronentankstellen – die nicht nur stützt, sondern auch Nährzellen für die Neuronen. Also die muss man gut behandeln die kleinen Jungs. Julia: Vielleicht noch ein paar Worte auch zum Thema Fett, weil eben du hast das angesprochen, gute Fette, DHA, EPA. Ulrike: Stopp! Veto! Man sagt immer DHA EPA. Im Gehirn ganz wichtig: DHA und Arachidonsäure, ja. Das sind eigentlich die beiden. Julia: Die böse Arachidonsäure. Ulrike: Die böse Arachidonsäure ganz wichtig fürs Gehirn. Es gibt sogar Hirnregionen, da ist mehr Arachidonsäure als DHA. Also das ist sehr unterschiedlich im Gehirn und das Hirn will gar nicht so viel EPA. Das ist auch wichtig, ist ja auch entzündungshemmend, aber im Gehirn wird mehr Arachidonsäure und DHA gebraucht, weil die dort eben verschiedene Funktionen ausüben. Natürlich muss das auch alles ausgewogen sein. Aber eigentlich versorgt sich das Gehirn aus der Peripherie. Und da wir in unserem Blut selten Arachidonsäuremangel haben, ist das kein Thema. Sondern wir haben eher ein Problem, dass nicht genug DHA da ist ja, weil wir nicht genug Fisch essen oder Algen oder was auch immer. Wobei die DHA ein zweischneidiges Schwert ist. Es ist also auch nicht so einfach, dass man sagen kann, ja wenn man älter wird ist zu wenig DHA da und dann kriegt man irgendwie, kriegt man eben dann Hirnstörungen. Es ist oft genug DHA da, aber sie ist – ich nehme wieder ein flapsiges Bild – sie ist ranzig geworden, defekt. Und dann kann sie natürlich ihre Aufgaben nicht mehr erfüllen. Und daran wird wieder deutlich, oder das erklärt auch, warum wir in den epidemiologischen Studien sehen, dass Leute, die regelmäßig Fisch essen, ein geringeres Alzheimer-Risiko haben. Aber wenn ich Supplemente gebe, Fischöl-Supplemente, habe ich oft keinen Effekt. Manchmal bringt es was. Das kommt auch wieder ein bisschen auf die Dosierung und auf den Status an, auch der Menschen und auf den Krankheitsstand. Aber Fisch scheint besser zu sein. So, warum? Fisch bringt Eiweiß, Fisch bringt DHA, Fisch bringt auch Arachidonsäure. Das wird immer vergessen. Also wir haben ja die ganzen mehrfach ungesättigten Fettsäuren. Fisch bringt Jod. Fisch bringt Vitamin D, Selen. Also wir haben hier einen perfekten Nährstoffmix, ja, noch ein bisschen Gemüse dabei, sozusagen für die Darmflora und dann haben wir ganz tolle Sachen. Also richtige Fette für das Gehirn bedeutet in erster Linie DHA und Arachidonsäure, wobei wir an Letzterer eben in der Regel keinen Mangel leiden und deswegen sprechen wir sehr viel von den Omega 3 Fettsäuren. Und die EPA wird natürlich auch gebraucht. Aber mehr eigentlich in anderen Körperteilen, und sie kommen ja zusammen meistens auch im Fisch und in Lebensmitteln vor. Insofern ist sie auch wichtig, aber im Gehirn spielt sie nicht ganz so die große Rolle wie die DHA. Julia: Es wird ja auch oft vergessen, dass das Gehirn ich glaube zu 70 % in der Trockenmasse aus Fett eigentlich besteht. Ulrike: Ziemlich viel und ziemlich viel Cholesterin. Julia: Genau, diese Anhangsfette, also man spricht immer nur über die Omega 3. Ulrike: Genau. Julia: Aber ich meine, das besteht ja nicht nur aus Omega 3 sondern auch aus wichtigen anderen Fetten. Ulrike: Das wäre eine Katastrophe! Julia: Das Cholesterin das müsste man rausnehmen. Ulrike: Das würde uns aus den Ohren rauslaufen, genau. Und wahrscheinlich wären wir gar nicht so alt geworden, zumindest ich nicht, weil du sprichst da einen ganz wichtigen Punkt an. Die ungesättigten Fettsäuren die sind exorbitant wichtig, gerade die DHA die in der Natur seit 600 Mio. Jahren für Signalübermittlung verwendet wird. Die ist extrem wichtig und extrem gut dafür geeignet. Aber sie hat eben auch eine Schattenseite. Sie ist extrem empfindlich. Sie hat 6 Doppelbindungen. Da kann es überall knallen und zischen. Und das heißt sie geht auch leicht kaputt. Und sie muss natürlich auch – die sitzt ja überwiegend in den Zellmembranen und wir sehen nachher an diesen Neuronen mit den langen Fortsätzen, da ist ja ganz viel Zellmembranmaterial, und die Zelle packt auch die DHA schon genau dahin wo sie gebraucht wird. Sie will sie z. B. nicht gern in der Mitochondrienmembran haben, weil da wird der ganze Sauerstoff verarbeitet. Das ist nicht so prickelnd. Da kann die leicht kaputt gehen. Aber wir brauchen sie für die Signalübermittlung. Das heißt, es muss genug da sein und das Hirn versucht die auch zu konservieren, aber wir müssen natürlich genug essen. Und wenn ganz viele Oxidations- und Entzündungsvorgänge im Körper sind, dann geht natürlich auch viel kaputt. Und deswegen ist auch der Nachschub schon wichtig. Das ist nicht unerheblich. Aber, ich sage ja immer so ein bisschen ketzerisch, es heißt ja immer in den Zellmembranen ist die Hälfte der Fettsäuren sind ungesättigt, und dann sage ich ja immer ganz ketzerisch, so, und was ist denn dann die andere Hälfte? Ja – gesättigt, genau! Das heißt, auch die gesättigten Fettsäuren und auch das Cholesterin spielen eine sehr sehr wichtige Rolle, aber eben auch Ketone, die ja auch aus allen Fetten, auch aus gesättigten Fetten, besonders aus mittelkettigen gebildet werden. Wir brauchen z. B. Fettabkömmlinge wie die Ketone auch, um die Myolinschicht um die Nervenzellen, also um den langen Fortsatz bei den Nervenzellen zu bilden. Der besteht aus ganz speziellen vielen gesättigten Fettsäuren und Ketone sind wichtig, auch um diese Fettsäuren aufzubauen. Und daran sehen wir auch, dass wir gar nicht nur über DHA reden, sondern dass es auch gesättigte Fettsäuren in allen möglichen Längen und Größen gibt, die für die Gehirnfunktion wichtig sind. Jetzt gibt es natürlich Leute die sagen, ja aber die gesättigten kann der Körper ja selber machen. Ja, aber nicht, wenn wir insulinresistent sind und fettarm essen und ich weiß nicht was alles, wenn der gesamte Stoffwechsel nicht funktioniert, wenn Entzündungen da sind usw. Das heißt, wir brauchen auch gesättigte Fettsäuren bzw. wir müssen uns auch gar nicht davor fürchten, wenn wir die Kohlenhydrate reduzieren, so wie wir das sonst ja auch immer sagen. Dann werden die Fette eben eher zur Energieversorgung und auch für die Bau- und Strukturmaßnahmen verwendet, wofür sie ja eigentlich auch da sind. Julia: Super. Was wären jetzt sozusagen, weil wir ja gerade jetzt bei den Lebensmitteln sind, was wäre deiner Meinung nach, oder deine TOP-3-Lebensmittel? Wie sind die absoluten Gehirnflitzer, die müssen unbedingt sein? Die wichtigsten Gehirn-Lebensmittel, 46:36 Ulrike: Also die müssen unbedingt sein. Na ja gut, also Fisch ist ganz klar. Ja, das hat sich glaube ich auch so ein bisschen rumgesprochen, also fetter Fisch hat sich auch rumgesprochen. Da kommt immer dann die Sache, ja, der hat aber auch Schadstoffe. Auch dazu gibt es schon Studien. Also einmal kann man natürlich gucken, dass man möglichst schadstoffarmen Fisch findet/bekommt. Aber man weiß auch, dass tatsächlich Menschen die regelmäßig Fisch essen durchaus auch mehr Quecksilber im Hirn haben. Aber sie haben eben auch mehr Omega 3. Sie haben mehr Selen, und sie haben weniger Demenz. Also es scheint wohl noch so zu sein, dass der Nutzen überwiegt und dass unser Fisch besser wird und die Meere sauberer, das denke ich immer sind politische Entscheidungen. Da müssen wir uns auf ganz anderer Ebene einsetzen, dass