POPULARITY
Thomas Henn hat im Oktober 2016 seine Promotion zum Thema Computersimulation von Partikelströmungen abgeschlossen. Partikelströmungen treten in zahlreichen natürlichen sowie künstlichen Vorgängen auf, beispielsweise als Transport von Feinstaub in den menschlichen Atemwegen, als Bildung von Sediment in Flüssen oder als Feststoff–Fluid Gemisch bei Filtrationen. Simulationen von Partikelströmungen kommen zum Einsatz, wenn physische Untersuchungen nicht möglich sind. Darüber hinaus können sie Kosten experimenteller Studien verringern. Häufig ist das der Fall, wenn es um medizinische Anwendungen geht. Wenn man beispielsweise aus CT-Aufnahmen die genaue Geometrie des Naseninnenraums eines Patienten kennt, kann durch Simulation in dieser spezifischen Geometrie ermittelt werden, wo sich Partikel welcher Größe ablagern. Das ist in zwei Richtungen interessant: Erstens zur Vermeidung von Gesundheitsbelastungen durch Einlagerung von Partikeln in der Lunge (dort landen alle Partikel, die die Nase nicht filtern kann) aber zweitens auch bei der bestmöglichen Verabreichung von Medikamenten mittels Zerstäubung in die Nasenhöhle. Es hat sich gezeigt, dass die Simulation von Strömungen mit einer großen Zahl an beliebig geformten Partikeln den herkömmlichen numerischen Methoden insbesondere bei der Parallelisierung Probleme bereitet. Deshalb wird die Lattice Boltzmann Methode (LBM) als neues Verfahren zur numerischen Simulation von Strömungen auf Partikelströmungen angewendet. Sie hat außerdem den Vorteil, dass komplexe Geometrien wie z.B. ein Naseninnenraum keine extra zu bewältigende Schwierigkeit darstellen. Die zentrale Idee für die effektive Parallelisierung unter LBM ist eine Gebietszerlegung: Die durchströmte Geometrie wird in Zellen aufgeteilt und diese Zellen gerecht auf die zur Verfügung stehenden Prozessoren verteilt. Da die Rechnungen für die Strömungsrechnung mit LBM im wesentlichen lokal sind (es werden nur die Informationen einer Zelle und der direkten Nachbarzellen benötigt), ist das extrem effektiv. Wenn nun neben der Strömung auch noch die Bewegung der Partikel berechnet werden soll, müssen natürlich physikalische Bewegungsmodelle gefunden werden, die für die jeweilige Partikelgröße und -form passen, daraus Gleichungen und deren Diskretisierung abgeleitet werden in der Implementierung die Vorteile der LBM bei der Parallelisierung möglichst nicht zerstört werden. Offensichtlich ist es am besten, wenn die Partikel möglichst gleichmäßig über die durchströmte Geometrie verteilt sind. Aber das kann man sich ja nicht immer so aussuchen. Je nach Größe und Dichte der Partikel wird es wichtig, neben der Wirkung des Fluids auf die Partikel auch Rückwirkung des Partikels auf die Strömung, Wechselwirkung der Partikel untereinander (z.B. auch herausfinden, wann sich Partikel berühren) Wechselwirkung der Partikel mit dem Rand der Geometriezu betrachten. Als sehr hilfreich hat sich eine ganz neue Idee herausgestellt: Partikelströmungen als bewegtes poröses Medium zu modellieren. D.h. für große Partikel stellt man sich vor, sie haben einen festen Kern und außen einen glatten Übergang in der Porösität zur reinen Fluidphase. Es zeigt sich, dass man dann sogar auf ein Modell verzichten kann, das die Kontakte der Partikel modelliert, weil sich die Partikel so natürlich in der Strömung bewegen, wie man es auch im Experiment beobachtet. Alle Berechnungen müssen validiert werden, auch wenn manchmal nicht ganz klar ist, wie das erfolgen kann. Zum Glück ist hier aber die enge