unsere Lebensmittel besser werden. Aber es ist aus meiner Sicht keine Lösung zu sagen, wir essen jetzt keinen Fisch mehr. Sonder wir müssen gucken, dass wir bessere Lebensmittel kriegen und uns dafür politisch einsetzen. Julia: Man muss ja auch überlegen: Was ist die Alternative, Ja, und ist die jetzt so viel besser? Ich meine, dann habe ich halt Glyphosat drin. Ulrike: Ja, ok. Gut, du hast gefragt die 3 wichtigsten. Also der Fisch steht sicherlich ganz oben, der Meeresfisch mit dem Jod noch dabei. Und dann an zweiter Stelle würde ich dann schon die pflanzlichen Lebensmittel, und ich würde eigentlich, ich würde Gemüse, Obst und Nüsse fast nebeneinander stellen. Die haben alle ihre Vorteile. Sie haben phenolische Substanzen, also sekundäre Pflanzenstoffe. Sie haben Ballaststoffe. Sie bringen das pflanzliche Eiweiß mit. Also sie haben eine Fülle an Schutzstoffen, die den Fisch oder andere tierische Lebensmittel optimal unterstützen. Ich glaube ein bisschen beim Beerenobst haben wir natürlich den Vorteil, dass nicht so viel Zucker drin ist und dass sie ballaststoffreich sind. Aber ich glaube, dass die Empfehlung zu Beerenobst auch ein bisschen daher rührt, dass das Beerenobst eigentlich auch am besten untersucht ist. Es ist ja immer auch die Frage wo haben wir Daten. Und ja, es gibt ein bisschen was zu Zitrusfrüchten. Es gibt sehr viel zu Blaubeeren. Es gibt ein bisschen was zu Cranberries oder Granatapfel. Aber weiß ich nicht, wenn wir jetzt ich sage mal Feigen und Äpfel und Nektarinen untersuchen, kommt vielleicht auch was dabei heraus. Also ich will jetzt gar nicht sagen es ist nur das Beerenobst. Aber das hat natürlich eine Fülle an Schutz- und Wirkstoffen und ist sehr gut zu verwenden. Gemüse haben wir ja schon gesagt. Nüsse ganz interessanterweise eben auch mit vielen interessanten Fetten, Eiweiß, Ballaststoffe. Also auch eine tolle Kombination. Aber Nüsse sind natürlich immer eher Snacks. Also wir wollen ja jetzt nicht, dass die Leute kiloweise Nüsse essen. Aber die kann man ruhig auch genießen. Das wären so meine TOP und natürlich ergänze ich Kokosöl. Julia: Natürlich! Ulrike: Weil das Kokosöl einfach selbst, wenn ich jetzt mich nicht so perfekt ketogen ernähre oder nicht so Top LOGI mich ernähre, aber es bringt eben doch einen kleinen Zusatzeffekt durch die milde Ketonbildung. Ich glaube, dass gerade wenn das schon darum geht, wie kann ich auch alte Leute motivieren – das Kokosöl bringt ja auch so eine leichte Süße von Natur aus mit und man weiß ja, dass oft die Leute dann auch auf Süßes stehen. Dann ist das vielleicht auch eine Möglichkeit, ein gutes Fett eben in Süßspeisen einzuarbeiten oder auch einen Teil der Süße dadurch einzusparen. Ich kann ja auch mit Kokosflocken arbeiten. Ich kann Kokosnuss essen. Also ich muss ja nicht nur das Öl nehmen, sondern ich kann ja auch andere Kokosprodukte verwenden und da habe ich ganz vielseitige. Julia: Jetzt weiß man natürlich auf der einen Seite halt glücklich, wenn man jemanden älteren betreut und der wirklich noch zu Hause ist, da hat man es natürlich einfacher, weil man ja auch da noch mitbestimmt was vielleicht auf den Tisch kommt. Wenn man für sich selbst kocht und das auch präventiv natürlich macht, dann ist das auch eine andere Sache. Aber wie würdest du das sehen, wenn jetzt jemand schon in einem Pflegeheim ist oder in einem Seniorenheim, gar nicht unbedingt pflegebedürftig jetzt, aber angewiesen darauf, dass andere für einen kochen. Macht das dann Sinn, trotzdem Kokosöl einzubauen und zu versuchen vielleicht einfach weniger Kartoffeln jetzt essen oder so. Ulrike: Oder Kokosprodukte. Weniger - was meinst du? Julia: Kartoffeln oder irgendwas. Also kann man, hast du jetzt persönlich Erfahrung in der Umsetzung oder von jemandem gehört, ist das möglich? Bedeutung und Auswirkung des Einsatzes von Kokosöl, 50:59 Ulrike: Also ich will mal eine Sache erzählen die ich jetzt gehört habe, nicht so sehr aus dem Pflegeheim, sondern aus der privaten Betreuung. Also in den Pflegeheimen, ich würde mir halt wünschen, dass es dort mehr ausprobiert würde, weil da ist ja eben oft noch wirklich süße Speisen und preiswerte Speisen. Dann sind wir immer beim Grießbrei, bei Nudeln und Kartoffeln. Ich würde mir sehr sehr wünschen, dass eben auch die Menschen die im Pflegeheim für die Verpflegung zuständig sind, dass die ein bisschen mehr eben Kohlenhydrate reduzieren und auch sich mit Kokosöl beschäftigen. Ich glaube das passiert noch viel zu wenig, ja. Ich habe aber die Tage eine Geschichte zugetragen bekommen von einer Frau die ihre Mutter pflegt, die schon an Alzheimer erkrankt ist. Die kriegt das noch mit. Man denkt ja auch immer, ja man hat Alzheimer und ist dann weg. Aber das Schlimme ist ja, dass es sehr lange dauert und dass man am Anfang sehr wohl alles mitbekommt. Und die Mutter ist also erkrankt und die Tochter kümmert sich und ernährt sie möglichst ketogen, möglichst LowCarb mit Kokosöl. Und jetzt hat sich aber bis zur demenzkranken Mutter rumgesprochen, dass Kokosöl ja ganz böse ist, dass das Herzinfarkt macht und nicht gut ist, woraufhin sie dann mal wieder Brot gegessen hat. Und die Tochter berichtet, dass sie schon ganz kurz danach sich in der Wohnung nicht mehr orientieren konnte, also eine unmittelbare Wirkung. Und dann haben sie wieder umgestellt, und jetzt kennt sie sich wieder aus. Das finde ich sehr sehr eindrucksvoll, ist n = 1, ist jetzt ein Erfahrungsbericht. Ich bin mir sicher wir werden mehr davon hören. Der Dale Bredesen, der amerikanische Arzt, der ein umfängliches Lebensstilprogramm entwickelt hat zur Alzheimer-Therapie auch, die berichten ähnliche Dinge. Die haben die ersten Fallbeschreibungen wo sie Leute haben, die Vorstufen von Demenz haben, die z. T. am Beginn der Erkrankung sind, die aber schon so beeinträchtigt waren, dass sie ihre Arbeit nicht mehr richtig machen konnten oder z. T. sogar schon aufhören mussten. Und die erste Fallserie die beschrieben wurde, das waren 10 Patienten. Und da hat man genau das gemacht, also man hat für gesunden Schlaf gesorgt. Man hat geguckt, dass die Leute sich auch ein bisschen entspannen, soziales Miteinander und eben Kokosöl in der Ernährung oder eben MCT-Öle, also die Ketonbildung, nächtliches Fasten. Und man hat bei 9 von 10 eine solche Verbesserung gefunden, dass die wieder arbeiten gehen können oder eben wieder ihre Arbeit genauso gut machen können wie vorher. Also mir ist sehr wohl bewusst, dass das natürlich wissenschaftlich alles noch anfechtbar ist, weil es erst Fallbeschreibungen sind. Aber irgendwo muss man anfangen. Und ich denke wir haben ein sehr geringes oder eigentlich gar kein Risiko für Nebenwirkungen. Wir haben die Chance, das auszuprobieren. Das steht ja auch jedem frei. Und ich habe gehört auch, es gibt jetzt die ersten Arztpraxen in Deutschland, z. B. in Freiburg gibt’s eine Praxis, die ähnliche Programme machen. Und das sind ja Leute, die noch nicht erkrankt sind und die eben auch sagen, wir sehen gute Erfolge. Was die Erkrankten angeht, da kommen eben jetzt die ersten Berichte auch aus Amerika von Bredesen und auch das stimmt uns sehr optimistisch. Aber aus den Pflegeheimen höre ich ehrlich gesagt noch gar nichts. Und das wäre eigentlich mein sehnlichster Wunsch, dass auch ein paar Pfleger oder Altenheimbesitzer oder Aktionäre unser Buch lesen und dass man einfach erkennt, dass man wahrscheinlich mit ganz einfachen Maßnahmen wirken kann. Ich sage immer, man könnte ja mal im ersten Stock Kokosöl einführen und im zweiten Stock macht man weiter wie bisher und dann wird man schon Unterschiede sehen. Davon bin ich überzeugt. Julia: Ja, das ist wichtig. Also die Geschichte die du vorhin erzählt hast, weil ich habe genau, also auch jemanden der mir etwas Ähnliches erzählt hat von der Mutter, die mehr oder weniger ketogen ernährt worden ist. Und die musste, also da war es irgendwie so, die hat eine, da gibt es so Getränke, so Trinknahrung die dann so zuckerhaltig ist, ja. Und die hat nicht gewusst, dass sie die trinkt. Aber die hat dann angefangen dies zu trinken und auf einmal hat die eben nicht mehr auf die Toilette gefunden, ja. Ulrike: Zum Beispiel. Julia: Also das war eben wirklich… Ulrike: Und das ist wirklich sehr eindrucksvoll. Ich weiß sehr wohl, dass die Kasuistiken in der Evidenzpyramide sehr weit unten stehen. Aber sie gehört zur Evidenz dazu. Julia: Aber irgendwo muss man anfangen, so wie du es sagst. Ulrike: Ja, und die randomisierte kontrollierte Doppelblindstudie ist in anderen Bereichen auch nicht vom Himmel gefallen. Da hat man auch erst Dinge beobachtet, hat dann Grundlagenforschung gemacht, und das ist ja auch etwas was uns ja auch optimistisch stimmt was die ketogene Ernährung oder die Ketonkörperanwendung in anderen Bereich betrifft, dass wir ja auch aus der Grundlagenforschung sehr gute Hinweise haben. Und natürlich sind das im Moment alles Angebote, Hinweise. Aber ich finde die Menschen sollten das wissen, und dann entscheidet jeder für sich, ob er das ausprobieren möchte oder nicht. Aber wenn es so gute Aussichten gibt oder solche Aussicht auf Erfolg oder auf Aufschieben oder auf besseres Wohlbefinden, dann finde ich haben die Menschen ein Recht, das zu erfahren. Julia: Genau. Vor allem muss man auch immer abwägen, was sind Kosten - Nutzen oder Risikoabwägung machen. Man kann natürlich nach randomisierten Doppelblindstudien schreien, aber es ist eine Sache ob ich ein Medikament teste, das vielleicht schwerste Nebenwirkungen hat oder ob ich eine Ernährungsintervention ausprobiere, die schlimmstenfalls halt nichts bringt, ja. Also vor allem, da muss man sicherlich die Verhältnismäßigkeiten glaube ich auch betrachten, ja. Ulrike: Genau. Julia: Ich möchte noch mal dein Buch gleich in die Kamera halten. Ulrike: Das ist gut. Julia: „Essen! Nicht! Vergessen!“ eben von dir, Ulrike Gonder und Dr. Peter Heilmeyer, im systemed Verlag erschienen, und ich kann es jedem nur wärmstens empfehlen. Das was wir jetzt besprochen haben ist ja wirklich nur ein ganz ganz Mini-Mini- ja Ausschnitt aus diesem, aus dem tollen Buch, aus dem ganzen Wissen das da drin ist. Es sind Anleitungen auch wie man es wirklich umsetzen kann sehr praktisch und toll geschrieben, also verständlich. Also sachlich, fachlich sehr kompetent, aber auch verständlich, was ja oft dann das Schwierige ist, so ein komplexes Thema ja nicht zu stark zu vereinfachen, weil auch das birgt Gefahren meiner Meinung nach. Ulrike: Unbedingt, ja. Julia: Wenn es zu stark vereinfacht ist, macht es auch angreifbar natürlich. Deswegen Gratulation zu dem Buch – wirklich sehr sehr gelungen! Ulrike: Freut mich, danke! Julia: Und da möchten wir gleich noch auf etwas anderes hinweisen, nämlich: Im Februar und zwar 17./18. Februar wird der LCHF-Kongress in Düsseldorf wieder stattfinden zum 2. Mal und du wirst über dieses Thema sprechen. Ulrike: Ja, wir haben das genannt „Futter fürs Hirn – damit das Licht im Oberstübchen an bleibt“. Da habe ich die große Ehre, den ersten Vortrag halten zu dürfen und da freue ich mich sehr drauf. Julia: Toll. Und es gibt ja noch etwas, nämlich im April. Ulrike: Genau, im April werde ich mit den Damen von LCHF Deutschland, mit Iris und Margret, ein 2-Tages-Seminar anbieten genau für Menschen, die etwas für ihre Hirngesundheit tun wollen, also nicht für bereits Erkrankte, sondern die präventiv etwas für ihre Hirngesundheit tun wollen, werden wir ein 2-Tages-Seminar anbieten. Infos gibt’s dann auch auf der Internetseite von LCHF Deutschland. Und da wird es eben auch, aber nicht nur, um Ernährung gehen, sondern eben auch Stressabbau, Bewegung, Konzentrationsübungen, Licht – all die Fragen, die wir im Buch auch gestreift haben. Julia: Super. Und das ist, gibt’s da schon einen Veranstaltungsort? Ulrike: Das wird in der Nähe von Hamburg sein und es ist dann auch ein Flyer online, und man kann sich auch per Email informieren. Julia: Also wir werden dann natürlich sowieso in den shownotes verlinken, sowohl natürlich zum Buch, zum Kongress und zu dem Wochenendseminar, dass dann in allen Oberstübchen das Licht an bleiben möge! Ulrike: Genau. Julia: Dann vielen lieben Dank Ulli für deine Zeit! Ulrike: Ich danke dir! Julia: Es war wie immer eine Freude. Ulrike: Und die Zeit ist schon wieder so schnell um. Wir haben immer – ich glaube uns geht der Gesprächsstoff nicht aus. Julia: Ja, vielen Dank noch mal. Einen schönen Abend wünsche ich und bis bald! Ulrike: Bis bald! Tschüß Julia! Bücher Essen! Nicht! Vergessen!: Demenzrisiko einfach wegessen - oder: Wie die Ernährung vor Alzheimer & Co. schützen kann. Leseprobe als PDF beim Verlag Webseiten Ulrike Gonder und ihr Blog | (auf Facebook folgen) Paleo Low Carb - JULIAS BLOG | (auf Facebook folgen)
Wir melden uns live vom 32c3 aus Hamburg. Leider hat Max keine Zeit, also sucht sich Adrian mit Matthias einen ersten Gast für die Sendung. Wir wollen uns an dieser Stelle ganz Herzlich beim Team des Sendezentrums bedanken, die uns diese Live-Sende-Experience möglich gemacht haben! Das erste Thema, /*/Destabilisierung als politisches System/*/ sollte eigentlich "Strategie der Spannung" heißen. Aber wer mag mit so einem spannenden Thema schon bis Folge 19 warten? Adrian umreißt warum Staaten oder staatliche Organisationen die eigene Bevölkerung terrorisieren um eigene Interessen durchzusetzen. Dabei starten wir in Italien und reisen über Ägypten bis in die USA des 21. Jahrhunderts. Als sein erstes Thema in diesem Podcast überhaupt stellt Matthias den /*/Dimetrodon/*/ vor. Dieses urzeitliche Untier - das ich fälschlicherweise für einen Dinosaurier gehalten habe - hat den Wissenschaftlern seit seiner Entdeckung eine ganze Reihe an Fragen aufgeworfen. Trägt er ein Sonnensegel, eine Stabilierungsflosse oder doch nur eine Zurschaustellung seiner Gesundheit auf dem Rücken zur Schau? /*/Dendriten/*/ waren Mönche, die Askese auf die Spitze getrieben haben. Besser: Auf Baumspitzen. Aber darüber will Neurobiologe Adrian sicher nicht reden. Viel mehr geht es um einen Baustein der für unser gesamtes Nervensystem so essentielle Neuronen. Über Dendriten nehmen diese nämlich Informationen von benachbarten Nervenzellen auf um diese im Zellkörper zu integrieren und wiederum andere Zellen über die Ergebnisse zu informieren. Abgerundet wird die Sendung mit der Haus- und Hofdisziplin des Gastes. Matthias - seines Zeichens Informatiker - erzählt über /*/DNS/*/: Domain Name System oder -Server erlauben es uns im Internet zu surfen ohne ellenlange Zahlen- und Buchstabenketten als eindeutige Adressen auswendig zu lernen.