Zusammenarbeit mit der Verfahrenstechnik am KIT eine große Hilfe, die die Computersimulationswerkzeuge auch für ihre Projekte nutzen und weiter entwickeln. Literatur und weiterführende Informationen L.L.X. Augusto: Filters, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 112, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/filters OpenLB Open source Lattice Boltzmann Code F. Bülow: Numerical simulation of destabilizing heterogeneous suspensions at vanishing Reynolds numbers. Karlsruhe, 2015. T. Henn et al.: Particle Flow Simulations with Homogenised Lattice Boltzmann Methods. To appear in Particuology. F. Klemens: Simulation of Fluid-Particle Dynamics with a Porous Media Lattice Boltzmann Method, MA thesis. Karlsruher Institut für Technologie, 2016. E. E. Michaelides: Particles, Bubbles & Drops: Their Motion, Heat and Mass Transfer, World Scientific Publishing Company Incorporated, 2006. T.Henn: Aorta Challenge, Gespräch mit S. Ritterbusch im Modellansatz Podcast, Folge 2, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2013. http://modellansatz.de/aorta-challenge
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 12/19
Das Gefäßendothel hat eine wichtige Funktion in der lokalen Regulation des Gefäßtonus. Veränderungen im Blutfluss („shear stress“) und/oder die Bindung von vasoaktiven Substanzen (Histamin, ATP) führen über einen endothelialen Calciumanstieg zur Bildung von Stickstoffmonoxid (NO), das in der benachbarten glatten Gefäßmuskulatur zur Relaxation der Zellen und damit zur Dilatation des Gefäßes führt. Für eine wirkungsvolle Endothelfunktion ist dabei ein synchrones Verhalten aller Endothelzellen - als Folge eines synchronen zytosolischen Calciumanstiegs – eine wichtige Voraussetzung. Für die vorliegende Arbeit wurde postuliert, dass eine synchrone Calciumantwort nach Stimulation der Endothelzellen mit Histamin oder ATP entscheidend von der Gap Junction Kopplung zwischen den Zellen abhängt. Dieser Kopplung käme somit eine neue modulierende Rolle für die Reaktion des Endothels auf vasodilatierende Substanzen zu. Kultivierte humane Nabelschnurvenenendothelzellen (HUVEC) wurden mit Histamin oder ATP vor, während und nach pharmakologischer Gap Junction Blockade stimuliert und der zeitliche Verlauf des Calciumanstiegs in allen individuellen Zellen eines Sichtfeldes wurde mit Hilfe eines Mikroskop-basierten Kamerasystems analysiert. Als Maß für die calciumabhängige NO-Bildung wurde der Histamin-induzierte cGMP Anstieg in Endothelzellen unter Kontrollbedingungen und nach Gap Junction Inhibition untersucht. Die Verteilung von Histamin- und ATP-Rezeptoren innerhalb der HUVECPopulation wurde mit Durchflusszytometrie bzw. Immunfluoreszenz analysiert. Zusätzlich wurde nach mechanischer Stimulation von Einzelzellen untersucht, ob der von Gap Junctions abhängige zytosolische Calciumanstieg in Nachbarzellen („Calciumwelle“) auf der Ausbreitung von Ca2+ und/oder der Ausbreitung des calciumfreisetzenden Signalstoffs IP3 beruht. Ausgehend von initial reagierenden Zellen erfolgte der Calciumanstieg nach Zugabe von Histamin und ATP zeitlich verzögert in deren Nachbarzellen. Während einer Blockade der gap-junctionalen Kommunikation konnte nur in etwa 40 % der Zellen eine Calciumreaktion beobachtet werden. Diese Beobachtungen an HUVEC wurden zudem in ersten Versuchen am isolierten Gefäß nach Stimulation mit ATP bestätigt. Die Histaminrezeptoren waren in HUVEC-Kulturen inhomogen verteilt und nur in einem Teil der Zellen nachweisbar. Außerdem war nach einer Gap