In den Materialwissenschaften ist man immer auf der Suche nach neuen Werkstoffen und Materialien. Sehr vielversprechend sind dabei Metallschäume, dessen Wärmeleitungseigenschaften Anastasia August am Institut für angewandte Materialien erforscht und über die sie uns im Gespräch mit Sebastian Ritterbusch erzählt.Zu den besonderen Eigenschaften von Metallschäumen gehören unter anderem die große Oberfläche bzw. Grenzfläche im Verhältnis zum Volumen wie bei Lungenbläschen und die hohe Wärmeleitungsfähigkeit im Verhältnis zum Gewicht. Gleichzeitig können Metallschäume mit Luft oder anderen Materialien wie Paraffin gefüllt werden, um besondere Eigenschaften zu erhalten. Neben Bierschaum ist auch der Badeschaum eine Möglichkeit Schäume mit ihrem außergewöhnlichem Verhalten kennenzulernen. Das geschäumte Materialgemisch erhält dabei aber typischerweise nicht durchschnittliche Materialeigenschaften, sondern es können Eigenschaften der einzelnen Materialien teilweise kombiniert werden; z.B. erhält ein Metall-Paraffinschaum eine recht hohe Wärmeleitfähigkeit vom Metall gepaart mit einer hohen Wärmekapazität und vor Allem mit einem günstigen Schmelzpunkt (45-80°C) vom Paraffin und ist damit ein sehr effizienter Latentwärmespeicher.In der Natur finden sich Schaumstrukturen zum Beispiel in Knochen, die bei hoher Stabilität ein deutlich geringeres Gewicht als ein massives Material haben. Aber auch für Knochenimplantate sind Metallschäume aus Titan durch die hohe Stabilität bei geringem Gewicht und guter Verträglichkeit sehr interessant.Problematisch ist für den Einsatz von Metallschäumen, dass noch viele quantitative Messgrößen fehlen, die Herstellung noch recht teuer ist, und insbesondere nur in kleinen Größen produziert werden kann. Als Unterscheidungsmerkmal hat sich neben der Unterscheidung in offen oder geschlossen porigen Schaum die ppi-Zahl als Maß für die Porendichte etabliert, dabei zählt man die Poren pro Inch (Zoll, entspricht 2,54 cm). Dazu erfasst man auch die mittlere Porengröße (Durchmesser), ihre Standardabweichung, die Porosität, die mittlere Stegdicke und deren Form. Weiterhin können sich Größen in verschiedenen Richtungen im Material unterscheiden, und dadurch merklich deren Eigenschaften verändern.Für die Herstellung von Metallschäumen gibt es unterschiedliche Verfahren: Zwei typische Vertreter sind das Pressen mit dem anschließenden Schmelzen von gemischtem Metall- und Metallhybridpulvern für geschlossen porige feste Schäume oder Gießverfahren, wo der Metallschaum für offen porige Materialien durch keramische Negativabbildungen von Polyurethan-Schäumen nachempfunden wird.Schon früh waren Schäume als möglichst dichte Packungen ein Forschungsfeld in der Mathematik. Im Jahr 1994 haben Weaire-Phelan eine noch optimalere regelmäßige Schaumstruktur veröffentlicht, die in der Architektur des zu den olympischen Sommerspielen 2008 in Peking errichteten Nationalen Schwimmzentrums verewigt wurde. Das ebenfalls zu den Sommerspielen errichtete Vogelnest hat im Gegenteil eine zufälligere Struktur. Lange hatte man keine verlässlichen Aussagen über die Wärmeleitfähigkeit von Metallschäumen. Bei einer Leitfähigkeit von etwa 200 W/(mK) von Aluminium erreicht ein Metallschaum Leitfähigkeiten zwischen 5-13 W/(mK) während man bei Luft von einer Leitfähigkeit von etwa 0.025 W/(mK) ausgehen kann. Außerdem haben Metallschäume einen hohen Oberflächenanteil, dies bezeichnet die vorhandene Oberfläche im Verhältnis zum Volumen. Während ein voller Metallwürfel ein Verhältnis von etwa hat, kann ein Schaum ein Verhältnis von bis zu erreichen.Eine interessante Fragestellung ist auch, ab welcher Porengröße die natürliche Konvektion in mit Luft gefüllten Metallschäumen eine Rolle gegenüber der Wärmeleitung spielt. Die relevante Größe ist hier die Rayleigh-Zahl, die für Metallschäume typischer Porengrößen ergibt, dass die natürliche Konvektion zu vernachlässigen ist.Für die Simulation wird der komplette Raum des Metallschaums diskretisiert, und es gibt eine Funktion, die als Indikatorfunktion anzeigt, ob an diesem Punkt Metall oder Luft vorliegt. Hier können sowohl aus an der Hochschule Pforzheim durchgeführten Schnitten rekonstruierte Schaumstrukturen abgebildet werden, aber auch künstlich mit Algorithmen erzeugte Schäume für die Simulation abgebildet werden. Bei der künstlichen Erzeugung von Schäumen ist die Voronoi-Zerlegung ein wichtiger Algorithmus zur Bestimmung der Poren.Den eigentlichen Wärmetransport im Metallschaum wird durch die Wärmeleitungsgleichung modelliert. Sie leitet sich aus dem Energieerhaltungssatz und dem Fourierschen Satz ab. Dieses Modell stimmt aber in dieser Form nur für homogene Materialien mit konstantem Koeffizienten . Daher müssen die Sprünge in Materialeigenschaften (etwas im Übergang Luft-Metall) zusätzlich berücksichtigt werden. Dies kann über die Phasenfeldmethode realisiert werden, wo eine künstliche, diffuse Übergangsschicht zwischen den Materialien eingeführt wird. Dies ist im Prinzip eine Art von Mollifikation, wo ein Sprung durch eine glatte monotone Funktion angenähert wird. Wenn dies zusätzlich mit der Berücksichtung der anisotropen Eigenschaften der Übergangsschicht ergänzt wird, erhält man eine Basis für die in PACE 3D implementierte Simulationsmethode, die mit verschiedenen analytischen Ergebnissen und kommerziellen Softwareprodukten erfolgreich validiert werden konnte.Die Phasenfeldmethode und die Software Pace3D stammt ursprünglich aus der Simulation von Erstarrungs- und Schmelzvorgängen auf der Mikrometerskala. Metalle erstarren in Form von sogenannten Dendriten. Das sind Kristalle, die eine gewisse Ähnlichkeit mit Schneeflocken aufweisen.Eine interessante Anwendung von Metallschäumen bietet das mutige Silent Power PC Projekt, in dem ein Metallschaum den einen Rechner effizient kühlen soll. Aus den bisherigen Erkenntnissen der Arbeitsgruppe ist anzunehmen, dass ein Großteil der Kühlleistung in einem solchen System auf der Wärmeleitung liegt - für einen Einfluss der natürlichen Konvektion scheint die Porengröße zu klein zu sein.Die Faszination für Wissenschaft inspiriert Anastasia August nicht nur in der Forschung, sondern sie demonstriert sie auch auf Science Slams und im FameLab. Sie hielt dort Vorträge über ihr Forschungsgebiet und auch über das sehr unterschätzte Thema der Stetigkeit und die Anwendung auf Temperaturen auf der Erdkugel. Mit dem Vortrag auf dem Science Slam Vorentscheid in Esslingen zu Metallschäumen hat sie sich für die Meisterschaft am 6. Dezember qualifiziert.Literatur und Zusatzinformationen A. August, B. Nestler, F. Wendler, M. Selzer, A. Kneer, E. Martens: Efficiency Study of Metal Foams for Heat Storage and Heat Exchange, CELLMAT 2010 Dresden Conference Proceedings, 148-151, 2010, Fraunhofer IFAM Dresden, 2010. A. August, B. Nestler, A. Kneer, F. Wendler, M. Rölle, M. Selzer: Offenporige metallische Schäume, Werkstoffe in der Fertigung, Ausgabe 6/ November 2011, S. 45-46, 2011. M. Rölle, A. August, M. Selzer, B. Nestler: Generierung offenporiger metallischer Schaumstrukturen zur Simulation der Wärmeübertragungseigenschaften, Forschung aktuell 2011, 21-23 Hochschule Karlsruhe Technik und Wirtschaft, S. 21-23, 2011. A. Vondrous, B. Nestler, A. August, E. Wesner, A. Choudhury, J. Hötzer: Metallic foam structures, dendrites and implementation optimizations for phase-field modelling, High Performance Computing in Science and Engineering, Transactions of the High Performance Computing Center, Stuttgart (HLRS), Pages 595-605, 2011. E. Wesner, A. August, B. Nestler: Metallische Schneeflocken, horizonte, Nr. 43, März 2014. J. Ettrich, A. Choudhury, O. Tschukin, E. Schoof, A. August, B. Nestler: Modelling of Transient Heat Conduction with Diffuse Interface Methods, Modelling and Simulation in Materials Science and Engineering, 2014. J. Ettrich, A. August, B. Nestler: Open Cell Metal Foams: Measurement and Numerical Modelling of Fluid Flow and Heat Transfer, CELLMAT 2014 Dresden Conference Proceedings, 2014. J. Ettrich, A. August, M. Rölle, B. Nestler: Digital Representation of Complex Cellular Sructures for Numerical Simulations, CELLMAT 2014 Dresden Conference Proceedings, 2014. Forschungsgruppen am KIT-ZBS Institute of Materials and Processes an der Hochschule Karlsruhe - Technik und Wirtschaft Das Institut für Werkstoffe und Werkstofftechnologien (IWWT) an der Hochschule Pforzheim
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06
Morbus Alzheimer ist die häufigste Form einer Demenzerkrankung und stellt aufgrund der steigenden Lebenserwartung eine sehr große ökonomische und emotionale Belastung für Patienten, deren Familien und die gesamte Gesellschaft dar. Eine Verringerung dieser Belastung erfordert dringend krankheitsmodifizierende Therapien, die bisher nicht zur Verfügung stehen. Als wahrscheinlichste Erklärung für die molekularen Ursachen der Krankheit wurde in der Amyloid-Kaskaden-Hypothese postuliert, dass die Akkumulation und Aggregation des Abeta-Peptids das zentrale Ereignis darstellt. Infolgedessen kommt es zu synaptischen Beeinträchtigungen durch Abeta-Oligomere, Entzündungsreaktionen durch unlösliche Abeta-Aggregate in Form von amyloiden Plaques, progressiven Schädigungen von Synapsen und Neuronen, oxidativem Stress, der Hyperphosphorylierung des Mikrotubuli-assoziierten Proteins Tau und einem Neuronenverlust. Das Abeta-Peptid wird durch sequentielle Spaltung des Amyloid-Vorläuferproteins (APP) durch die beta- und gamma-Sekretase konstitutiv im Gehirn produziert. In der vorliegenden Arbeit wurden die Auswirkungen der Überexpression eines humanen APP mit der schwedischen Mutation auf Synapsen und die Akkumulationskinetik des Abeta-Peptids zu amyloiden Plaques in einem Alzheimer-Mausmodell (Tg2576) untersucht. Die detaillierte Charakterisierung des Mausmodells wurde in einer Therapiestudie umgesetzt, in der eine passive Immunisierung gegen das Abeta-Peptid oder Abeta-Oligomere getestet wurde. Im ersten Teil der Arbeit wurde der Einfluss der Überexpression des APP auf dendritische Spines untersucht, die das postsynaptische Kompartiment glutamaterger Synapsen entlang von Dendriten bilden. Als Reporter-Tiere wurden Mäuse verwendet, die das gelbfluoreszierende Protein YFP in einem Teil der pyramidalen Neuronen des Cortex exprimieren. Mithilfe der in vivo Zwei-Photonen-Mikroskopie wurden die denritischen Spines an den apikalen Dendriten der Schicht II/III und V Neurone im somatosensorischen Cortex analysiert. Die Überexpression des APP führte zu einem differentiellen Effekt, wobei in Schicht II/III Neuronen keine Änderung und in Schicht V Neuronen eine Erhöhung der Dichte dendritischer Spines gemessen wurde. Eine detaillierte Charakterisierung zeigte eine Mehrzahl an stabilen Spines als ursächlich für die erhöhte Spinedichte, während keine zeitliche Änderung der Spinedichte über sechs Wochen detektiert wurde. Auch die Morphologie der dendritischen Spines war unverändert. Diese Ergebnisse deuten auf eine mögliche physiologische Rolle von APP und/oder dessen proteolytische Fragmente an Synapsen. Ein wichtiges neuropathologisches Merkmal von Morbus Alzheimer sind amyloide Plaques, die durch Aggregation des Abeta-Peptids zu Amyloidfibrillen mit einer gekreuzten beta-Faltblattstruktur entstehen. Demzufolge wurde im zweiten Teil der vorliegenden Arbeit mithilfe der in vivo Zwei-Photonen-Mikroskopie, unter der wiederholten Anwendung des spezifischen fluoreszenten Markers Methoxy-X04, die Entstehungs- und Aggregationskinetik amyloider Plaques untersucht. Eine quantitative Auswertung von Plaquegrößen, -wachstumsraten und -dichten in zwei Altersgruppen der frühen und späten amyloiden Pathologie führte zur bisher detailliertesten in vivo Charakterisierung in einem Alzheimer-Mausmodell. Für eine präzise Messung der Plaquedichten wurde ein sehr großes Gehirnvolumen von 3 Kubikmillimeter pro Gruppe untersucht. In einem Langzeitversuch über 15,5 Monate mit einer zeitlichen Auflösung von einer Woche wurde erstmals eine komplette Kinetik des Plaquewachstums in einem Mausmodell beschrieben, die den gleichen Verlauf einer Sigmoid-Funktion aufwies, wie er bereits in vitro und in Alzheimer-Patienten gezeigt wurde. Die Plaquedichte stieg asymptotisch mit dem Alter an und folgte einer exponentiellen, einphasigen Assoziationsfunktion. Neu entstandene Plaques wiesen mit Abstand die kleinste Plaquegröße auf, die mit zunehmendem Alter anstieg. Die lineare Plaquewachstumsrate, gemessen als Zuwachs des Plaqueradius pro Woche, sank mit ansteigendem Alter der Mäuse, was sich in einer negativen Korrelation der Plaquewachstumsrate mit der Plaquedichte widerspiegelte. Sehr große Plaques wurden früh in der Entstehungsphase gebildet und die Größe am Ende der Untersuchung korrelierte mit ihrer Wachstumsrate. In der frühen Phase der Plaqueentwicklung nahmen die Plaques mit einer maximalen Wachstumsrate zu, die nicht durch die Abeta-Konzentration limitiert war. Die Wachstumsraten individueller Plaques waren sehr breit verteilt, was auf einen Einfluss lokaler Faktoren schließen ließ. Dieser Befund wurde gestützt durch den Langzeitversuch, da kein Zusammenhang zwischen den Wachstumsraten benachbarter Plaques detektiert wurde. Die Ergebnisse dieser Studie zeigen ein physiologisches Wachstumsmodell, in dem Plaques sehr langsam über große Zeiträume wachsen bis zum Erreichen eines Äquilibriums. Durch die nachgewiesenen Parallelen zu den Befunden von in vitro Studien und in vivo Ergebnissen von Alzheimer-Patienten stellen die beschriebenen Zusammenhänge eine wertvolle Grundlage für die Translation von Ergebnissen zwischen präklinischer und klinischer Forschung zur