Junction Blockade die cGMP-Konzentration (als Maß für die NO-Bildung) in HUVEC-Zelllysat nach Stimulation mit Histamin deutlich verringert. Es konnte weiterhin gezeigt werden, dass IP3 eine wichtige Rolle für die Ausbreitung der Calciumwelle über Gap Junctions spielt. Diese Ergebnisse zeigen, dass die interzelluläre Kommunikation über Gap Junctions für eine synchrone Antwort des Endothels auf die vasoaktiven Substanzen Histamin und ATP wesentlich ist. Eine Inhibition der interzellulären Kommunikation führt zu einem verminderten Calciumanstieg und verminderter NO-Produktion in der Endothelschicht. Gap Junctions modulieren somit die Sensitivität des Endothels auf vasoaktive Substanzen. Eine gezielte Beeinflussung der Gap Junction-Permeabilität des Endothels könnte somit ein vielversprechender Ansatzpunkt für die Therapie von pathophysiologischen Gefäßveränderungen wie Atherosklerose oder Diabetes darstellen, die mit vasomotorischen Endothelfunktionsstörungen einhergehen.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
1.) Die weltweit als Bioindikator für den Luftschadstoff Ozon eingesetzte Tabaksorte Bel W3 reagiert mit typischen pergamentartigen Läsionen auf sommerliche Ozonwerte in Mitteleuropa. Es konnte demonstriert werden, dass eine Akkumulation von reaktiven Sauerstoffspezies (ROS), vor allem H2O2, der Ozoninduktion von Zelltod vorausgeht, wobei die Orte der H2O2-Akkumulation („Burst initiation sites“) mit denen der späteren Läsionen sehr gut korrelierten. Histologische Untersuchungen zeigten, dass dieser „oxidative Burst“ zunächst in den Zellen des Palisadenparenchyms, und zwar in Clustern in der Nähe von Blattadern, erfolgte. 2.) Bei einem Vergleich Ozon-empfindlicher Arten, Sorten und Ökotypen von Nutz- und Wildpflanzen zeigten sich deutliche Unterschiede in der Art der vorwiegend akkumulierten ROS. In neun Tomatensorten wurde H2O2-Akkumulation detektiert, wobei die Intensität mit der Ozonempfindlichkeit der Sorten korrelierte. In zehn Ökotypen von Arabidopsis thaliana L. ließ sich neben H2O2 vor allem O2 -. detektieren, wobei O2 -. mit dem Muster und der Quantität der Schäden korrelierte. Bei den Ozon-empfindlichen Wildpflanzen Rumex crispus L., R. obtusifolius L. und Malva sylvestris L. konnte ausschließlich O2 -. nachgewiesen werden. Blattquerschnitte der letztgenannten Pflanzenart erbrachten deutliche Unterschiede zu der Tabaksorte Bel W3: Obwohl beide Pflanzenarten amphistomatäre Blätter besitzen, konnte O2 -. zuerst in den Zellen des Schwammparenchyms detektiert werden. In allen Fällen erfolgte das Auftreten von Ozon-induziertem Zelltod verstärkt entlang der Blattadern; Bereiche des Zelltodes korrelierten jeweils mit vorheriger Akkumulation von ROS. 3.) In Freilandversuchen konnte zum ersten Mal die Ozon-induzierte Akkumulation von ROS vor dem Auftreten von Blattsymptomen in Wild- und Kulturpflanzen gezeigt werden. Berechnungen der kritischen Grenzwerte für Ozon (AOT40) ergaben, dass der zur Zeit für Kulturpflanzen und natürliche Vegetationen vorgegebene Wert von 3000 nl l -1 h für empfindliche Pflanzen wie die Tabaksorte Bel W3 zu hoch angesetzt ist. 4.) Täglich wiederkehrende Ozonexposition in Freiland- und Kammerversuchen führten in der Tabaksorte Bel W3 zu einer Akkumulation von H2O2 um schon bestehende Läsionen herum und daraus resultierend zu deren Vergrößerung. Es ist anzunehmen, dass existierende Bereiche pflanzlichen Zelltods die Nachbarzellen für ROS-Akkumulation und Zelltod empfindlicher machen. Als Verstärkungsfaktoren kommen erhöhte Produktionsraten von Ethylen, NO und Salicylsäure in Betracht. Entsprechend korrelierten die Gehalte der Ethylenvorstufe 1-Aminocyclopropan-1-carbonsäure und Salicylsäure mit Ozon-induziertem Zelltod. Erstmalig konnte eine Ozon-induzierte Akkumulation des pflanzlichen Signalstoffs NO nachgewiesen werden. Dessen Produktion erfolgte in Ozon-behandelten Blättern der Tabaksorte Bel W3 zum gleichen Zeitpunkt und mit sehr ähnlichem Muster, nämlich besonders in Palisadenparenchymzellen entlang Blattadern, wie H2O2, so dass beide Signalmoleküle bei der Ausprägung pflanzlichen Zelltods kooperieren könnten. 5.) Das Auftreten erhöhter ROS-Gehalte nach Ende der Ozonexposition sowie die Hemmung der ROS-Akkumulation und Ozon-induzierten Zelltods durch Enzym-Inhibitoren weisen auf eine aktive in planta Bildung von ROS in Ozon-empfindlichen Pflanzen hin. Als ROS-produzierende Enzyme kommen dabei verschiedene Oxidasen und Peroxidasen in Betracht. Zunächst wurde eine Beteiligung von Oxalatoxidase-Aktivität an dem Ozon-induzierten „oxidativen Burst“ für Tabak ausgeschlossen. 6.) Erstmals gelang der Nachweis zweier homologer Gene in Tabak zu der O2 -. -produzierenden NADPH-Oxidase (gp91phox) aus Makrophagen von Säugern. Beide Isoformen wurden kloniert; sie wurden in Anlehnung an die entsprechenden Isoformen in A. thaliana als Ntrboh (N. tabacum respiratory burst oxidase homologue) D und F bezeichnet. Die Sequenzen enthielten die für die Aktivität der NADPH-Oxidase wichtigen FAD-, NADPH Adenin- und NADPH Ribose-Bindungsstellen sowie konservierte Histidin-Reste für die Häm-Bindung. Wie die bisher veröffentlichten pflanzlichen NADPH-Oxidasen fanden sich in Ntrboh D und F N-terminale Verlängerungen mit zwei EF-Hand-Motiven, die als putative Ca 2+ -Bindungsstellen gelten. 7.) Während Ntrboh F in allen Geweben konstitutiv exprimiert wurde, zeigte sich die Isoform Ntrboh D in ihrer Expression abhängig vom Gewebe. Ozonbehandlung führte zu einer biphasischen Induktion der Expression von Ntrboh D in Blättern der Sorte Bel W3 mit Maxima nach 2 und 6 h nach Beginn der Exposition. Maximale Transkriptgehalte wurden durch einmalige Exposition mit 200 nl l -1 Ozon induziert, höhere Ozondosen brachten keine weitere Steigerung. Auch in der Ozon-toleranten Sorte Bel B ergab sich ein zu Bel W3 sehr ähnlicher biphasischer Verlauf der Transkript-Akkumulation. Die Isoform Ntrboh F zeigte in einigen Versuchen eine leicht erhöhte Expression gegen Ende und nach der Ozonexposition, also zeitlich zusammen mit dem Auftreten des zweiten Peaks der ROS-Bildung. Infiltration mit einem avirulenten Pathogen-Stamm (Pseudomonas syringae pv. syringae) bewirkte eine der Ozoninduktion vergleichbare Transkriptakkumulation von Ntrboh D. In der Apoplastenflüssigkeit von Tabakblättern fanden sich Isoformen von Superoxiddismutase (SOD), die durch Ozon in ihrer Aktivität induziert waren. 8.) Zusammenfassend konnte gezeigt werden, dass Ozoneffekte in empfindlichen Pflanzen durch die pflanzeneigene Produktion von ROS verstärkt werden. ROS sind dabei an der Induktion eines Zelltodprogramms beteiligt. Es wird postuliert, dass die Ozoninduktion von Homologen der NADPH-Oxidase aus Säugern zusammen mit SOD für die Ozon-induzierte H2O2-Akkumulation und die extrem hohe Empfindlichkeit der Tabaksorte Bel W3 verantwortlich ist. Weitere Untersuchungen auf Protein- und Enzymaktivitätsebene müssen zeigen, welche Mechanismen für die Auslösung dieser Induktion in Bel W3, nicht aber in Ozon-toleranten Nutz- und Wildpflanzen, verantwortlich sind.