Entwicklung von Abeta-senkenden Therapien dar. Im dritten Teil der Arbeit wurden die Effekte einer passiven Immunisierung gegen das Abeta-Peptid oder Abeta-Oligomere untersucht. Nach einer zweimonatigen Antikörper-Behandlung wurden keine Unterschiede in der Plaqueentstehungs- und Plaquewachstumskinetik gemessen. Eine in der Literatur beschriebene Akkumulation von Abeta-Oligomeren konnte durch eine in vivo Visualisierung mit einem hochspezifischen Antikörper gegen diese Molekülspezies nicht bestätigt werden. Lösliche Abeta-Peptide oder Abeta-Aggregate akkumulierten erwartungsgemäß um den amyloiden Kern von Plaques. Am Ende der Immunisierungsstudie wurde die synaptische Pathologie mittels immunhistochemischer Färbung der Prä- und Postsynapsen mit den Markern Synapsin und PSD-95 untersucht. Innerhalb amyloider Plaques wurden sehr niedrige Synapsendichten gemessen, die mit zunehmender Entfernung zum Plaque asymptotisch zu einem Plateau anstiegen. Diese Analyse zeigte erstmals, dass der Einflussbereich der toxischen Wirkung amyloider Plaques für Präsynapsen wesentlich größer ist als für Postsynapsen, was auf eine höhere Sensibilität von Präsynapsen schließen lässt. Abseits von Plaques im Cortex waren die Synapsendichten niedriger im Vergleich zu Wildtyptieren, wie durch den Vergleich der Plateaus gemessen wurde. Beide therapeutischen Antikörper zeigten eine partielle Normalisierung der Synapsendichte. Daraus folgt, dass die Abeta-Oligomere ursächlich für die Synapsenpathologie waren, da eine spezifische Neutralisierung dieser Abeta-Aggregate für einen Therapieeffekt ausreichte. Diese Ergebnisse bestätigen in vivo die toxische Wirkung von Abeta-Oligomeren auf Synapsen und beweisen eine mögliche Neutralisierung dieser löslichen Abeta-Aggregate durch eine passive Immunisierung.
Wuselig geht es zu im sich entwickelnden Gehirn: Hunderttausende von Zellen werden pro Minute produziert und machen sich auf die Suche nach einem Arbeitsplatz. Dort angekommen, entsenden Sie Axone und Dendriten zur Vernetzung. Wieso funktioniert das?
Wir waren für dasGehirn.info bei Hermann Cuntz und haben uns seine wunderschönen Dendriten angesehen. Die künstlich sind. Was nichts macht, denn im Rechner lässt sich ihr Wachstum wunderbar und sehr real beforschen.
Das wurde auch Zeit: das Neuron unter der Braincast-Lupe, quasi live in Form und Funktion. Wir betrachten Dendriten und lokale Potentiale, verfolgen ein Aktionspotential auf seinem Ritt auf dem Axon und freuen uns an den Vorzügen komplexer Systeme.
Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 03/07
In den letzten Jahrhunderten wurde postuliert, dass der komplexen Verarbeitungsleistung des adulten Säugetiergehirns ein stabiles Netzwerkgefüge zugrunde liegen würde. Diese Hypothese wurde kontinuierlich durch die Erkenntnis ersetzt, dass adulte Säugetiergehirne permanent einer massiven strukturellen und synaptischen Plastizität unterliegen. Teil dieser Plastizität ist eine lebenslang in hohem Maße stattfindende Neubildung von Nervenzellen in zwei regional begrenzten Gehirnarealen, den primären neurogenen Zonen. Daneben existieren multipotente neuronale Vorläuferzellen in diversen Bereichen des adulten Säugetiergehirns deren Potential neue Neurone im naiven Gehirn zu bilden, vielfach diskutiert wird. Im ersten Teil der vorliegenden Arbeit (Publikation 1) wurde das neurogene Potential des piriformen Cortex (PC) adulter Ratten untersucht. Der PC ist der größte Anteil des olfaktorischen Cortex und entscheidend an der Verarbeitung verschiedener Riecheindrücke beteiligt. Es konnte eine Zellneubildung mit neuronalen Charakteristika im PC nachgewiesen werden, die im Vergleich zu den beiden primären neurogenen Zonen jedoch um ein Vielfaches geringer war. Weiterhin konnte die Existenz von neuronalen Vorläuferzellen abgesichert werden, aus denen sich die neugebildeten Neurone direkt bilden könnten. Weiterführende Untersuchungen ergaben, dass die neugebildeten Zellen jedoch nicht über einen langen Zeitraum erhalten bleiben. Im Vergleich zu freilebenden Tieren werden Laborratten unter deprivierten Bedingungen gehalten. Da in der Vergangenheit gezeigt wurde, dass eine Umwelt mit gesteigerten Sinneseindrücken die Überlebensrate von neugebildeten Neuronen in den primären neurogenen Zonen steigert, kann weiterhin vermutet werden, dass die Überlebensdauer der neugebildeten Zellen im PC unter natürlichen Umweltbedingungen ebenfalls gesteigert ist. Im zweiten Teil der Arbeit (Publikation 2) wurden spezifische pathophysiologische Mechanismen neurogeneseabhängiger plastischer Veränderungen im Hippocampus zweier Rattenmodelle mit Epileptogenese charakterisiert. Während ihrer Entwicklung bilden neuronale Vorläuferzellen im adulten Säugetierhippocampus transient kurze basale Dendriten aus. In epileptischen Tieren und in Epilepsiepatienten persistieren diese Dendriten und weisen weitere morphofunktionelle Eigenschaften auf, die als prokonvulsive plastische Netzwerkveränderungen interpretiert werden. Daher wurde die Generierung dieser sog. hilaren oder persistierenden basalen Dendriten direkt mit dem Auftreten von epileptischen Anfällen in Verbindung gebracht. Genauere Untersuchungen, die diese Vermutung stützen, fehlen jedoch. Die Daten der vorliegenden Arbeit belegen, dass persistierende basale Dendriten charakteristisch für ein chronisches epileptogenes, neuronales Netzwerk und nicht unmittelbar eine Folge von epileptischen Anfällen sind. Spontane wiederkehrende Anfälle resultieren jedoch in einer weiteren Steigerung der Anzahl dieser Dendriten. Basierend auf der Hypothese, dass die Persisitenz der Dendriten die Epilepsieprogression und den Erkrankungsgrad steigert, kann weiterhin gefolgert werden, dass auch in Phasen der Anfallsfreiheit diese Form aberranter neurogeneseabhängige Plastizität zu einer Progression der Epilepsie beiträgt. Die Ergebnisse dieser Untersuchungen demonstrieren einheitlich die weit reichende Bedeutung neurogeneseabhängiger plastischer Veränderungen limbischer Strukturen unter physiologischen und pathophysiologischen Bedingungen. Eine weiterführende Aufklärung des regenerativen Potentials der transienten Nervenzellneubildung im PC ist aus Sicht einer möglichen Therapie diverser neurologischer Erkrankungen von Relevanz. Das endogene Reservoir multipotenter Vorläuferzellen in dieser und weiterer Gehirnregionen könnte für den funktionellen Ersatz erkrankungsbedingt untergegangener Neurone verwendet werden. Neben diesem regenerativen Potential existieren Hinweise auf eine pathophysiologische Bedeutung der neurogeneseassoziierten Plastizität bei Epilepsien. Die weiterführende Charakterisierung und die Aufklärung der funktionellen Relevanz dieser permissiven Alterationen sind für die Entwicklung einer kausalen Therapie sowie einer Epilepsieprophylaxe von Bedeutung.
Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 03/07
Thioredoxin Reduktase 1 (Txnrd1) ist ein ubiquitär exprimiertes, Selen-haltiges Redoxenzym, welches ein Teil des Thiol-Redox-Systems ist und in dieser Funktion verschiedene intrazelluläre Substrate im reduzierten Zustand bewahrt. Man nennt dieses erzielte Gleichgewicht Redoxhomöostase. Dies ist sowohl für die Regulation verschiedener Gene als auch für das Zellwachstum und für den Schutz von Zellen vor oxidativem Stress von Bedeutung. Die Funktion der vorwiegend zytoplasmatisch lokalisierten Thioredoxin Reduktase 1 in den neuronalen Vorläuferzellen eines Mausmodells sollte durch eine gezielte Inaktivierung studiert werden. Als Hauptbefund stellte sich heraus, dass das Fehlen von Txnrd1 in neuronalen Vorläuferzellen zu einem ausschließlich im Kleinhirn lokalisierten Phänotyp führt. Dieser Phänotyp wird kurz vor der Geburt (Embryonaltag 18,5) in Form einer Retardation der Fissuren-Bildung sichtbar und setzt sich in der postnatalen Kleinhirn- Entwicklung fort. Die Knockout-Tiere bleiben in der Gewichtsentwicklung hinter den Kontroll-Tieren zurück und weisen eine massive Kleinhirn-Hypoplasie mit klinischen Begleiterscheinungen wie Ataxie und intermittierendem Tremor auf. Das Kleinhirn der Txnrd1-Knockout Tiere zeigt eine im Lobulus VI begrenzte klare Trennung zwischen einem gut organisierten posterioren und einem dysmorphen anterioren Bereich. In diesem anterioren Bereich sind die Lobuli fusioniert. Die Purkinje-Zellen besitzen degenerierte Dendriten und sind ektopisch lokalisiert. Die geordnete Laminierung der Schichten Str. moleculare, Str. ganglionare und Str. granulare des posterioren Teils setzt sich aufgrund fehlender Differenzierung von Str. moleculare und Str. granulare nicht nach anterior fort. Weiterhin fehlt im anterioren Bereich ab dem postnatalen Tag 1 die radiale Ausrichtung der für die Neuronen-Migration essentiellen Bergmann Glia. Die Dicke deren Ausläufer bleibt hinter der der Kontroll- Tiere zurück. Mitotisch stark aktive EGL (External Germinal Layer), aus der später die Körnerzellen hervorgehen, zeigt in diesem Bereich keine Schichtenbildung, sondern eine nesterartige Anordnung. Die EGL der Txnrd1-Knockout Tiere zeigt ab P1 weit weniger proliferationstypische Expressionsmuster in der Immunhistochemie als die der Kontroll-Tiere. Weiterhin wird durch molekularbiologische Untersuchungen deutlich, dass die gezielte Ausschaltung von Txnrd1 in neuronalen Zusammenfassung 95 Vorläuferzellen zu einer Veränderung in der Expression der für Nestin, GFAP und Pax6 kodierenden Gene im Gewebe des Kleinhirns führt. Somit konnte eine wichtige Rolle der Txnrd1 in der Kleinhirnentwicklung und dort vor allem im Aufbau der Zytoarchitektur des anterioren Bereichs nachgewiesen werden. Die Ergebnisse aus dieser Arbeit legen in Verbindung mit den Erkenntnissen aus einem postnatalen Neuronen-spezifischen Txnrd1-Knockout den Schluss nahe, dass eine Störung in der Morphogenese der Bergmann Glia als primäre Ursache für die Entstehung des entstandenen Phänotyps im Txnrd1-Knockout angesehen werden kann.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Schalllokalisation ist eine der wichtigsten Aufgaben unseres Hörsystems. Die Position von tieffrequenten Schallquellen wird vor allem auf der Basis von interauralen Zeitdifferenzen (ITD) bestimmt. Die Verarbeitung solcher ITDs findet in der medialen oberen Olive (MSO), einer Struktur des auditorischen Hirnstamms statt (Goldberg and Brown, 1969; Yin and Chan, 1990; Spitzer and Semple, 1995), die zum ersten Mal in der aufsteigenden Hörbahn binaurale akustische Information verarbeitet. Die Zellen in der MSO bekommen von beiden Ohren erregende und hemmende Eingänge. Ein zeitlich präzise abgestimmtes Zusammenspiel dieser vier Eingänge sorgt für die richtige Einstellung der ITD-Empfindlichkeit in der Wüstenrennmaus (Brand et al., 2002). Die Koinzidenz der erregenden Eingängen alleine erzeugt eine ITD-Sensitivität, die bei ca. 0 ITD ihre maximale Antwort hat. Dadurch liegt die maximale Steigung der ITD-Funktion außerhalb des physiologisch relevanten Bereiches. Die Inhibition sorgt dafür, dass die maximale Antwort in den contralateralen Bereich verschoben und somit die maximale Steigung der ITD-Funktion auf den Bereich der physiologisch relevanten ITDs abgestimmt wird. Die glyzinergen inhibitorischen Projektionen zur MSO der Wüstenrennmaus sind vor Hörbeginn noch diffus verteilt und innervieren Somata und Dendriten gleichermaßen. Weniger als zwei Wochen nach Hörbeginn sind diese hemmenden Eingange jedoch auf die Somata der MSO-Neurone beschränkt (Seidl, 1999). Diese Beschränkung ist abhängig von binauraler Aktivität (Kapfer, 1999). In der vorliegenden Arbeit wird gezeigt, dass diese Eliminierung der dendritischen inhibitorischen Eingänge in der Wüstenrennmaus durch die Aufzucht in omnidirektionalem weißem Rauschen während einer kritischen Periode nach Hörbeginn unterdrückt werden kann. Für die normale Entwicklung der räumlichen Verteilung der glyzinergen Synapsen in der MSO ist also normale akustische Erfahrung notwendig. Bei Tieren, die ITDs nicht zur Schalllokalisation verwenden, kommt es zu keiner solchen Entwicklung. Vor Hörbeginn und auch im Erwachsenenstadium sind die inhibitorischen Eingänge auf den Zellen der MSO gleichmäßig über Soma und Dendriten verteilt. Als weiteres Ergebnis wird beschrieben, dass es eine Veränderung der ITD-Empfindlichkeit nach Hörbeginn gibt. Die Abstimmung der maximalen Steigungen der ITD-Funktionen auf den physiologischen Bereich nach Hörbeginn unterbleibt, wenn die räumlichen akustischen Signale durch weißes Rauschen während der kritischen Periode maskiert werden. Diese Entwicklung korreliert mit der Verteilung der glyzinergen Synapsen an MSO-Neuronen. Werden erwachsene Tiere weißem Rauschen ausgesetzt, so kommt es zu einer Änderung der ITD-Empfindlichkeit, die reversibel ist, aber nicht mit der unterdrückten Entwicklung nach Hörbeginn vergleichbar ist. Diese Arbeit zeigt, dass die korrekte strukturelle Entwicklung inhibitorischer Synapsen notwendig ist um die biophysikalische Grundlage für Schalllokalisationsmechanismen zu schaffen. Diese Entwicklung ist abhängig von der Erfahrung räumlicher akustischer Signale. Somit ist sie ein Beispiel für ein System, das sich direkt durch die Information die es später verarbeitet, selbst abstimmt und optimiert.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Bei Welsen der Spezies Schilbe mystis kommt es im elektrosensorischen System zur Konvergenz mehrerer (bis zu ca. 30) ampullärer Rezeptororgane eines sog. Clusters auf ein primäres afferentes Neuron. Es gibt zwei morphologische Grundtypen der Clusterinnervierung (stern- oder baumförmig); bei Clustern vom "Bäumchentyp" an der Analflossenbasis erstreckt sich das Konvergenzareal über bis zu ca. 2 mm. Die Dendriten weisen eine vollständige, aber untypische Myelinisierung mit u.a. sehr kurzen Internodienabständen auf und erreichen Längen bis zu ca. 3mm. Im Unterschied zu Physialia spec. sind bei Schilbe die Leitungslängen innerhalb eines Clusters vom Bäumchentyp zwischen Synapse und Axonstamm - und davon abhängig auch die elektrischen Eigenschaften der Dendriten - sehr unterschiedlich. Ampulläre Rezeptororgane sind spontanaktiv und generieren in der afferenten Faser Aktionspotentiale in sehr regelmäßiger Abfolge; die statistische Auswertung des Interspike-Intervalls zeigt eine eingipflige, schmale, symmetrische Verteilung (s = 7%). Zusammen mit den Ergebnissen zur Empfindlichkeitsaddition im Cluster (Peters & Mast 1983, van Dongen & Bretschneider 1984, Peters & van Ieperen 1989, Peters et al. 1997a) und Überlegungen zur Signalausbreitung lassen sich diese Ergebnisse nur mit monozentrischer Erregungsbildung im Axonstamm erklären (Bestätigung durch progressive TTX-Vergiftungsexperimente, s.u.) und sind mit der "Kollisionstheorie" (Murray & Capranica 1973, Pabst 1977, Holden 1976, Sanchez & Zakon 1990, Teunis et al. 1990b, Longtin & Racicot 1996) nicht vereinbar. Nach MS-222 Anästhesie oder Anwendung des Natriumkanal-Blockers TTX zeigt die Histogrammverteilung charakteristische Veränderungen und gibt so weitere Hinweise auf Funktionsmechanismen bei Erregungsbildung und Fortleitung. Der Vergleich der meßbaren Aktionspotentialamplituden im Cluster zeigt keine Abhängigkeit von der Fortleitungsdistanz innerhalb des Dendritenbaums. Die Ergebnisse sind nur mit einer aktiven Invadierung der Endarborisation vereinbar, was auch durch progressive TTX-Vergiftungsexperimente klar bestätigt wird (s.u.). Es gibt während "kathodischer Inhibition" mit starken Stimuli nach der zu erwartenden anfänglichen Unterdrückung der Nervenantwort eine Plateauphase, in der eine reduzierte, sehr regelmäßige Spontanaktivität bei fehlender Reizempfindlichkeit auftritt. Die Rückkehr der Empfindlichkeit nach dieser Phase erfolgt anisotrop. Dies legt die Existenz wenigstens zweier adaptiver Prozesse innerhalb der analogen Verarbeitung (vor der Generation von Aktionspotentialen) nahe. Nach den Ergebnissen der progressiven TTX-Vergiftung ist der schnellere dieser Mechanismen in den Dendriten lokalisiert und korreliert mit der Adaptation dendritischer Natriumkanäle. Es gibt eine positive, nichtlineare Korrelation zwischen Spikeamplitude und Interspike-Intervall: bei Stimulation des Systems tritt eine Amplitudenverminderung ein und umgekehrt. Ein Zusammenhang mit Refraktärphänomenen oder "Shuntingprozessen" in der Endarborisation kann ausgeschlossen werden. Das Ergebnis ist allein auf der Basis verminderter Aktivierbarkeit der dendritischen Natriumkanäle (potentialabhängige Inaktivation) aufgrund des EPSP-induzierten Anstiegs des intradendritischen Potentials zu erklären und gibt damit Hinweise auf die aktive Rolle der Natriumkanäle bei der Fortleitung graduierter Potentiale. Progressive TTX-Blockierungsexperimente der dendritischen Natriumkanäle zeigen bei Doppelableitungen von proximalen und distalen Organen innerhalb eines Clusters charakteristische, hochsignifikante Veränderungsmuster in Aktionspotentialamplituden, Reizempfindlichkeit und Erregungsmustern in Abhängigkeit von der Diffusionsrichtung des Kanalblockers. Die Ergebnisse liefern u.a. eindeutige Hinweise, daß: (1) in jedem Cluster nur ein Impulsentstehungsort für die Generierung der Aktionspotentiale verantwortlich ist, der sich im Axonstamm der gemeinsamen Afferenz befindet. (2) Die Ausbreitung der postsynaptischen Potentiale erfolgt mit aktiver Unterstützung dendritischer Natriumkanäle, die im unterschwelligen Bereich als spannungsgesteuerte Stromverstärker arbeiten und postsynaptische Signale stabil verstärken; damit schaffen sie erst die Voraussetzung für Konvergenz und Addition der Analoginformation im Axonstamm. (3) Die Endarborisation wird in ihrer gesamten Erstreckung von den Aktionspotentialen aktiv retrograd invadiert, was u.a. eine wichtige "Reset"-Funktion in der Endarborisation erfüllen dürfte. Die Endarborisation stellt damit ein - in dieser Form und Ausprägung aus der Literatur noch nicht bekanntes - effizientes peripheres mononeuronales Konvergenzsystem dar, das in komplexer Weise essentiell auf aktiven Funktionen dendritischer Natriumkanäle basiert. Konsequenzen daraus für den neuronalen Informationsverarbeitungsprozeß (analoge Vorverarbeitung) und den Rezeptormechanismus ampullärer Organcluster werden diskutiert.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 01/19
Im Verlaufe der zellulären Reifung wandern (migrieren) unreife Nervenzellen von der Germinalschicht in ihre Zielschicht, in der sie nach dem Auswachsen von Dendriten synaptische Verbindungen bilden. Diese Reifungsprozesse gehen mit Anstiegen der intrazellulären Kalziumkonzentration, sogenannten Kalziumsignalen, einher. Während die Neurotransmitter GABA und Glyzin Nervenzellen des adulten Gehirns hyperpolarisieren und dadurch Aktivität hemmen, depolarisieren sie paradoxerweise unreife Nervenzellen und rufen dadurch Kalziumsignale hervor. In der vorliegenden Arbeit wurden die Rolle und der Mechanismus dieser Signale während der Nervenzellreifung mit Hilfe hochauflösender Kalzium- und Chloridfluoreszenzmessungen in Gehirnschnitten und in Zebrafischlarven untersucht. Es zeigte sich, dass GABA im Kleinhirn robuste Kalziumsignale sowohl in Körnerzellen während und nach Vollendung der Migration als auch in Purkinjezellen in einer Phase starken dendritischen Wachstums und ausgeprägter Synapsenbildung hervorruft. Als Mechanismus konnte in unreifen Nervenzellen ein Chloridausstrom identifiziert werden, der zu einer Depolarisation mit nachfolgender Aktivierung spannungsabhängiger Kalziumkanäle führt. Im Gegensatz dazu ruft GABA in reifen Nervenzellen einen Chlorideinstrom und dadurch eine Hemmung von Aktivität durch eine Hyperpolarisation der Zellmembran hervor. Neben der Untersuchung in Gehirnschnitten gelang in der vorliegenden Arbeit erstmals der Nachweis GABA-vermittelter Kalziumsignale in intakten Lebewesen. Dabei evozierten GABA und Glyzin Kalziumsignale in Rückenmarksneuronen von Zebrafischlarven zu einem Zeitpunkt, zu dem sie die ersten koordinierten Schwimmbewegungen vollzogen. Insgesamt zeigte sich, dass GABA, im Gegensatz zu seiner hemmenden Wirkung im adulten Gehirn, in unreifen Nervenzellen, die sich in einer Phase dramatischer morphologischer und funktioneller Veränderungen befinden, Kalziumsignale hervorruft. In Anbetracht der Bedeutung von Kalziumsignalen für die Reifung des Gehirns sprechen diese Ergebnisse für eine Rolle von GABA als trophischer Faktor.